skyvern-llamaindex 0.0.2__tar.gz → 0.0.3__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/PKG-INFO +15 -15
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/README.md +14 -14
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/pyproject.toml +1 -1
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/skyvern_llamaindex/agent.py +13 -13
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/skyvern_llamaindex/client.py +13 -13
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/skyvern_llamaindex/__init__.py +0 -0
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/skyvern_llamaindex/py.typed +0 -0
- {skyvern_llamaindex-0.0.2 → skyvern_llamaindex-0.0.3}/skyvern_llamaindex/schema.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: skyvern-llamaindex
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.3
|
4
4
|
Summary: Skyvern integration for LlamaIndex
|
5
5
|
Author: lawyzheng
|
6
6
|
Author-email: lawy@skyvern.com
|
@@ -48,14 +48,14 @@ import asyncio
|
|
48
48
|
from dotenv import load_dotenv
|
49
49
|
from llama_index.agent.openai import OpenAIAgent
|
50
50
|
from llama_index.llms.openai import OpenAI
|
51
|
-
from skyvern_llamaindex.agent import
|
51
|
+
from skyvern_llamaindex.agent import SkyvernTaskToolSpec
|
52
52
|
|
53
53
|
# load OpenAI API key from .env
|
54
54
|
load_dotenv()
|
55
55
|
|
56
|
-
skyvern_tool =
|
56
|
+
skyvern_tool = SkyvernTaskToolSpec()
|
57
57
|
|
58
|
-
tools = skyvern_tool.to_tool_list(["
|
58
|
+
tools = skyvern_tool.to_tool_list(["run"])
|
59
59
|
|
60
60
|
agent = OpenAIAgent.from_tools(
|
61
61
|
tools=tools,
|
@@ -70,7 +70,7 @@ print(response)
|
|
70
70
|
```
|
71
71
|
|
72
72
|
### Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)
|
73
|
-
> dispatch task will return immediately and the task will be running in the background. You can use `
|
73
|
+
> dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
|
74
74
|
|
75
75
|
:warning: :warning: if you want to run this code block, you need to run `skyvern init --openai-api-key <your_openai_api_key>` command in your terminal to set up skyvern first.
|
76
76
|
|
@@ -80,7 +80,7 @@ from dotenv import load_dotenv
|
|
80
80
|
from llama_index.agent.openai import OpenAIAgent
|
81
81
|
from llama_index.llms.openai import OpenAI
|
82
82
|
from llama_index.core.tools import FunctionTool
|
83
|
-
from skyvern_llamaindex.agent import
|
83
|
+
from skyvern_llamaindex.agent import SkyvernTaskToolSpec
|
84
84
|
|
85
85
|
async def sleep(seconds: int) -> str:
|
86
86
|
await asyncio.sleep(seconds)
|
@@ -89,7 +89,7 @@ async def sleep(seconds: int) -> str:
|
|
89
89
|
# load OpenAI API key from .env
|
90
90
|
load_dotenv()
|
91
91
|
|
92
|
-
skyvern_tool =
|
92
|
+
skyvern_tool = SkyvernTaskToolSpec()
|
93
93
|
|
94
94
|
sleep_tool = FunctionTool.from_defaults(
|
95
95
|
async_fn=sleep,
|
@@ -97,7 +97,7 @@ sleep_tool = FunctionTool.from_defaults(
|
|
97
97
|
name="sleep",
|
98
98
|
)
|
99
99
|
|
100
|
-
tools = skyvern_tool.to_tool_list(["
|
100
|
+
tools = skyvern_tool.to_tool_list(["dispatch", "get"])
|
101
101
|
tools.append(sleep_tool)
|
102
102
|
|
103
103
|
agent = OpenAIAgent.from_tools(
|
@@ -122,7 +122,7 @@ import asyncio
|
|
122
122
|
from dotenv import load_dotenv
|
123
123
|
from llama_index.agent.openai import OpenAIAgent
|
124
124
|
from llama_index.llms.openai import OpenAI
