simulacrum-sdk 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of simulacrum-sdk might be problematic. Click here for more details.

@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Simulacrum SDK contributors
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,2 @@
1
+ include LICENSE
2
+ include README.md
@@ -0,0 +1,212 @@
1
+ Metadata-Version: 2.4
2
+ Name: simulacrum-sdk
3
+ Version: 0.1.0
4
+ Summary: Official Python SDK for accessing the Simulacrum API.
5
+ Author-email: "Simulacrum, Inc." <support@smlcrm.com>
6
+ License-Expression: MIT
7
+ Project-URL: Homepage, https://smlcrm-tempo-api.readme.io/reference
8
+ Project-URL: Repository, https://github.com/Smlcrm/simulacrum-sdk
9
+ Project-URL: Issues, https://github.com/Smlcrm/simulacrum-sdk/issues
10
+ Keywords: Simulacrum,time-series,forecasting,sdk
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Operating System :: OS Independent
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3 :: Only
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Requires-Python: >=3.8
23
+ Description-Content-Type: text/markdown
24
+ License-File: LICENSE
25
+ Requires-Dist: requests<3,>=2.28
26
+ Requires-Dist: pydantic<3,>=2.0
27
+ Requires-Dist: numpy>=1.24
28
+ Provides-Extra: dev
29
+ Requires-Dist: pytest>=8.0; extra == "dev"
30
+ Requires-Dist: build>=1.2; extra == "dev"
31
+ Requires-Dist: twine>=5.0; extra == "dev"
32
+ Dynamic: license-file
33
+
34
+ ![Simulacrum Logo](https://github.com/Smlcrm/assets/blob/main/Asset%201@4x-8.png?raw=true "Simulacrum SDK")
35
+
36
+ # Simulacrum SDK
37
+
38
+ A lightweight Python client for the Simulacrum time-series forecasting API. The SDK wraps Simulacrum's REST endpoints with type-safe models, error handling, and convenience helpers so you can focus on building forecasting workflows instead of wiring HTTP requests.
39
+
40
+ ---
41
+
42
+ ## Features
43
+
44
+ - ๐Ÿ” **Authenticated client** with automatic bearer-token headers
45
+ - ๐Ÿ“ˆ **Forecast API wrapper** that serialises NumPy arrays transparently
46
+ - โœ… **API key validation** to inspect key status, client ID, and expiry
47
+ - ๐Ÿšซ **Rich exceptions** that map Simulacrum error codes to Python types
48
+ - ๐Ÿงช **Tested models** built on Pydantic for strict data validation
49
+
50
+ ---
51
+
52
+ ## Installation
53
+
54
+ ### From PyPI (recommended)
55
+
56
+ > Requires Python 3.8 or newer
57
+
58
+ ```bash
59
+ pip install simulacrum-sdk
60
+ ```
61
+
62
+ ### From GitHub source
63
+
64
+ Install directly from the latest commit on the main repository:
65
+
66
+ ```bash
67
+ pip install git+https://github.com/Smlcrm/simulacrum-sdk.git
68
+ ```
69
+
70
+ To work with the sources locally for development (Python 3.8+):
71
+
72
+ ```bash
73
+ git clone https://github.com/Smlcrm/simulacrum-sdk.git
74
+ cd simulacrum-sdk
75
+ python -m venv .venv
76
+ source .venv/bin/activate # On Windows use: .venv\Scripts\activate
77
+ pip install -e .[dev]
78
+ ```
79
+
80
+ ---
81
+
82
+ ## Usage Overview
83
+
84
+ ### Creating a client
85
+
86
+ ```python
87
+ from simulacrum import Simulacrum
88
+
89
+ client = Simulacrum(api_key="sp_your_api_key")
90
+ ```
91
+
92
+ If you are running a local version of the Simulacrum API (i.e., on-premise model hosting), override the base URL:
93
+
94
+ ```python
95
+ client = Simulacrum(api_key="sp_your_api_key", base_url="https://staging.api.smlcrm.com")
96
+ ```
97
+
98
+ ### Validating an API key
99
+
100
+ Your forecast requests will fail if your API key is invalid. To check your API key is valid run the following.
101
+
102
+ ```python
103
+ validation = client.validate()
104
+ print("Valid:", validation.valid)
105
+ print("Client ID:", validation.client)
106
+ ```
107
+
108
+ ### Requesting a forecast
109
+
110
+ ```python
111
+ import numpy as np
112
+
113
+ series = np.array([102.4, 106.0, 108.3, 111.9])
114
+ forecast = client.forecast(series=series, horizon=3, model="default")
115
+
116
+ print("Next periods:", forecast)
117
+ ```
118
+
119
+ The SDK returns a `numpy.ndarray` so you can pipe results into downstream analytics or visualisations immediately.
120
+
121
+
122
+
123
+ ### Handling errors
124
+
125
+ All API error codes are mapped to dedicated exceptions. Catch them to distinguish between authentication, quota, and request issues:
126
+
127
+ ```python
128
+ from simulacrum.exceptions import AuthError, QuotaExceededError, SimulacrumError
129
+
130
+ try:
131
+ client.forecast(series=[1, 2, 3], horizon=5, model="default")
132
+ except AuthError:
133
+ print("Check that your API key is correct and active.")
134
+ except QuotaExceededError:
135
+ print("You have reached your usage limit for the current period.")
