sklearn-fluent 0.2__tar.gz → 0.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,13 +1,10 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: sklearn_fluent
3
- Version: 0.2
3
+ Version: 0.4
4
4
  Summary: Linear/Multli Regression Mathematical Function in one line of code
5
- Home-page: UNKNOWN
6
5
  Author: YusiferZendric (Aditya Singh)
7
6
  Author-email: <yzendric@gmail.com>
8
- License: UNKNOWN
9
7
  Keywords: python,sklearn,mathematical functions,functions,linear regressions
10
- Platform: UNKNOWN
11
8
  Classifier: Development Status :: 1 - Planning
12
9
  Classifier: Intended Audience :: Developers
13
10
  Classifier: Programming Language :: Python :: 3
@@ -15,6 +12,14 @@ Classifier: Operating System :: Unix
15
12
  Classifier: Operating System :: MacOS :: MacOS X
16
13
  Classifier: Operating System :: Microsoft :: Windows
17
14
  Description-Content-Type: text/markdown
15
+ Requires-Dist: scikit-learn
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: classifier
19
+ Dynamic: description
20
+ Dynamic: description-content-type
21
+ Dynamic: keywords
22
+ Dynamic: requires-dist
23
+ Dynamic: summary
18
24
 
19
25
  Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
20
-
@@ -0,0 +1,31 @@
1
+ # sklearn_fluent
2
+ Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
3
+
4
+ ## You can get it at [sklearn_fluent](https://pypi.org/project/sklearn-fluent/0.0.1/)
5
+ or
6
+ ``` bash
7
+ pip install sklearn_fluent
8
+ ```
9
+
10
+ # Usage
11
+ ``` python
12
+ from sklearn_fluent import fluent_it
13
+ # for linear_regression
14
+ xlist = [4,123,21,312,313]
15
+ ylist = [21,23,124,12,31]
16
+ fluent_it(xlist,ylist,linearreg=True)
17
+ ```
18
+ Result:
19
+ ```bash
20
+ >> 'function: -0.1494a + 65.3014'
21
+ ```
22
+ ``` python
23
+ # for multi_regression
24
+ xlist = [[432,423,42],[14,213,32],[2432,23,2]]
25
+ ylist = [5,234,212]
26
+ fluent_it(xlisst,ylist,linearreg=False)
27
+ ```
28
+ Result:
29
+ ```bash
30
+ >> 'function: -0.0824a + -0.9238b + -0.0571c + 433.7416'
31
+ ```
@@ -3,7 +3,7 @@ import codecs
3
3
  import os
4
4
 
5
5
 
6
- VERSION = '0.2'
6
+ VERSION = '0.4'
7
7
  DESCRIPTION = 'Linear/Multli Regression Mathematical Function in one line of code'
8
8
  LONG_DESCRIPTION = 'Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.'
9
9
 