|
125
|
-
from skyvern_llamaindex.client import
|
125
|
+
from skyvern_llamaindex.client import SkyvernTaskToolSpec
|
126
126
|
|
127
127
|
|
128
128
|
async def sleep(seconds: int) -> str:
|
@@ -132,11 +132,11 @@ async def sleep(seconds: int) -> str:
|
|
132
132
|
# load OpenAI API key from .env
|
133
133
|
load_dotenv()
|
134
134
|
|
135
|
-
skyvern_client_tool =
|
135
|
+
skyvern_client_tool = SkyvernTaskToolSpec(
|
136
136
|
credential="<your_organization_api_key>",
|
137
137
|
)
|
138
138
|
|
139
|
-
tools = skyvern_client_tool.to_tool_list(["
|
139
|
+
tools = skyvern_client_tool.to_tool_list(["run"])
|
140
140
|
|
141
141
|
agent = OpenAIAgent.from_tools(
|
142
142
|
tools=tools,
|
@@ -151,7 +151,7 @@ print(response)
|
|
151
151
|
```
|
152
152
|
|
153
153
|
### Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)
|
154
|
-
> dispatch task will return immediately and the task will be running in the background. You can use `
|
154
|
+
> dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
|
155
155
|
|
156
156
|
no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
|
157
157
|
|
@@ -161,7 +161,7 @@ from dotenv import load_dotenv
|
|
161
161
|
from llama_index.agent.openai import OpenAIAgent
|
162
162
|
from llama_index.llms.openai import OpenAI
|
163
163
|
from llama_index.core.tools import FunctionTool
|
164
|
-
from skyvern_llamaindex.client import
|
164
|
+
from skyvern_llamaindex.client import SkyvernTaskToolSpec
|
165
165
|
|
166
166
|
|
167
167
|
async def sleep(seconds: int) -> str:
|
@@ -171,7 +171,7 @@ async def sleep(seconds: int) -> str:
|
|
171
171
|
# load OpenAI API key from .env
|
172
172
|
load_dotenv()
|
173
173
|
|
174
|
-
skyvern_client_tool =
|
174
|
+
skyvern_client_tool = SkyvernTaskToolSpec(
|
175
175
|
credential="<your_organization_api_key>",
|
176
176
|
)
|
177
177
|
|
@@ -181,7 +181,7 @@ sleep_tool = FunctionTool.from_defaults(
|
|
181
181
|
name="sleep",
|
182
182
|
)
|
183
183
|
|
184
|
-
tools = skyvern_client_tool.to_tool_list(["
|
184
|
+
tools = skyvern_client_tool.to_tool_list(["dispatch", "get"])
|
185
185
|
tools.append(sleep_tool)
|
186
186
|
|
187
187
|
agent = OpenAIAgent.from_tools(
|
@@ -35,14 +35,14 @@ import asyncio
|
|
35
35
|
from dotenv import load_dotenv
|
36
36
|
from llama_index.agent.openai import OpenAIAgent
|
37
37
|
from llama_index.llms.openai import OpenAI
|
38
|
-
from skyvern_llamaindex.agent import
|
38
|
+
from skyvern_llamaindex.agent import SkyvernTaskToolSpec
|
39
39
|
|
40
40
|
# load OpenAI API key from .env
|
41
41
|
load_dotenv()
|
42
42
|
|
43
|
-
skyvern_tool =
|
43
|
+
skyvern_tool = SkyvernTaskToolSpec()
|
44
44
|
|
45
|
-
tools = skyvern_tool.to_tool_list(["
|
45
|
+
tools = skyvern_tool.to_tool_list(["run"])
|
46
46
|
|
47
47
|
agent = OpenAIAgent.from_tools(
|
48
48
|
tools=tools,
|
@@ -57,7 +57,7 @@ print(response)
|
|
57
57
|
```
|
58
58
|
|
59
59
|
### Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)
|
60
|
-
> dispatch task will return immediately and the task will be running in the background. You can use `
|
60
|
+
> dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
|
61
61
|
|
62
62
|
:warning: :warning: if you want to run this code block, you need to run `skyvern init --openai-api-key <your_openai_api_key>` command in your terminal to set up skyvern first.