136
+ except SimulacrumError as exc:
137
+ print(f"Unhandled Simulacrum error: {exc}")
138
+ ```
139
+
140
+ ---
141
+
142
+ ## Tutorial: Forecast a Time Series in Five Steps
143
+
144
+ 1. **Install the SDK**
145
+ ```bash
146
+ pip install simulacrum-sdk
147
+ ```
148
+
149
+ 2. **Create a project structure**
150
+ ```bash
151
+ mkdir simulacrum-sample && cd simulacrum-sample
152
+ python -m venv .venv
153
+ source .venv/bin/activate
154
+ pip install simulacrum-sdk
155
+ ```
156
+
157
+ 3. **Write a forecast script (`forecast_example.py`)**
158
+ ```python
159
+ from simulacrum import Simulacrum
160
+
161
+ def main() -> None:
162
+ client = Simulacrum(api_key="sp_your_api_key")
163
+ series = [24.5, 25.1, 25.7, 26.2, 26.9]
164
+ forecast = client.forecast(series=series, horizon=3, model="default")
165
+ print("Forecast:", forecast.tolist())
166
+
167
+ if __name__ == "__main__":
168
+ main()
169
+ ```
170
+
171
+ 4. **Validate your API key (optional)**
172
+ ```python
173
+ validation = client.validate()
174
+ if validation.valid:
175
+ print("Key is active until", validation.expires_at)
176
+ ```
177
+
178
+ 5. **Run the script**
179
+ ```bash
180
+ python forecast_example.py
181
+ ```
182
+
183
+ This workflow demonstrates the complete loop: initialising the client, requesting a forecast, and checking key status.
184
+
185
+ ---
186
+
187
+ ## Documentation
188
+
189
+ The public API is intentionally small:
190
+
191
+ | Component | Description |
192
+ |-----------|-------------|
193
+ | `simulacrum.Simulacrum` | High-level client exposing `forecast()` and `validate()` methods. |
194
+ | `simulacrum.models.ForecastRequest` | Pydantic model ensuring forecast payloads are well-formed. |
195
+ | `simulacrum.models.ForecastResponse` | Wraps forecast results and exposes `get_forecast()` to return a `numpy.ndarray`. |
196
+ | `simulacrum.models.ValidateAPIKeyResponse` | Validation metadata returned by `Simulacrum.validate()`. |
197
+ | `simulacrum.exceptions.*` | Custom error hierarchy mapping Simulacrum error codes to Python exceptions. |
198
+
199
+ Explore inline docstrings for detailed parameter and return type information. The tests in [`tests/test_client.py`](tests/test_client.py) demonstrate advanced usage patterns and validation behavior.
200
+
201
+ If you are contributing, run the suite with:
202
+
203
+ ```bash
204
+ pip install -e .[dev]
205
+ python -m pytest
206
+ ```
207
+
208
+ ---
209
+
210
+ ## License
211
+
212
+ MIT ยฉ Simulacrum, Inc.
@@ -0,0 +1,179 @@
1
+ ![Simulacrum Logo](https://github.com/Smlcrm/assets/blob/main/Asset%201@4x-8.png?raw=true "Simulacrum SDK")
2
+
3
+ # Simulacrum SDK
4
+
5
+ A lightweight Python client for the Simulacrum time-series forecasting API. The SDK wraps Simulacrum's REST endpoints with type-safe models, error handling, and convenience helpers so you can focus on building forecasting workflows instead of wiring HTTP requests.
6
+
7
+ ---
8
+
9
+ ## Features
10
+
11
+ - ๐Ÿ” **Authenticated client** with automatic bearer-token headers
12
+ - ๐Ÿ“ˆ **Forecast API wrapper** that serialises NumPy arrays transparently
13
+ - โœ… **API key validation** to inspect key status, client ID, and expiry
14
+ - ๐Ÿšซ **Rich exceptions** that map Simulacrum error codes to Python types
15
+ - ๐Ÿงช **Tested models** built on Pydantic for strict data validation
16
+
17
+ ---
18
+
19
+ ## Installation
20
+
21
+ ### From PyPI (recommended)
22
+
23
+ > Requires Python 3.8 or newer
24
+
25
+ ```bash
26
+ pip install simulacrum-sdk
27
+ ```
28
+
29
+ ### From GitHub source
30
+
31
+ Install directly from the latest commit on the main repository:
32
+
33
+ ```bash
34
+ pip install git+https://github.com/Smlcrm/simulacrum-sdk.git
35
+ ```
36
+
37
+ To work with the sources locally for development (Python 3.8+):
38
+
39
+ ```bash
40
+ git clone https://github.com/Smlcrm/simulacrum-sdk.git
41
+ cd simulacrum-sdk
42
+ python -m venv .venv
43
+ source .venv/bin/activate # On Windows use: .venv\Scripts\activate
44
+ pip install -e .[dev]
45
+ ```
46
+
47
+ ---
48
+
49
+ ## Usage Overview
50
+
51
+ ### Creating a client
52
+
53
+ ```python
54
+ from simulacrum import Simulacrum
55
+
56
+ client = Simulacrum(api_key="sp_your_api_key")
57
+ ```
58
+
59
+ If you are running a local version of the Simulacrum API (i.e., on-premise model hosting), override the base URL:
60
+
61
+ ```python
62
+ client = Simulacrum(api_key="sp_your_api_key", base_url="https://staging.api.smlcrm.com")
63
+ ```
64
+
65
+ ### Validating an API key
66
+
67
+ Your forecast requests will fail if your API key is invalid. To check your API key is valid run the following.
