sim-ballena 0.1.1__tar.gz → 0.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sim-ballena might be problematic. Click here for more details.
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/Cargo.lock +1 -1
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/Cargo.toml +1 -1
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/PKG-INFO +1 -1
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/networks.rs +4 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/neurons.rs +2 -1
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/simulation.rs +1 -17
- sim_ballena-0.1.2/test_file.py +49 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/tests.ipynb +41 -17
- sim_ballena-0.1.1/test_file.py +0 -81
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/.github/workflows/CI.yml +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/.gitignore +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/lista_de_deseos.py +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/pyproject.toml +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/instances.rs +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/lib.rs +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/responses.rs +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/src/utils.rs +0 -0
- {sim_ballena-0.1.1 → sim_ballena-0.1.2}/test.sh +0 -0
|
@@ -142,7 +142,7 @@ pub fn simulate(network:&mut Network, instance: PyRef<'_, Instance>, max_time:f6
|
|
|
142
142
|
Some(syn) => syn,
|
|
143
143
|
None => continue
|
|
144
144
|
};
|
|
145
|
-
|
|
145
|
+
|
|
146
146
|
// Only save measures if the event has been procceced
|
|
147
147
|
// and the neuron changed and needs to be tracked
|
|
148
148
|
let mut track_voltage : HashSet<usize> = HashSet::new();
|
|
@@ -226,22 +226,6 @@ pub fn simulate(network:&mut Network, instance: PyRef<'_, Instance>, max_time:f6
|
|
|
226
226
|
.v_rest_list( v_rest_list )
|
|
227
227
|
.tau_list( tau_list );
|
|
228
228
|
|
|
229
|
-
|
|
230
|
-
// voltages
|
|
231
|
-
// let neurons = network.get_neurons();
|
|
232
|
-
// let voltage_markers:Vec<Vec<VoltageMarker>> = outputs.iter().map(|&o|neurons.get(o).unwrap().get_voltage_markers()).collect();
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
// let mut res = Response::new( outputs.clone() );
|
|
236
|
-
// res.set_max_time(max_time);
|
|
237
|
-
// res.set_voltage_markers(voltage_markers);
|
|
238
|
-
// res.set_tau_list( tau_list );
|
|
239
|
-
// res.set_v_rest_list( v_rest_list );
|
|
240
|
-
|
|
241
|
-
// spikes
|
|
242
|
-
// let spikes:Vec<Vec<f64>> = outputs.iter().map(|&o|neurons.get(o).unwrap().get_spikes()).collect();
|
|
243
|
-
// res.set_spikes( spikes );
|
|
244
|
-
|
|
245
229
|
// reset all neuron states
|
|
246
230
|
for neu in neurons{{
|
|
247
231
|
neu.reset_state();
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
import sim_ballena as ballena
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
net = (ballena.Network( ballena.Lif().tau(5).t_refractory(0).repeat(2) )
|
|
6
|
+
.synapses_net([])
|
|
7
|
+
.weights_net([])
|
|
8
|
+
.outputs([0,1])
|
|
9
|
+
.mode(['VOLTAGES','SPIKES']))
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
# ==========
|
|
14
|
+
# STEP 1
|
|
15
|
+
# ==========
|
|
16
|
+
net = net.synapses_in([(0,0),(0,1),(1,0),(1,1)])
|
|
17
|
+
net = net.weights_in([16,0,-16,0])
|
|
18
|
+
|
|
19
|
+
times = [ (1, 0), (5, 1) ]
|
|
20
|
+
instance = ballena.Instance( times )
|
|
