sklearn-fluent 0.1__tar.gz → 0.1.1__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/PKG-INFO +11 -6
- sklearn_fluent-0.1.1/README.md +31 -0
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/setup.py +3 -3
- sklearn_fluent-0.1.1/sklearn_fluent/__init__.py +1 -0
- sklearn_fluent-0.1.1/sklearn_fluent/main.py +46 -0
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/sklearn_fluent.egg-info/PKG-INFO +12 -7
- sklearn_fluent-0.1.1/sklearn_fluent.egg-info/requires.txt +1 -0
- sklearn_fluent-0.1/README.md +0 -8
- sklearn_fluent-0.1/sklearn_fluent/__init__.py +0 -1
- sklearn_fluent-0.1/sklearn_fluent/main.py +0 -50
- sklearn_fluent-0.1/sklearn_fluent.egg-info/requires.txt +0 -1
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/setup.cfg +0 -0
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/sklearn_fluent.egg-info/SOURCES.txt +0 -0
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/sklearn_fluent.egg-info/dependency_links.txt +0 -0
- {sklearn_fluent-0.1 → sklearn_fluent-0.1.1}/sklearn_fluent.egg-info/top_level.txt +0 -0
@@ -1,13 +1,10 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.2
|
2
2
|
Name: sklearn_fluent
|
3
|
-
Version: 0.1
|
3
|
+
Version: 0.1.1
|
4
4
|
Summary: Linear/Multli Regression Mathematical Function in one line of code
|
5
|
-
Home-page: UNKNOWN
|
6
5
|
Author: YusiferZendric (Aditya Singh)
|
7
6
|
Author-email: <yzendric@gmail.com>
|
8
|
-
License: UNKNOWN
|
9
7
|
Keywords: python,sklearn,mathematical functions,functions,linear regressions
|
10
|
-
Platform: UNKNOWN
|
11
8
|
Classifier: Development Status :: 1 - Planning
|
12
9
|
Classifier: Intended Audience :: Developers
|
13
10
|
Classifier: Programming Language :: Python :: 3
|
@@ -15,6 +12,14 @@ Classifier: Operating System :: Unix
|
|
15
12
|
Classifier: Operating System :: MacOS :: MacOS X
|
16
13
|
Classifier: Operating System :: Microsoft :: Windows
|
17
14
|
Description-Content-Type: text/markdown
|
15
|
+
Requires-Dist: scikit-learn
|
16
|
+
Dynamic: author
|
17
|
+
Dynamic: author-email
|
18
|
+
Dynamic: classifier
|
19
|
+
Dynamic: description
|
20
|
+
Dynamic: description-content-type
|
21
|
+
Dynamic: keywords
|
22
|
+
Dynamic: requires-dist
|
23
|
+
Dynamic: summary
|
18
24
|
|
19
25
|
Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
|
20
|
-
|
@@ -0,0 +1,31 @@
|
|
1
|
+
# sklearn_fluent
|
2
|
+
Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
|
3
|
+
|
4
|
+
## You can get it at [sklearn_fluent](https://pypi.org/project/sklearn-fluent/0.0.1/)
|
5
|
+
or
|
6
|
+
``` bash
|
7
|
+
pip install sklearn_fluent
|
8
|
+
```
|
9
|
+
|
10
|
+
# Usage
|
11
|
+
``` python
|
12
|
+
from sklearn_fluent import fluent_it
|
13
|
+
# for linear_regression
|
14
|
+
xlist = [4,123,21,312,313]
|
15
|
+
ylist = [21,23,124,12,31]
|
16
|
+
fluent_it(xlist,ylist,linearreg=True)
|
17
|
+
```
|
18
|
+
Result:
|
19
|
+
```bash
|
20
|
+
>> 'function: -0.1494a + 65.3014'
|
21
|
+
```
|
22
|
+
``` python
|
23
|
+
# for multi_regression
|
24
|
+
xlist = [[432,423,42],[14,213,32],[2432,23,2]]
|
25
|
+
ylist = [5,234,212]
|
26
|
+
fluent_it(xlisst,ylist,linearreg=False)
|
27
|
+
```
|
28
|
+
Result:
|
29
|
+
```bash
|
30
|
+
>> 'function: -0.0824a + -0.9238b + -0.0571c + 433.7416'
|
31
|
+
```
|
@@ -3,7 +3,7 @@ import codecs
|
|
3
3
|
import os
|
4
4
|
|
5
5
|
|
6
|
-
VERSION = '0.1'
|
6
|
+
VERSION = '0.1.1'
|
7
7
|
DESCRIPTION = 'Linear/Multli Regression Mathematical Function in one line of code'
|
8
8
|
LONG_DESCRIPTION = 'Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.'