68
+
69
+ ```python
70
+ validation = client.validate()
71
+ print("Valid:", validation.valid)
72
+ print("Client ID:", validation.client)
73
+ ```
74
+
75
+ ### Requesting a forecast
76
+
77
+ ```python
78
+ import numpy as np
79
+
80
+ series = np.array([102.4, 106.0, 108.3, 111.9])
81
+ forecast = client.forecast(series=series, horizon=3, model="default")
82
+
83
+ print("Next periods:", forecast)
84
+ ```
85
+
86
+ The SDK returns a `numpy.ndarray` so you can pipe results into downstream analytics or visualisations immediately.
87
+
88
+
89
+
90
+ ### Handling errors
91
+
92
+ All API error codes are mapped to dedicated exceptions. Catch them to distinguish between authentication, quota, and request issues:
93
+
94
+ ```python
95
+ from simulacrum.exceptions import AuthError, QuotaExceededError, SimulacrumError
96
+
97
+ try:
98
+ client.forecast(series=[1, 2, 3], horizon=5, model="default")
99
+ except AuthError:
100
+ print("Check that your API key is correct and active.")
101
+ except QuotaExceededError:
102
+ print("You have reached your usage limit for the current period.")
103
+ except SimulacrumError as exc:
104
+ print(f"Unhandled Simulacrum error: {exc}")
105
+ ```
106
+
107
+ ---
108
+
109
+ ## Tutorial: Forecast a Time Series in Five Steps
110
+
111
+ 1. **Install the SDK**
112
+ ```bash
113
+ pip install simulacrum-sdk
114
+ ```
115
+
116
+ 2. **Create a project structure**
117
+ ```bash
118
+ mkdir simulacrum-sample && cd simulacrum-sample
119
+ python -m venv .venv
120
+ source .venv/bin/activate
121
+ pip install simulacrum-sdk
122
+ ```
123
+
124
+ 3. **Write a forecast script (`forecast_example.py`)**
125
+ ```python
126
+ from simulacrum import Simulacrum
127
+
128
+ def main() -> None:
129
+ client = Simulacrum(api_key="sp_your_api_key")
130
+ series = [24.5, 25.1, 25.7, 26.2, 26.9]
131
+ forecast = client.forecast(series=series, horizon=3, model="default")
132
+ print("Forecast:", forecast.tolist())
133
+
134
+ if __name__ == "__main__":
135
+ main()
136
+ ```
137
+
138
+ 4. **Validate your API key (optional)**
139
+ ```python
140
+ validation = client.validate()
141
+ if validation.valid:
142
+ print("Key is active until", validation.expires_at)
143
+ ```
144
+
145
+ 5. **Run the script**
146
+ ```bash
147
+ python forecast_example.py
148
+ ```
149
+
150
+ This workflow demonstrates the complete loop: initialising the client, requesting a forecast, and checking key status.
151
+
152
+ ---
153
+
154
+ ## Documentation
155
+
156
+ The public API is intentionally small:
157
+
158
+ | Component | Description |
159
+ |-----------|-------------|
160
+ | `simulacrum.Simulacrum` | High-level client exposing `forecast()` and `validate()` methods. |
161
+ | `simulacrum.models.ForecastRequest` | Pydantic model ensuring forecast payloads are well-formed. |
162
+ | `simulacrum.models.ForecastResponse` | Wraps forecast results and exposes `get_forecast()` to return a `numpy.ndarray`. |
163
+ | `simulacrum.models.ValidateAPIKeyResponse` | Validation metadata returned by `Simulacrum.validate()`. |
164
+ | `simulacrum.exceptions.*` | Custom error hierarchy mapping Simulacrum error codes to Python exceptions. |
165
+
166
+ Explore inline docstrings for detailed parameter and return type information. The tests in [`tests/test_client.py`](tests/test_client.py) demonstrate advanced usage patterns and validation behavior.
167
+
168
+ If you are contributing, run the suite with:
169
+
170
+ ```bash
171
+ pip install -e .[dev]
172
+ python -m pytest
173
+ ```
174
+
175
+ ---
176
+
177
+ ## License
178
+
179
+ MIT ยฉ Simulacrum, Inc.
@@ -0,0 +1,52 @@
1
+ [build-system]
2
+ requires = ["setuptools>=61.0", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "simulacrum-sdk"
7
+ version = "0.1.0"
8
+ description = "Official Python SDK for accessing the Simulacrum API."
9
+ readme = "README.md"
10
+ requires-python = ">=3.8"
11
+ license = "MIT"
12
+ authors = [
13
+ { name = "Simulacrum, Inc.", email = "support@smlcrm.com" }
14
+ ]
15
+ keywords = ["Simulacrum", "time-series", "forecasting", "sdk"]
16
+ classifiers = [
17
+ "Development Status :: 3 - Alpha",
18
+ "Intended Audience :: Developers",
19
+ "Operating System :: OS Independent",
20
+ "Programming Language :: Python :: 3",
21
+ "Programming Language :: Python :: 3 :: Only",
22
+ "Programming Language :: Python :: 3.8",
23
+ "Programming Language :: Python :: 3.9",
24
+ "Programming Language :: Python :: 3.10",
25
+ "Programming Language :: Python :: 3.11",
26
+ "Programming Language :: Python :: 3.12",
27
+ "Topic :: Scientific/Engineering :: Artificial Intelligence"
28
+ ]
29
+ dependencies = [
30
+ "requests>=2.28,<3",
31
+ "pydantic>=2.0,<3",
32
+ "numpy>=1.24"
33
+ ]
34
+
35
+ [project.optional-dependencies]
36
+ dev = [
37
+ "pytest>=8.0",
38
+ "build>=1.2",
39
+ "twine>=5.0"
40
+ ]
41
+
42
+ [project.urls]
43
+ Homepage = "https://smlcrm-tempo-api.readme.io/reference"
44
+ Repository = "https://github.com/Smlcrm/simulacrum-sdk"
45
+ Issues = "https://github.com/Smlcrm/simulacrum-sdk/issues"
46
+
47
+ [tool.setuptools.packages.find]
48
+ include = ["simulacrum*"]
49
+
50
+ [tool.pytest.ini_options]
51
+ addopts = "-ra"
52
+ testpaths = ["tests"]
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,15 @@
1
+ """Simulacrum SDK public interface.