|
63
63
|
|
@@ -67,7 +67,7 @@ from dotenv import load_dotenv
|
|
67
67
|
from llama_index.agent.openai import OpenAIAgent
|
68
68
|
from llama_index.llms.openai import OpenAI
|
69
69
|
from llama_index.core.tools import FunctionTool
|
70
|
-
from skyvern_llamaindex.agent import
|
70
|
+
from skyvern_llamaindex.agent import SkyvernTaskToolSpec
|
71
71
|
|
72
72
|
async def sleep(seconds: int) -> str:
|
73
73
|
await asyncio.sleep(seconds)
|
@@ -76,7 +76,7 @@ async def sleep(seconds: int) -> str:
|
|
76
76
|
# load OpenAI API key from .env
|
77
77
|
load_dotenv()
|
78
78
|
|
79
|
-
skyvern_tool =
|
79
|
+
skyvern_tool = SkyvernTaskToolSpec()
|
80
80
|
|
81
81
|
sleep_tool = FunctionTool.from_defaults(
|
82
82
|
async_fn=sleep,
|
@@ -84,7 +84,7 @@ sleep_tool = FunctionTool.from_defaults(
|
|
84
84
|
name="sleep",
|
85
85
|
)
|
86
86
|
|
87
|
-
tools = skyvern_tool.to_tool_list(["
|
87
|
+
tools = skyvern_tool.to_tool_list(["dispatch", "get"])
|
88
88
|
tools.append(sleep_tool)
|
89
89
|
|
90
90
|
agent = OpenAIAgent.from_tools(
|
@@ -109,7 +109,7 @@ import asyncio
|
|
109
109
|
from dotenv import load_dotenv
|
110
110
|
from llama_index.agent.openai import OpenAIAgent
|
111
111
|
from llama_index.llms.openai import OpenAI
|
112
|
-
from skyvern_llamaindex.client import
|
112
|
+
from skyvern_llamaindex.client import SkyvernTaskToolSpec
|
113
113
|
|
114
114
|
|
115
115
|
async def sleep(seconds: int) -> str:
|
@@ -119,11 +119,11 @@ async def sleep(seconds: int) -> str:
|
|
119
119
|
# load OpenAI API key from .env
|
120
120
|
load_dotenv()
|
121
121
|
|
122
|
-
skyvern_client_tool =
|
122
|
+
skyvern_client_tool = SkyvernTaskToolSpec(
|
123
123
|
credential="<your_organization_api_key>",
|
124
124
|
)
|
125
125
|
|
126
|
-
tools = skyvern_client_tool.to_tool_list(["
|
126
|
+
tools = skyvern_client_tool.to_tool_list(["run"])
|
127
127
|
|
128
128
|
agent = OpenAIAgent.from_tools(
|
129
129
|
tools=tools,
|
@@ -138,7 +138,7 @@ print(response)
|
|
138
138
|
```
|
139
139
|
|
140
140
|
### Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)
|
141
|
-
> dispatch task will return immediately and the task will be running in the background. You can use `
|
141
|
+
> dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
|
142
142
|
|
143
143
|
no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
|
144
144
|
|
@@ -148,7 +148,7 @@ from dotenv import load_dotenv
|
|
148
148
|
from llama_index.agent.openai import OpenAIAgent
|
149
149
|
from llama_index.llms.openai import OpenAI
|
150
150
|
from llama_index.core.tools import FunctionTool
|
151
|
-
from skyvern_llamaindex.client import
|
151
|
+
from skyvern_llamaindex.client import SkyvernTaskToolSpec
|
152
152
|
|
153
153
|
|
154
154
|
async def sleep(seconds: int) -> str:
|
@@ -158,7 +158,7 @@ async def sleep(seconds: int) -> str:
|
|
158
158
|
# load OpenAI API key from .env
|
159
159
|
load_dotenv()
|
160
160
|
|
161
|
-
skyvern_client_tool =
|