@@ -17,7 +17,7 @@ setup(
17
17
  long_description_content_type="text/markdown",
18
18
  long_description=LONG_DESCRIPTION,
19
19
  packages=find_packages(),
20
- install_requires=['sklearn'],
20
+ install_requires=['scikit-learn'],
21
21
  keywords=['python', 'sklearn', 'mathematical functions', 'functions', 'linear regressions'],
22
22
  classifiers=[
23
23
  "Development Status :: 1 - Planning",
@@ -27,4 +27,4 @@ setup(
27
27
  "Operating System :: MacOS :: MacOS X",
28
28
  "Operating System :: Microsoft :: Windows",
29
29
  ]
30
- )
30
+ )
@@ -0,0 +1 @@
1
+ from .main import req
@@ -0,0 +1,46 @@
1
+ def req(xlist, ylist, linearreg):
2
+ from sklearn.linear_model import LinearRegression
3
+ import numpy as np
4
+
5
+ if linearreg == True:
6
+ if len(ylist) > 50:
7
+ from sklearn.model_selection import train_test_split
8
+ x_train, x_test, y_train, y_test = train_test_split(np.array(xlist).reshape(-1, 1), np.array(ylist).reshape(-1, 1), test_size=0.2)
9
+ model = LinearRegression()
10
+ model.fit(x_train, y_train)
11
+ accuracy = round(model.score(x_test, y_test))
12
+
13
+ x_train = np.array(xlist).reshape(-1, 1)
14
+ y_train = np.array(ylist).reshape(-1, 1)
15
+ model = LinearRegression()
16
+ model.fit(x_train, y_train)
17
+ elif linearreg == False:
18
+ x_train = np.array(xlist)
19
+ y_train = np.array(ylist)
20
+ model = LinearRegression()
21
+ model.fit(x_train, y_train)
22
+
23
+ a = model.intercept_
24
+ b = model.coef_
25
+ letters = list('abcdefghijklmnopqrstuvwxyz')
26
+ reqletters = []
27
+ for i in range(0, len(b)):
28
+ reqletters.append(letters[i])
29
+ newvars = []
30
+ for i in range(len(reqletters)):
31
+ try:
32
+ new = str(round(b[0][i], 4)) + reqletters[i] # Extract single element
33
+ except:
34
+ new = str(round(float(b[0][0]), 4)) + reqletters[i] # Extract single element
35
+ newvars.append(new)
36
+ try:
37
+ mainvar = round(a[0], 4) # Extract single element
38
+ except:
39
+ mainvar = round(float(a[0]), 4)
40
+ newvars.append(mainvar)
41
+ last = " + ".join(list(map(str, newvars)))
42
+
43
+ try:
44
+ return f"function: {last}\naccuracy: {accuracy * 100}%"
45
+ except:
46
+ return f"function: {last}"
@@ -1,13 +1,10 @@
1
- Metadata-Version: 2.1
2
- Name: sklearn-fluent
3
- Version: 0.2
1
+ Metadata-Version: 2.2
2
+ Name: sklearn_fluent
3
+ Version: 0.4
4
4
  Summary: Linear/Multli Regression Mathematical Function in one line of code
5
- Home-page: UNKNOWN
6
5
  Author: YusiferZendric (Aditya Singh)
7
6
  Author-email: <yzendric@gmail.com>
8
- License: UNKNOWN
9
7
  Keywords: python,sklearn,mathematical functions,functions,linear regressions
10
- Platform: UNKNOWN
11
8
  Classifier: Development Status :: 1 - Planning
12
9
  Classifier: Intended Audience :: Developers
13
10
  Classifier: Programming Language :: Python :: 3
@@ -15,6 +12,14 @@ Classifier: Operating System :: Unix
15
12
  Classifier: Operating System :: MacOS :: MacOS X
16
13
  Classifier: Operating System :: Microsoft :: Windows
17
14
  Description-Content-Type: text/markdown
15
+ Requires-Dist: scikit-learn
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: classifier
19
+ Dynamic: description
20
+ Dynamic: description-content-type
21
+ Dynamic: keywords
22
+ Dynamic: requires-dist
23
+ Dynamic: summary
18
24
 
19
25
  Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
20
-
@@ -0,0 +1 @@
1
+ scikit-learn
@@ -1,8 +0,0 @@
1
- # sklearn_fluent
2
- Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
3
-
4
- ## You can get it at [sklearn_fluent](https://pypi.org/project/sklearn-fluent/0.0.1/)
5
- or
6
- ``` bash
7
- pip install sklearn_fluent
8
- ```
@@ -1 +0,0 @@
1
- from sklearn_fluent.main import fluent_it
@@ -1,50 +0,0 @@
1
- def fluent_it(xlist, ylist,linearreg):
2
-
3
- from sklearn.linear_model import LinearRegression
4
- import numpy as np
5
-
6
- if linearreg==True:
7
- if len(ylist) >50:
8
- from sklearn.model_selection import train_test_split
9
- x_train,x_test,y_train,y_test = train_test_split(np.array(xlist).reshape(-1,1),np.array(ylist).reshape(-1,1),test_size=0.2)
10
- model = LinearRegression()
11
- model.fit(x_train,y_train)
12
- accuracy = round(model.score(x_test,y_test))
13
-
14
- x_train = np.array(xlist).reshape(-1,1)
15
- y_train = np.array(ylist).reshape(-1,1)
16
- model = LinearRegression()
17
- model.fit(x_train,y_train)
18
- elif linearreg == False:
19
- x_train = np.array(xlist)
20
- y_train = np.array(ylist)
21
- # print(x_train, y_train)
22
- model = LinearRegression()
23
- model.fit(x_train,y_train)
24
-
25
- a = model.intercept_
26
- b = model.coef_
27
- letters = list('abcdefghijklmnopqrstuvwxyz')
28
- reqletters = []
29
- for i in range(0,len(b)):
30
- reqletters.append(letters[i])
31
- newvars = []
32
- for i in range(len(reqletters)):
33
- try:
34
- new = str(round(b[i],4))+reqletters[i]
35
- except:
36
- new = str(round(float(b[0]),4))+reqletters[i]
37
- newvars.append(new)
38
- try:
39
- mainvar = round(a,4)
40
- except:
41
- mainvar = round(float(a[0]),4)
42
- newvars.append(mainvar)
43
- last = " + ".join(list(map(str,newvars)))
44
-
45
- try:
46
- return f"function: {last}\naccuracy: {accuracy*100}%"
47
- except:
48
- return f"function: {last}"
49
- # return last
50
-
@@ -1 +0,0 @@
1
- sklearn
File without changes