2
+
3
+ This package exposes the primary client you will use to interact with the
4
+ Simulacrum forecasting API.
5
+
6
+ Example:
7
+ >>> from simulacrum import Simulacrum
8
+ >>> client = Simulacrum(api_key="sp_your_api_key")
9
+ >>> forecast = client.forecast(series=[1.0, 1.5, 2.0], horizon=3, model="default")
10
+ """
11
+
12
+ from .client import Simulacrum
13
+
14
+ __all__ = ["Simulacrum", "__version__"]
15
+ __version__: str = "0.1.0"
@@ -0,0 +1,48 @@
1
+ """Low-level HTTP helpers used by the Simulacrum client."""
2
+
3
+ from typing import Any, Dict, Mapping, Optional
4
+
5
+ import requests
6
+
7
+ from simulacrum.exceptions import ApiError, AuthError, ERROR_CODE_MAP
8
+
9
+
10
+ def send_request(method: str, url: str, headers: Mapping[str, str], json: Optional[Mapping[str, Any]]) -> Dict[str, Any]:
11
+ """Execute an HTTP request against the Simulacrum API and handle common errors.
12
+
13
+ Args:
14
+ method (str): HTTP method to invoke (``"GET"``, ``"POST"``, ...).
15
+ url (str): Fully-qualified endpoint URL.
16
+ headers (Mapping[str, str]): HTTP headers that include authorization and content type.
17
+ json (Mapping[str, Any] | None): JSON-serialisable payload for the request body.
18
+
19
+ Returns:
20
+ dict[str, Any]: Parsed JSON payload returned by the API.
21
+
22
+ Raises:
23
+ AuthError: Raised when the API reports an authentication failure.
24
+ ApiError: Raised for all other non-success responses or malformed data.
25
+ """
26
+ response = requests.request(method=method, url=url, headers=dict(headers), json=json)
27
+
28
+ if not response.ok:
29
+ try:
30
+ data: Dict[str, Any] = response.json()
31
+ error_code: Optional[str] = data.get("error_code")
32
+ message: str = data.get("message", "Unknown error")
33
+
34
+ if error_code in ERROR_CODE_MAP:
35
+ raise ERROR_CODE_MAP[error_code](message)
36
+
37
+ if response.status_code == 401:
38
+ raise AuthError(message)
39
+
40
+ raise ApiError(f"API error {response.status_code}: {message}")
41
+
42
+ except ValueError as exc:
43
+ raise ApiError(f"Unexpected API error: {response.text}") from exc
44
+
45
+ try:
46
+ return response.json() # type: ignore[return-value]
47
+ except ValueError as exc: # requests raises ValueError for JSON decode errors
48
+ raise ApiError(f"Failed to parse response JSON: {exc}") from exc
@@ -0,0 +1,122 @@
1
+ """High-level client for interacting with the Simulacrum forecasting API."""
2
+
3
+ from typing import Any, Dict, Sequence
4
+
5
+ import numpy as np
6
+
7
+ from simulacrum.api import send_request
8
+ from simulacrum.config import BASE_URL
9
+ from simulacrum.exceptions import ApiError, AuthError
10
+ from simulacrum.models import ForecastRequest, ForecastResponse, ValidateAPIKeyResponse
11
+
12
+
13
+ class Simulacrum:
14
+ """Client wrapper around Simulacrum's REST API.
15
+
16
+ Example:
17
+ >>> from simulacrum import Simulacrum
18
+ >>> client = Simulacrum(api_key="sp_example_key")
19
+ >>> forecast = client.forecast(series=[1.0, 1.1, 1.2], horizon=2, model="default")
20
+ >>> forecast.shape
21
+ (2,)
22
+ """
23
+
24
+ def __init__(self, api_key: str, base_url: str = BASE_URL) -> None:
25
+ """Create a client that can issue authenticated requests to Simulacrum.
26
+
27
+ Args:
28
+ api_key (str): Simulacrum API key that authorizes requests.
29
+ base_url (str): Base URL for the API; defaults to the production endpoint.
30
+ """
31
+ if not isinstance(api_key, str) or not api_key.strip():
32
+ raise TypeError("api_key must be a non-empty string.")
33
+ if not isinstance(base_url, str) or not base_url.strip():
34
+ raise TypeError("base_url must be a non-empty string.")
35
+
36
+ self.api_key: str = api_key
37
+ self.base_url: str = base_url
38
+ self.headers: Dict[str, str] = {
39
+ "Authorization": f"Bearer {self.api_key}",
40
+ "Content-Type": "application/json",
41
+ }
42
+
43
+ def forecast(
44
+ self, series: Sequence[float] | np.ndarray, horizon: int, model: str = "default"
45
+ ) -> np.ndarray:
46
+ """Request a forecast for the provided time series.