|
9
9
|
|
@@ -17,7 +17,7 @@ setup(
|
|
17
17
|
long_description_content_type="text/markdown",
|
18
18
|
long_description=LONG_DESCRIPTION,
|
19
19
|
packages=find_packages(),
|
20
|
-
install_requires=['
|
20
|
+
install_requires=['scikit-learn'],
|
21
21
|
keywords=['python', 'sklearn', 'mathematical functions', 'functions', 'linear regressions'],
|
22
22
|
classifiers=[
|
23
23
|
"Development Status :: 1 - Planning",
|
@@ -27,4 +27,4 @@ setup(
|
|
27
27
|
"Operating System :: MacOS :: MacOS X",
|
28
28
|
"Operating System :: Microsoft :: Windows",
|
29
29
|
]
|
30
|
-
)
|
30
|
+
)
|
@@ -0,0 +1 @@
|
|
1
|
+
from .main import req
|
@@ -0,0 +1,46 @@
|
|
1
|
+
def req(xlist, ylist, linearreg):
|
2
|
+
from sklearn.linear_model import LinearRegression
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
if linearreg == True:
|
6
|
+
if len(ylist) > 50:
|
7
|
+
from sklearn.model_selection import train_test_split
|
8
|
+
x_train, x_test, y_train, y_test = train_test_split(np.array(xlist).reshape(-1, 1), np.array(ylist).reshape(-1, 1), test_size=0.2)
|
9
|
+
model = LinearRegression()
|
10
|
+
model.fit(x_train, y_train)
|
11
|
+
accuracy = round(model.score(x_test, y_test))
|
12
|
+
|
13
|
+
x_train = np.array(xlist).reshape(-1, 1)
|
14
|
+
y_train = np.array(ylist).reshape(-1, 1)
|
15
|
+
model = LinearRegression()
|
16
|
+
model.fit(x_train, y_train)
|
17
|
+
elif linearreg == False:
|
18
|
+
x_train = np.array(xlist)
|
19
|
+
y_train = np.array(ylist)
|
20
|
+
model = LinearRegression()
|
21
|
+
model.fit(x_train, y_train)
|
22
|
+
|
23
|
+
a = model.intercept_
|
24
|
+
b = model.coef_
|
25
|
+
letters = list('abcdefghijklmnopqrstuvwxyz')
|
26
|
+
reqletters = []
|
27
|
+
for i in range(0, len(b)):
|
28
|
+
reqletters.append(letters[i])
|
29
|
+
newvars = []
|
30
|
+
for i in range(len(reqletters)):
|
31
|
+
try:
|
32
|
+
new = str(round(b[0][i], 4)) + reqletters[i] # Extract single element
|
33
|
+
except:
|
34
|
+
new = str(round(float(b[0][0]), 4)) + reqletters[i] # Extract single element
|
35
|
+
newvars.append(new)
|
36
|
+
try:
|
37
|
+
mainvar = round(a[0], 4) # Extract single element
|
38
|
+
except:
|
39
|
+
mainvar = round(float(a[0]), 4)
|
40
|
+
newvars.append(mainvar)
|
41
|
+
last = " + ".join(list(map(str, newvars)))
|
42
|
+
|
43
|
+
try:
|
44
|
+
return f"function: {last}\naccuracy: {accuracy * 100}%"
|
45
|
+
except:
|
46
|
+
return f"function: {last}"
|
@@ -1,13 +1,10 @@
|
|
1
|
-
Metadata-Version: 2.