161
|
+
skyvern_client_tool = SkyvernTaskToolSpec(
|
162
162
|
credential="<your_organization_api_key>",
|
163
163
|
)
|
164
164
|
|
@@ -168,7 +168,7 @@ sleep_tool = FunctionTool.from_defaults(
|
|
168
168
|
name="sleep",
|
169
169
|
)
|
170
170
|
|
171
|
-
tools = skyvern_client_tool.to_tool_list(["
|
171
|
+
tools = skyvern_client_tool.to_tool_list(["dispatch", "get"])
|
172
172
|
tools.append(sleep_tool)
|
173
173
|
|
174
174
|
agent = OpenAIAgent.from_tools(
|
@@ -9,42 +9,42 @@ from skyvern.forge.sdk.schemas.observers import ObserverTask
|
|
9
9
|
from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
|
10
10
|
|
11
11
|
|
12
|
-
class
|
12
|
+
class SkyvernTaskToolSpec(BaseToolSpec):
|
13
13
|
spec_functions: List[SPEC_FUNCTION_TYPE] = [
|
14
|
-
"
|
15
|
-
"
|
16
|
-
"
|
14
|
+
"run",
|
15
|
+
"dispatch",
|
16
|
+
"get",
|
17
17
|
]
|
18
18
|
spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
|
19
19
|
"TaskV1": {
|
20
|
-
"
|
20
|
+
"run": ToolMetadata(
|
21
21
|
name="run-skyvern-agent-task",
|
22
22
|
description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
|
23
23
|
fn_schema=TaskV1Request,
|
24
24
|
),
|
25
|
-
"
|
25
|
+
"dispatch": ToolMetadata(
|
26
26
|
name="dispatch-skyvern-agent-task",
|
27
27
|
description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
|
28
28
|
fn_schema=TaskV1Request,
|
29
29
|
),
|
30
|
-
"
|
30
|
+
"get": ToolMetadata(
|
31
31
|
name="get-skyvern-agent-task",
|
32
32
|
description="Use Skyvern agent to get a task.",
|
33
33
|
fn_schema=GetTaskInput,
|
34
34
|
),
|
35
35
|
},
|
36
36
|
"TaskV2": {
|
37
|
-
"
|
37
|
+
"run": ToolMetadata(
|
38
38
|
name="run-skyvern-agent-task",
|
39
39
|
description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
|
40
40
|
fn_schema=TaskV2Request,
|
41
41
|
),
|
42
|
-
"
|
42
|
+
"dispatch": ToolMetadata(
|
43
43
|
name="dispatch-skyvern-agent-task",
|
44
44
|
description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
|
45
45
|
fn_schema=TaskV2Request,
|
46
46
|
),
|
47
|
-
"
|
47
|
+
"get": ToolMetadata(
|
48
48
|
name="get-skyvern-agent-task",
|
49
49
|
description="Use Skyvern agent to get a task.",
|
50
50
|
fn_schema=GetTaskInput,
|
@@ -66,19 +66,19 @@ class SkyvernToolSpec(BaseToolSpec):
|
|
66
66
|
|
67
67
|
return self.spec_metadata.get(self.engine, {}).get(fn_name)
|
68
68
|
|
69
|
-
async def
|
69
|
+
async def run(self, **kwargs: Dict[str, Any]) -> TaskResponse | ObserverTask:
|
70
70
|
if self.engine == "TaskV1":
|
71
71
|
return await self.run_task_v1(**kwargs)
|
72
72
|
else:
|
73
73
|
return await self.run_task_v2(**kwargs)
|
74
74
|
|
75
|
-
async def
|
75
|
+
async def dispatch(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | ObserverTask:
|
76
76
|
if self.engine == "TaskV1":
|
77
77
|
return await self.dispatch_task_v1(**kwargs)
|
78
78
|
else:
|
79
79
|
return await self.dispatch_task_v2(**kwargs)
|
80
80
|
|
81
|
-
async def
|
81
|
+