47
+
48
+ Args:
49
+ series (Sequence[float] | numpy.ndarray): One-dimensional historical observations used as
50
+ forecast input.
51
+ horizon (int): Number of future periods to predict.
52
+ model (str): Identifier of the forecasting model, for example ``"default"``.
53
+
54
+ Returns:
55
+ numpy.ndarray: Array containing the forecasted values in chronological order.
56
+
57
+ Raises:
58
+ TypeError: ``series`` is not a numpy array or sequence of numeric values.
59
+ ValueError: ``series`` is a numpy array or sequence with dimensionality other than one.
60
+ ApiError: The API returned an error response.
61
+ AuthError: Authentication failed for the provided API key.
62
+ """
63
+ if isinstance(series, np.ndarray):
64
+ if series.ndim != 1:
65
+ raise ValueError("series must be a one-dimensional numpy array.")
66
+ series_to_send = series.astype(float)
67
+ elif isinstance(series, Sequence):
68
+ if isinstance(series, (str, bytes)):
69
+ raise TypeError(
70
+ "series must be a one-dimensional numpy array or sequence of floats."
71
+ )
72
+ try:
73
+ series_to_send = np.asarray(list(series), dtype=float)
74
+ except (TypeError, ValueError) as exc:
75
+ raise TypeError(
76
+ "series must be a one-dimensional numpy array or sequence of floats."
77
+ ) from exc
78
+ if series_to_send.ndim != 1:
79
+ raise ValueError("series must be one-dimensional.")
80
+ else:
81
+ raise TypeError(
82
+ "series must be a one-dimensional numpy array or sequence of floats."
83
+ )
84
+
85
+ payload: ForecastRequest = ForecastRequest(
86
+ series=series_to_send, horizon=horizon, model=model
87
+ )
88
+ request_body: Dict[str, Any] = payload.model_dump()
89
+ response_data: Dict[str, Any] = send_request(
90
+ method="POST",
91
+ url=f"{self.base_url}/v1/forecast",
92
+ headers=self.headers,
93
+ json=request_body,
94
+ )
95
+ validated_response: ForecastResponse = ForecastResponse.model_validate(
96
+ response_data
97
+ )
98
+ return validated_response.get_forecast()
99
+
100
+ def validate(self) -> ValidateAPIKeyResponse:
101
+ """Validate the configured API key and return its metadata.
102
+
103
+ Returns:
104
+ ValidateAPIKeyResponse: Structured validation details including key status and expiration date.
105
+
106
+ Raises:
107
+ AuthError: The API key is invalid or unauthorized.
108
+ ApiError: An unexpected API error occurred.
109
+
110
+ Example:
111
+ >>> client = Simulacrum(api_key="sp_example_key")
112
+ >>> validation = client.validate()
113
+ >>> validation.valid
114
+ True
115
+ """
116
+ response_data: Dict[str, Any] = send_request(
117
+ method="GET",
118
+ url=f"{self.base_url}/v1/validate",
119
+ headers=self.headers,
120
+ json=None,
121
+ )
122
+ return ValidateAPIKeyResponse.model_validate(response_data)
@@ -0,0 +1,4 @@
1
+ """Runtime configuration constants for the Simulacrum SDK."""
2
+
3
+ BASE_URL: str = "https://api.smlcrm.com/"
4
+ """Default base URL for Simulacrum API requests."""
@@ -0,0 +1,49 @@
1
+ """Custom exceptions raised by the Simulacrum SDK."""
2
+
3
+ from typing import Dict, Type
4
+
5
+
6
+ class SimulacrumError(Exception):
7
+ """Base exception for all SDK errors."""
8
+
9
+
10
+ class AuthError(SimulacrumError):
11
+ """Raised when authentication with the API fails."""
12
+
13
+
14
+ class ApiKeyExpiredError(SimulacrumError):
15
+ """Raised when the API key has expired."""
16
+
17
+
18
+ class ApiKeyInactiveError(SimulacrumError):
19
+ """Raised when the API key has been deactivated."""
20
+
21
+
22
+ class ApiKeyInvalidError(AuthError):
23
+ """Raised when the API key is not recognised."""
24
+
25
+
26
+ class ForecastAlreadyRunningError(SimulacrumError):
27
+ """Raised when a forecast job is already in progress."""
28
+
29
+
30
+ class InvalidRequestError(SimulacrumError):
31
+ """Raised when the request payload is malformed."""
32
+
33
+
34
+ class QuotaExceededError(SimulacrumError):
35
+ """Raised when the API usage quota has been exhausted."""
36
+
37
+
38
+ class ApiError(SimulacrumError):
39
+ """Catch-all for unclassified API errors."""
40
+
41
+
42
+ ERROR_CODE_MAP: Dict[str, Type[SimulacrumError]] = {
43
+ "API_KEY_EXPIRED": ApiKeyExpiredError,
44
+ "API_KEY_INVALID": ApiKeyInvalidError,
45
+ "API_KEY_INACTIVE": ApiKeyInactiveError,
46
+ "API_USAGE_LIMIT": QuotaExceededError,
47
+ "REQUEST_INVALID": InvalidRequestError,
48
+ "FORECAST_ALREADY_RUNNING": ForecastAlreadyRunningError,
49
+ }
@@ -0,0 +1,82 @@
1
+ """Data models that map request and response payloads for the Simulacrum API."""
