sklearn-fluent 0.2__tar.gz → 0.4__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,13 +1,10 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: sklearn_fluent
3
- Version: 0.2
3
+ Version: 0.4
4
4
  Summary: Linear/Multli Regression Mathematical Function in one line of code
5
- Home-page: UNKNOWN
6
5
  Author: YusiferZendric (Aditya Singh)
7
6
  Author-email: <yzendric@gmail.com>
8
- License: UNKNOWN
9
7
  Keywords: python,sklearn,mathematical functions,functions,linear regressions
10
- Platform: UNKNOWN
11
8
  Classifier: Development Status :: 1 - Planning
12
9
  Classifier: Intended Audience :: Developers
13
10
  Classifier: Programming Language :: Python :: 3
@@ -15,6 +12,14 @@ Classifier: Operating System :: Unix
15
12
  Classifier: Operating System :: MacOS :: MacOS X
16
13
  Classifier: Operating System :: Microsoft :: Windows
17
14
  Description-Content-Type: text/markdown
15
+ Requires-Dist: scikit-learn
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: classifier
19
+ Dynamic: description
20
+ Dynamic: description-content-type
21
+ Dynamic: keywords
22
+ Dynamic: requires-dist
23
+ Dynamic: summary
18
24
 
19
25
  Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
20
-
@@ -0,0 +1,31 @@
1
+ # sklearn_fluent
2
+ Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
3
+
4
+ ## You can get it at [sklearn_fluent](https://pypi.org/project/sklearn-fluent/0.0.1/)
5
+ or
6
+ ``` bash
7
+ pip install sklearn_fluent
8
+ ```
9
+
10
+ # Usage
11
+ ``` python
12
+ from sklearn_fluent import fluent_it
13
+ # for linear_regression
14
+ xlist = [4,123,21,312,313]
15
+ ylist = [21,23,124,12,31]
16
+ fluent_it(xlist,ylist,linearreg=True)
17
+ ```
18
+ Result:
19
+ ```bash
20
+ >> 'function: -0.1494a + 65.3014'
21
+ ```
22
+ ``` python
23
+ # for multi_regression
24
+ xlist = [[432,423,42],[14,213,32],[2432,23,2]]
25
+ ylist = [5,234,212]
26
+ fluent_it(xlisst,ylist,linearreg=False)
27
+ ```
28
+ Result:
29
+ ```bash
30
+ >> 'function: -0.0824a + -0.9238b + -0.0571c + 433.7416'
31
+ ```
@@ -3,7 +3,7 @@ import codecs
3
3
  import os
4
4
 
5
5
 
6
- VERSION = '0.2'
6
+ VERSION = '0.4'
7
7
  DESCRIPTION = 'Linear/Multli Regression Mathematical Function in one line of code'
8
8
  LONG_DESCRIPTION = 'Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.'
9
9
 