async def get(self, task_id: str) -> TaskResponse | ObserverTask | None:
|
82
82
|
if self.engine == "TaskV1":
|
83
83
|
return await self.get_task_v1(task_id)
|
84
84
|
else:
|
@@ -9,43 +9,43 @@ from skyvern.client import AsyncSkyvern
|
|
9
9
|
from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
|
10
10
|
|
11
11
|
|
12
|
-
class
|
12
|
+
class SkyvernTaskToolSpec(BaseToolSpec):
|
13
13
|
spec_functions: List[SPEC_FUNCTION_TYPE] = [
|
14
|
-
"
|
15
|
-
"
|
16
|
-
"
|
14
|
+
"run",
|
15
|
+
"dispatch",
|
16
|
+
"get",
|
17
17
|
]
|
18
18
|
|
19
19
|
spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
|
20
20
|
"TaskV1": {
|
21
|
-
"
|
21
|
+
"run": ToolMetadata(
|
22
22
|
name="run-skyvern-client-task",
|
23
23
|
description="Use Skyvern client to run a task. This function won't return until the task is finished.",
|
24
24
|
fn_schema=TaskV1Request,
|
25
25
|
),
|
26
|
-
"
|
26
|
+
"dispatch": ToolMetadata(
|
27
27
|
name="dispatch-skyvern-client-task",
|
28
28
|
description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
|
29
29
|
fn_schema=TaskV1Request,
|
30
30
|
),
|
31
|
-
"
|
31
|
+
"get": ToolMetadata(
|
32
32
|
name="get-skyvern-client-task",
|
33
33
|
description="Use Skyvern client to get a task.",
|
34
34
|
fn_schema=GetTaskInput,
|
35
35
|
),
|
36
36
|
},
|
37
37
|
"TaskV2": {
|
38
|
-
"
|
38
|
+
"run": ToolMetadata(
|
39
39
|
name="run-skyvern-client-task",
|
40
40
|
description="Use Skyvern client to run a task. This function won't return until the task is finished.",
|
41
41
|
fn_schema=TaskV2Request,
|
42
42
|
),
|
43
|
-
"
|
43
|
+
"dispatch": ToolMetadata(
|
44
44
|
name="dispatch-skyvern-client-task",
|
45
45
|
description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
|
46
46
|
fn_schema=TaskV2Request,
|
47
47
|
),
|
48
|
-
"
|
48
|
+
"get": ToolMetadata(
|
49
49
|
name="get-skyvern-client-task",
|
50
50
|
description="Use Skyvern client to get a task.",
|
51
51
|
fn_schema=GetTaskInput,
|
@@ -79,19 +79,19 @@ class SkyvernToolSpec(BaseToolSpec):
|
|
79
79
|
|
80
80
|
return self.spec_metadata.get(self.engine, {}).get(fn_name)
|
81
81
|
|
82
|
-
async def
|
82
|
+
async def run(self, **kwargs: Dict[str, Any]) -> TaskResponse | Dict[str, Any | None]:
|
83
83
|
if self.engine == "TaskV1":
|
84
84
|
return await self.run_task_v1(**kwargs)
|
85
85
|
else:
|
86
86
|
return await self.run_task_v2(**kwargs)
|
87
87
|
|
88
|
-
async def
|
88
|
+
async def dispatch(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | Dict[str, Any | None]:
|
89
89
|
if self.engine == "TaskV1":
|
90
90
|
return await self.dispatch_task_v1(**kwargs)
|
91
91
|
else:
|
92
92
|
return await self.dispatch_task_v2(**kwargs)
|
93
93
|
|
94
|
-
async def
|
94
|
+
async def get(self, task_id: str) -> TaskResponse | Dict[str, Any | None]:
|
95
95
|
if self.engine == "TaskV1":
|
96
96
|
return await self.get_task_v1(task_id)
|
97
97
|
else:
|
File without changes
|
File without changes
|
File without changes
|