2
+
3
+ from datetime import datetime
4
+ from typing import List, Optional, Sequence, Union
5
+
6
+ import numpy as np
7
+ from pydantic import BaseModel, field_validator
8
+
9
+
10
+ class ForecastRequest(BaseModel):
11
+ """Payload submitted to the Simulacrum forecast endpoint.
12
+
13
+ Attributes:
14
+ series (list[float]): Historical observations used as forecast input.
15
+ horizon (int): Number of future periods to predict.
16
+ model (str | None): Identifier of the forecasting model, defaults to ``"default"``.
17
+
18
+ Example:
19
+ >>> from simulacrum.models import ForecastRequest
20
+ >>> payload = ForecastRequest(series=[1.0, 2.0, 3.0], horizon=2, model="default")
21
+ >>> payload.model_dump()
22
+ {'series': [1.0, 2.0, 3.0], 'horizon': 2, 'model': 'default'}
23
+ """
24
+
25
+ series: List[float]
26
+ horizon: int
27
+ model: Optional[str] = "default"
28
+
29
+ @field_validator("series", mode="before")
30
+ @classmethod
31
+ def _ensure_series_list(cls, value: Union[np.ndarray, Sequence[float]]) -> List[float]: # type: ignore[override]
32
+ """Normalise the series field to ``list[float]``.
33
+
34
+ Args:
35
+ value (numpy.ndarray | Sequence[float]): Incoming value from caller.
36
+
37
+ Returns:
38
+ list[float]: Serialisable list of floats.
39
+ """
40
+ if isinstance(value, np.ndarray):
41
+ return value.astype(float).tolist()
42
+ return list(value)
43
+
44
+
45
+ class ForecastResponse(BaseModel):
46
+ """Forecast output returned by the API.
47
+
48
+ Attributes:
49
+ forecast (list[float]): Forecasted values returned by the service.
50
+ model_used (str): Identifier of the model the backend selected.
51
+
52
+ Example:
53
+ >>> from simulacrum.models import ForecastResponse
54
+ >>> response = ForecastResponse(forecast=[4.2, 4.8], model_used="default")
55
+ >>> response.get_forecast().tolist()
56
+ [4.2, 4.8]
57
+ """
58
+
59
+ forecast: List[float]
60
+ model_used: str
61
+
62
+ def get_forecast(self) -> np.ndarray:
63
+ """Return forecast values as a numpy array for downstream processing.
64
+
65
+ Returns:
66
+ numpy.ndarray: Forecast data cast to an array of floats.
67
+ """
68
+ return np.array(self.forecast, dtype=float)
69
+
70
+
71
+ class ValidateAPIKeyResponse(BaseModel):
72
+ """Metadata describing the validity of an API key.
73
+
74
+ Attributes:
75
+ valid (bool): Indicates whether the API key is currently valid.
76
+ client (str): Identifier of the owning client account.
77
+ expires_at (datetime | None): Expiration timestamp if provided by the API.
78
+ """
79
+
80
+ valid: bool
81
+ client: str
82
+ expires_at: Optional[datetime]
@@ -0,0 +1,212 @@
1
+ Metadata-Version: 2.4
2
+ Name: simulacrum-sdk
3
+ Version: 0.1.0
4
+ Summary: Official Python SDK for accessing the Simulacrum API.
5
+ Author-email: "Simulacrum, Inc." <support@smlcrm.com>
6
+ License-Expression: MIT
7
+ Project-URL: Homepage, https://smlcrm-tempo-api.readme.io/reference
8
+ Project-URL: Repository, https://github.com/Smlcrm/simulacrum-sdk
9
+ Project-URL: Issues, https://github.com/Smlcrm/simulacrum-sdk/issues
10
+ Keywords: Simulacrum,time-series,forecasting,sdk
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Operating System :: OS Independent
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3 :: Only
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Requires-Python: >=3.8
23
+ Description-Content-Type: text/markdown
24
+ License-File: LICENSE
25
+ Requires-Dist: requests<3,>=2.28
26
+ Requires-Dist: pydantic<3,>=2.0
27
+ Requires-Dist: numpy>=1.24
28
+ Provides-Extra: dev
29
+ Requires-Dist: pytest>=8.0; extra == "dev"
30
+ Requires-Dist: build>=1.2; extra == "dev"
31
+ Requires-Dist: twine>=5.0; extra == "dev"
32
+ Dynamic: license-file
33
+
34
+ ![Simulacrum Logo](https://github.com/Smlcrm/assets/blob/main/Asset%201@4x-8.png?raw=true "Simulacrum SDK")
35
+
36
+ # Simulacrum SDK
37
+
38
+ A lightweight Python client for the Simulacrum time-series forecasting API. The SDK wraps Simulacrum's REST endpoints with type-safe models, error handling, and convenience helpers so you can focus on building forecasting workflows instead of wiring HTTP requests.