|
2
|
-
Name:
|
3
|
-
Version: 0.1
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: sklearn_fluent
|
3
|
+
Version: 0.1.1
|
4
4
|
Summary: Linear/Multli Regression Mathematical Function in one line of code
|
5
|
-
Home-page: UNKNOWN
|
6
5
|
Author: YusiferZendric (Aditya Singh)
|
7
6
|
Author-email: <yzendric@gmail.com>
|
8
|
-
License: UNKNOWN
|
9
7
|
Keywords: python,sklearn,mathematical functions,functions,linear regressions
|
10
|
-
Platform: UNKNOWN
|
11
8
|
Classifier: Development Status :: 1 - Planning
|
12
9
|
Classifier: Intended Audience :: Developers
|
13
10
|
Classifier: Programming Language :: Python :: 3
|
@@ -15,6 +12,14 @@ Classifier: Operating System :: Unix
|
|
15
12
|
Classifier: Operating System :: MacOS :: MacOS X
|
16
13
|
Classifier: Operating System :: Microsoft :: Windows
|
17
14
|
Description-Content-Type: text/markdown
|
15
|
+
Requires-Dist: scikit-learn
|
16
|
+
Dynamic: author
|
17
|
+
Dynamic: author-email
|
18
|
+
Dynamic: classifier
|
19
|
+
Dynamic: description
|
20
|
+
Dynamic: description-content-type
|
21
|
+
Dynamic: keywords
|
22
|
+
Dynamic: requires-dist
|
23
|
+
Dynamic: summary
|
18
24
|
|
19
25
|
Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
|
20
|
-
|
@@ -0,0 +1 @@
|
|
1
|
+
scikit-learn
|
sklearn_fluent-0.1/README.md
DELETED
@@ -1,8 +0,0 @@
|
|
1
|
-
# sklearn_fluent
|
2
|
-
Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
|
3
|
-
|
4
|
-
## You can get it at [sklearn_fluent](https://pypi.org/project/sklearn-fluent/0.0.1/)
|
5
|
-
or
|
6
|
-
``` bash
|
7
|
-
pip install sklearn_fluent
|
8
|
-
```
|
@@ -1 +0,0 @@
|
|
1
|
-
from sklearn_fluent.main import req
|
@@ -1,50 +0,0 @@
|
|
1
|
-
def req(xlist, ylist,linearreg):
|
2
|
-
|
3
|
-
from sklearn.linear_model import LinearRegression
|
4
|
-
import numpy as np
|
5
|
-
|
6
|
-
if linearreg==True:
|
7
|
-
if len(ylist) >50:
|
8
|
-
from sklearn.model_selection import train_test_split
|
9
|
-
x_train,x_test,y_train,y_test = train_test_split(np.array(xlist).reshape(-1,1),np.array(ylist).reshape(-1,1),test_size=0.2)
|
10
|
-
model = LinearRegression()
|
11
|
-
model.fit(x_train,y_train)
|
12
|
-
accuracy = round(model.score(x_test,y_test))
|
13
|
-
|
14
|
-
x_train = np.array(xlist).reshape(-1,1)
|
15
|
-
y_train = np.array(ylist).reshape(-1,1)
|
16
|
-
model = LinearRegression()
|
17
|
-
model.fit(x_train,y_train)
|
18
|
-
elif linearreg == False:
|
19
|
-
x_train = np.array(xlist)
|
20
|
-
y_train = np.array(ylist)
|
21
|
-
# print(x_train, y_train)
|
22
|
-
model = LinearRegression()
|
23
|
-
model.fit(x_train,y_train)
|
24
|
-
|
25
|
-
a = model.intercept_
|
26
|
-
b = model.coef_
|
27
|
-
letters = list('abcdefghijklmnopqrstuvwxyz')
|
28
|
-
reqletters = []
|
29
|
-
for i in range(0,len(b)):
|
30
|
-
reqletters.append(letters[i])
|
31
|
-
newvars = []
|
32
|
-
for i in range(len(reqletters)):
|
33
|
-
try:
|
34
|
-
new = str(round(b[i],4))+reqletters[i]
|
35
|
-
except:
|
36
|
-
new = str(round(float(b[0]),4))+reqletters[i]
|
37
|
-
newvars.append(new)
|
38
|
-
try:
|
39
|
-
mainvar = round(a,4)
|
40
|
-
except:
|
41
|
-
mainvar = round(float(a[0]),4)
|
42
|
-
newvars.append(mainvar)
|
43
|
-
last = " + ".join(list(map(str,newvars)))
|
44
|
-
|
45
|
-
try:
|
46
|
-
return f"function: {last}\naccuracy: {accuracy*100}%"
|
47
|
-
except:
|
48
|
-
return f"function: {last}"
|
49
|
-
# return last
|
50
|
-
|
@@ -1 +0,0 @@
|
|
1
|
-
sklearn
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|