@@ -17,7 +17,7 @@ setup(
17
17
  long_description_content_type="text/markdown",
18
18
  long_description=LONG_DESCRIPTION,
19
19
  packages=find_packages(),
20
- install_requires=['sklearn'],
20
+ install_requires=['scikit-learn'],
21
21
  keywords=['python', 'sklearn', 'mathematical functions', 'functions', 'linear regressions'],
22
22
  classifiers=[
23
23
  "Development Status :: 1 - Planning",
@@ -27,4 +27,4 @@ setup(
27
27
  "Operating System :: MacOS :: MacOS X",
28
28
  "Operating System :: Microsoft :: Windows",
29
29
  ]
30
- )
30
+ )
@@ -0,0 +1 @@
1
+ from .main import req
@@ -0,0 +1,46 @@
1
+ def req(xlist, ylist, linearreg):
2
+ from sklearn.linear_model import LinearRegression
3
+ import numpy as np
4
+
5
+ if linearreg == True:
6
+ if len(ylist) > 50:
7
+ from sklearn.model_selection import train_test_split
8
+ x_train, x_test, y_train, y_test = train_test_split(np.array(xlist).reshape(-1, 1), np.array(ylist).reshape(-1, 1), test_size=0.2)
9
+ model = LinearRegression()
10
+ model.fit(x_train, y_train)
11
+ accuracy = round(model.score(x_test, y_test))
12
+
13
+ x_train = np.array(xlist).reshape(-1, 1)
14
+ y_train = np.array(ylist).reshape(-1, 1)
15
+ model = LinearRegression()
16
+ model.fit(x_train, y_train)
17
+ elif linearreg == False:
18
+ x_train = np.array(xlist)
19
+ y_train = np.array(ylist)
20
+ model = LinearRegression()
21
+ model.fit(x_train, y_train)
22
+
23
+ a = model.intercept_
24
+ b = model.coef_
25
+ letters = list('abcdefghijklmnopqrstuvwxyz')
26
+ reqletters = []
27
+ for i in range(0, len(b)):
28
+ reqletters.append(letters[i])
29
+ newvars = []
30
+ for i in range(len(reqletters)):
31
+ try:
32
+ new = str(round(b[0][i], 4)) + reqletters[i] # Extract single element
33
+ except:
34
+ new = str(round(float(b[0][0]), 4)) + reqletters[i] # Extract single element
35
+ newvars.append(new)
36
+ try:
37
+ mainvar = round(a[0], 4) # Extract single element
38
+ except:
39
+ mainvar = round(float(a[0]), 4)
40
+ newvars.append(mainvar)
41
+ last = " + ".join(list(map(str, newvars)))
42
+
43
+ try:
44
+ return f"function: {last}\naccuracy: {accuracy * 100}%"
45
+ except:
46
+ return f"function: {last}"
@@ -1,13 +1,10 @@
1
- Metadata-Version: 2.1
2
- Name: sklearn-fluent
3
- Version: 0.2
1
+ Metadata-Version: 2.2
2
+ Name: sklearn_fluent
3
+ Version: 0.4
4
4
  Summary: Linear/Multli Regression Mathematical Function in one line of code
5
- Home-page: UNKNOWN
6
5
  Author: YusiferZendric (Aditya Singh)
7
6
  Author-email: <yzendric@gmail.com>
8
- License: UNKNOWN
9
7
  Keywords: python,sklearn,mathematical functions,functions,linear regressions
10
- Platform: UNKNOWN
11
8
  Classifier: Development Status :: 1 - Planning
12
9
  Classifier: Intended Audience :: Developers
13
10
  Classifier: Programming Language :: Python :: 3
@@ -15,6 +12,14 @@ Classifier: Operating System :: Unix
15
12
  Classifier: Operating System :: MacOS :: MacOS X
16
13
  Classifier: Operating System :: Microsoft :: Windows
17
14
  Description-Content-Type: text/markdown
15
+ Requires-Dist: scikit-learn
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: classifier
19
+ Dynamic: description
20
+ Dynamic: description-content-type
21
+ Dynamic: keywords
22
+ Dynamic: requires-dist
23
+ Dynamic: summary
18
24
 
19
25
  Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
20
-
@@ -0,0 +1 @@
1
+ scikit-learn
@@ -1,8 +0,0 @@
1
- # sklearn_fluent
2
- Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
3
-
4
- ## You can get it at [sklearn_fluent](https://pypi.org/project/sklearn-fluent/0.0.1/)
5
- or
6
- ``` bash
7
- pip install sklearn_fluent
8
- ```
@@ -1 +0,0 @@
1
- from sklearn_fluent.main import fluent_it
@@ -1,50 +0,0 @@
1
- def fluent_it(xlist, ylist,linearreg):
2
-
3
- from sklearn.linear_model import LinearRegression
4
- import numpy as np
5
-
6
- if linearreg==True:
7
- if len(ylist) >50:
8
- from sklearn.model_selection import train_test_split
9
- x_train,x_test,y_train,y_test = train_test_split(np.array(xlist).reshape(-1,1),np.array(ylist).reshape(-1,1),test_size=0.2)
10
- model = LinearRegression()
11
- model.fit(x_train,y_train)
12
- accuracy = round(model.score(x_test,y_test))
13
-
14
- x_train = np.array(xlist).reshape(-1,1)
15
- y_train = np.array(ylist).reshape(-1,1)
16
- model = LinearRegression()
17
- model.fit(x_train,y_train)
18
- elif linearreg == False:
19
- x_train = np.array(xlist)
20
- y_train = np.array(ylist)
21
- # print(x_train, y_train)
22
- model = LinearRegression()
23
- model.fit(x_train,y_train)
24
-
25
- a = model.intercept_
26
- b = model.coef_
27
- letters = list('abcdefghijklmnopqrstuvwxyz')
28
- reqletters = []
29
- for i in range(0,len(b)):
30
- reqletters.append(letters[i])
31
- newvars = []
32
- for i in range(len(reqletters)):
33
- try:
34
- new = str(round(b[i],4))+reqletters[i]
35
- except:
36
- new = str(round(float(b[0]),4))+reqletters[i]
37
- newvars.append(new)
38
- try:
39
- mainvar = round(a,4)
40
- except:
41
- mainvar = round(float(a[0]),4)
42
- newvars.append(mainvar)
43
- last = " + ".join(list(map(str,newvars)))
44
-
45
- try:
46
- return f"function: {last}\naccuracy: {accuracy*100}%"
47
- except:
48
- return f"function: {last}"
49
- # return last
50
-
@@ -1 +0,0 @@
1
- sklearn
File without changes