39
+
40
+ ---
41
+
42
+ ## Features
43
+
44
+ - ๐Ÿ” **Authenticated client** with automatic bearer-token headers
45
+ - ๐Ÿ“ˆ **Forecast API wrapper** that serialises NumPy arrays transparently
46
+ - โœ… **API key validation** to inspect key status, client ID, and expiry
47
+ - ๐Ÿšซ **Rich exceptions** that map Simulacrum error codes to Python types
48
+ - ๐Ÿงช **Tested models** built on Pydantic for strict data validation
49
+
50
+ ---
51
+
52
+ ## Installation
53
+
54
+ ### From PyPI (recommended)
55
+
56
+ > Requires Python 3.8 or newer
57
+
58
+ ```bash
59
+ pip install simulacrum-sdk
60
+ ```
61
+
62
+ ### From GitHub source
63
+
64
+ Install directly from the latest commit on the main repository:
65
+
66
+ ```bash
67
+ pip install git+https://github.com/Smlcrm/simulacrum-sdk.git
68
+ ```
69
+
70
+ To work with the sources locally for development (Python 3.8+):
71
+
72
+ ```bash
73
+ git clone https://github.com/Smlcrm/simulacrum-sdk.git
74
+ cd simulacrum-sdk
75
+ python -m venv .venv
76
+ source .venv/bin/activate # On Windows use: .venv\Scripts\activate
77
+ pip install -e .[dev]
78
+ ```
79
+
80
+ ---
81
+
82
+ ## Usage Overview
83
+
84
+ ### Creating a client
85
+
86
+ ```python
87
+ from simulacrum import Simulacrum
88
+
89
+ client = Simulacrum(api_key="sp_your_api_key")
90
+ ```
91
+
92
+ If you are running a local version of the Simulacrum API (i.e., on-premise model hosting), override the base URL:
93
+
94
+ ```python
95
+ client = Simulacrum(api_key="sp_your_api_key", base_url="https://staging.api.smlcrm.com")
96
+ ```
97
+
98
+ ### Validating an API key
99
+
100
+ Your forecast requests will fail if your API key is invalid. To check your API key is valid run the following.
101
+
102
+ ```python
103
+ validation = client.validate()
104
+ print("Valid:", validation.valid)
105
+ print("Client ID:", validation.client)
106
+ ```
107
+
108
+ ### Requesting a forecast
109
+
110
+ ```python
111
+ import numpy as np
112
+
113
+ series = np.array([102.4, 106.0, 108.3, 111.9])
114
+ forecast = client.forecast(series=series, horizon=3, model="default")
115
+
116
+ print("Next periods:", forecast)
117
+ ```
118
+
119
+ The SDK returns a `numpy.ndarray` so you can pipe results into downstream analytics or visualisations immediately.
120
+
121
+
122
+
123
+ ### Handling errors
124
+
125
+ All API error codes are mapped to dedicated exceptions. Catch them to distinguish between authentication, quota, and request issues:
126
+
127
+ ```python
128
+ from simulacrum.exceptions import AuthError, QuotaExceededError, SimulacrumError
129
+
130
+ try:
131
+ client.forecast(series=[1, 2, 3], horizon=5, model="default")
132
+ except AuthError:
133
+ print("Check that your API key is correct and active.")
134
+ except QuotaExceededError:
135
+ print("You have reached your usage limit for the current period.")
136
+ except SimulacrumError as exc:
137
+ print(f"Unhandled Simulacrum error: {exc}")
138
+ ```
139
+
140
+ ---
141
+
142
+ ## Tutorial: Forecast a Time Series in Five Steps
143
+
144
+ 1. **Install the SDK**
145
+ ```bash
146
+ pip install simulacrum-sdk
147
+ ```
148
+
149
+ 2. **Create a project structure**
150
+ ```bash
151
+ mkdir simulacrum-sample && cd simulacrum-sample
152
+ python -m venv .venv
153
+ source .venv/bin/activate
154
+ pip install simulacrum-sdk
155
+ ```
156
+
157
+ 3. **Write a forecast script (`forecast_example.py`)**
158
+ ```python
159
+ from simulacrum import Simulacrum
160
+
161
+ def main() -> None:
162
+ client = Simulacrum(api_key="sp_your_api_key")
163
+ series = [24.5, 25.1, 25.7, 26.2, 26.9]
164
+ forecast = client.forecast(series=series, horizon=3, model="default")
165
+ print("Forecast:", forecast.tolist())
166
+
167
+ if __name__ == "__main__":
168
+ main()
169
+ ```
170
+
171
+ 4. **Validate your API key (optional)**
172
+ ```python
173
+ validation = client.validate()
174
+ if validation.valid:
175
+ print("Key is active until", validation.expires_at)
176
+ ```
177
+
178
+ 5. **Run the script**
179
+ ```bash
180
+ python forecast_example.py
181
+ ```
182
+
183
+ This workflow demonstrates the complete loop: initialising the client, requesting a forecast, and checking key status.
184
+
185
+ ---
186
+
187
+ ## Documentation
188
+
189
+ The public API is intentionally small:
190
+
191
+ | Component | Description |
192
+ |-----------|-------------|
193
+ | `simulacrum.Simulacrum` | High-level client exposing `forecast()` and `validate()` methods. |
194
+ | `simulacrum.models.ForecastRequest` | Pydantic model ensuring forecast payloads are well-formed. |
195
+ | `simulacrum.models.ForecastResponse` | Wraps forecast results and exposes `get_forecast()` to return a `numpy.ndarray`. |
196
+ | `simulacrum.models.ValidateAPIKeyResponse` | Validation metadata returned by `Simulacrum.validate()`. |
197
+ | `simulacrum.exceptions.*` | Custom error hierarchy mapping Simulacrum error codes to Python exceptions. |
198
+
199
+ Explore inline docstrings for detailed parameter and return type information. The tests in [`tests/test_client.py`](tests/test_client.py) demonstrate advanced usage patterns and validation behavior.
200
+
201
+ If you are contributing, run the suite with:
202
+
203
+ ```bash
204
+ pip install -e .[dev]
205
+ python -m pytest
206
+ ```
207
+
208
+ ---
209
+
210
+ ## License
211
+
212
+ MIT ยฉ Simulacrum, Inc.
@@ -0,0 +1,16 @@
1
+ LICENSE
2
+ MANIFEST.in
3
+ README.md
4
+ pyproject.toml
5
+ simulacrum/__init__.py
6
+ simulacrum/api.py
7
+ simulacrum/client.py
8
+ simulacrum/config.py
9
+ simulacrum/exceptions.py
10
+ simulacrum/models.py
11
+ simulacrum_sdk.egg-info/PKG-INFO
12
+ simulacrum_sdk.egg-info/SOURCES.txt
13
+ simulacrum_sdk.egg-info/dependency_links.txt
14
+ simulacrum_sdk.egg-info/requires.txt
15
+ simulacrum_sdk.egg-info/top_level.txt
16
+ tests/test_client.py
@@ -0,0 +1,8 @@
1
+ requests<3,>=2.28
2
+ pydantic<3,>=2.0
3
+ numpy>=1.24
4
+
5
+ [dev]
6
+ pytest>=8.0
7
+ build>=1.2
8
+ twine>=5.0
@@ -0,0 +1 @@
1
+ simulacrum
@@ -0,0 +1,113 @@
1
+ import numpy as np
2
+ import pytest
3
+ from pydantic import ValidationError
4
+
5
+ import simulacrum.client as simulacrum_client
6
+
7
+
8
+ @pytest.fixture
9
+ def client():
10
+ return simulacrum_client.Simulacrum("super-secret-key", base_url="https://api.test")
11
+
12
+
13
+ def test_client_initializes_expected_headers(client):
14
+ assert client.headers["Authorization"] == "Bearer super-secret-key"
15
+ assert client.headers["Content-Type"] == "application/json"
16
+
17
+
18
+ def test_validate_invokes_send_request_and_parses_response(client, monkeypatch):
19
+ captured = {}
20
+
21
+ def fake_send_request(method, url, headers, json):
22
+ captured["method"] = method
23
+ captured["url"] = url
24
+ captured["headers"] = headers
25
+ captured["json"] = json
26
+ return {
27
+ "valid": True,
28
+ "client": "client-123",
29
+ "expires_at": "2024-01-01T00:00:00Z",
30
+ }
31
+
32
+ monkeypatch.setattr(simulacrum_client, "send_request", fake_send_request)
33
+
34
+ response = client.validate()
35
+
36
+ assert captured == {
37
+ "method": "GET",
38
+ "url": "https://api.test/v1/validate",
39
+ "headers": client.headers,
40
+ "json": None,
41
+ }
42
+ assert response.valid is True
43
+ assert response.client == "client-123"
44
+
45
+
46
+ def test_forecast_builds_payload_and_returns_numpy_array(client, monkeypatch):
47
+ captured_payload = {}
48
+
49
+ class DummyRequest:
50
+ def __init__(self, *, series, horizon, model):
51
+ captured_payload["series"] = (
52
+ series.tolist() if hasattr(series, "tolist") else series
53
+ )
54
+ captured_payload["horizon"] = horizon
55
+ captured_payload["model"] = model
56
+
57
+ def model_dump(self):
58
+ return {
59
+ "series": captured_payload["series"],
60
+ "horizon": captured_payload["horizon"],
61
+ "model": captured_payload["model"],
62
+ }
63
+
64
+ def fake_send_request(method, url, headers, json):
65
+ captured_payload["method"] = method
66
+ captured_payload["url"] = url
67
+ captured_payload["headers"] = headers
68
+ captured_payload["json"] = json
69
+ return {
70
+ "forecast": [3.1, 3.9],
71
+ "model_used": "prophet",
72
+ }
73
+
74
+ monkeypatch.setattr(simulacrum_client, "ForecastRequest", DummyRequest)
75
+ monkeypatch.setattr(simulacrum_client, "send_request", fake_send_request)
76
+
77
+ series = np.array([1.0, 2.0, 3.0])
78
+
79
+ forecast = client.forecast(series=series, horizon=2, model="prophet")
80
+
81
+ assert captured_payload["series"] == [1.0, 2.0, 3.0]
82
+ assert captured_payload["horizon"] == 2
83
+ assert captured_payload["model"] == "prophet"
84
+ assert captured_payload["method"] == "POST"
85
+ assert captured_payload["url"] == "https://api.test/v1/forecast"
86
+ assert captured_payload["headers"] == client.headers
87
+ assert captured_payload["json"] == {
88
+ "series": [1.0, 2.0, 3.0],
89
+ "horizon": 2,
90
+ "model": "prophet",
91
+ }
92
+ assert isinstance(forecast, np.ndarray)
93
+ assert np.allclose(forecast, np.array([3.1, 3.9]))
94
+
95
+
96
+ def test_forecast_rejects_non_numeric_series(client):
97
+ with pytest.raises(TypeError):
98
+ client.forecast(series=["a", "b"], horizon=2, model="default")
99
+
100
+
101
+ def test_forecast_rejects_multidimensional_input(client):
102
+ with pytest.raises(ValueError):
103
+ client.forecast(series=[[1.0, 2.0], [3.0, 4.0]], horizon=2, model="default")
104
+
105
+
106
+ def test_forecast_rejects_non_integer_horizon(client):
107
+ with pytest.raises(ValidationError):
108
+ client.forecast(series=[1.0, 2.0], horizon="two", model="default")
109
+
110
+
111
+ def test_client_requires_string_api_key():
112
+ with pytest.raises(TypeError):
113
+ simulacrum_client.Simulacrum(api_key=None) # type: ignore[arg-type]