21
|
+
res = net.simulate( instance, 10 )
|
|
22
|
+
|
|
23
|
+
time = res.time()
|
|
24
|
+
volt = res.voltages()
|
|
25
|
+
plt.figure(figsize=(10,4))
|
|
26
|
+
plt.subplot(121)
|
|
27
|
+
plt.plot( time, volt[0], label='true')
|
|
28
|
+
plt.subplot(122)
|
|
29
|
+
plt.plot( time, volt[1], label='false')
|
|
30
|
+
plt.show()
|
|
31
|
+
|
|
32
|
+
# ==========
|
|
33
|
+
# STEP 1
|
|
34
|
+
# ==========
|
|
35
|
+
net = net.weights_in([16,0,-16,0])
|
|
36
|
+
|
|
37
|
+
times = [ (1, 0), (5, 1) ]
|
|
38
|
+
instance = ballena.Instance( times )
|
|
39
|
+
res = net.simulate( instance, 10 )
|
|
40
|
+
|
|
41
|
+
time = res.time()
|
|
42
|
+
volt = res.voltages()
|
|
43
|
+
plt.figure(figsize=(10,4))
|
|
44
|
+
plt.subplot(121)
|
|
45
|
+
plt.plot( time, volt[0], label='true')
|
|
46
|
+
plt.subplot(122)
|
|
47
|
+
plt.plot( time, volt[1], label='false')
|
|
48
|
+
plt.show()
|
|
49
|
+
|
|
@@ -33,7 +33,7 @@
|
|
|
33
33
|
"\n",
|
|
34
34
|
"import sim_ballena as ballena\n",
|
|
35
35
|
"import time\n",
|
|
36
|
-
"import numpy as np"
|
|
36
|
+
"import numpy as np\n"
|
|
37
37
|
]
|
|
38
38
|
},
|
|
39
39
|
{
|
|
@@ -207,17 +207,7 @@
|
|
|
207
207
|
"cell_type": "code",
|
|
208
208
|
"execution_count": 6,
|
|
209
209
|
"metadata": {},
|
|
210
|
-
"outputs": [
|
|
211
|
-
{
|
|
212
|
-
"name": "stdout",
|
|
213
|
-
"output_type": "stream",
|
|
214
|
-
"text": [
|
|
215
|
-
"t_ballena 0.8343455791473389\n",
|
|
216
|
-
"t_nest 7.572166204452515\n",
|
|
217
|
-
"ballena es 9.075575389505754 veces mas rapido\n"
|
|
218
|
-
]
|
|
219
|
-
}
|
|
220
|
-
],
|
|
210
|
+
"outputs": [],
|
|
221
211
|
"source": [
|
|
222
212
|
"# inputs = spike_generator(100,0.01,100)\n",
|
|
223
213
|
"\n",
|
|
@@ -231,23 +221,57 @@
|
|
|
231
221
|
},
|
|
232
222
|
{
|
|
233
223
|
"cell_type": "code",
|
|
234
|
-
"execution_count":
|
|
224
|
+
"execution_count": null,
|
|
225
|
+
"metadata": {},
|
|
226
|
+
"outputs": [],
|
|
227
|
+
"source": [
|
|
228
|
+
"poisson = ballena.PoissonGenerator( [200,100,50], 0.05 )"
|
|
229
|
+
]
|
|
230
|
+
},
|
|
231
|
+
{
|
|
232
|
+
"cell_type": "code",
|
|
233
|
+
"execution_count": 8,
|
|
235
234
|
"metadata": {},
|
|
236
235
|
"outputs": [
|
|
236
|
+
{
|
|
237
|
+
"name": "stdout",
|
|
238
|
+
"output_type": "stream",
|
|
239
|
+
"text": [
|
|
240
|
+
"[11, 3, 1]\n"
|
|
241
|
+
]
|
|
242
|
+
},
|
|
237
243
|
{
|
|
238
244
|
"data": {
|
|
239
245
|
"text/plain": [
|
|
240
|
-
"
|
|
246
|
+
"[]"
|
|
241
247
|
]
|
|
242
248
|
},
|
|
243
|
-
"execution_count":
|
|
249
|
+
"execution_count": 8,
|
|
244
250
|
"metadata": {},
|
|
245
251
|
"output_type": "execute_result"
|
|
252
|
+
},
|
|
253
|
+
{
|
|
254
|
+
"data": {
|
|
255
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGIBJREFUeJzt3W1sVvX9+PFPobYVR4vKaCkUIXEb3rCCOLAuGZh0IiE69gCND4QQZTOBTIdxymJkNw/63w2K2Zj8mDLiNgM6FRMxulqHTqkjIM1Ep5mbAxRadJm9ALVVev4PFrt1tsIFLV/avl7JedBzfU+vz/EIfedwLijIsiwLAIBEhqQeAAAY3MQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkVZh6gKPR0dERe/fujeHDh0dBQUHqcQCAo5BlWRw4cCAqKytjyJCe73/0ixjZu3dvVFVVpR4DADgGe/bsibFjx/b4er+IkeHDh0fEv0+mtLQ08TQAwNHI5XJRVVXV+XO8J/0iRj7+o5nS0lIxAgD9zJEesfAAKwCQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJERgg3mv/KMbfuinG37op3mv/KPU4AEdNjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUnnFSF1dXXzpS1+K4cOHx6hRo2Lu3Lnx2muvHfG4Bx98MCZOnBglJSUxadKkePzxx495YABgYMkrRp555plYvHhxvPDCC1FfXx8ffvhhXHrppXHo0KEej9myZUtcffXVce2118aOHTti7ty5MXfu3Ni5c+dxDw8A9H8FWZZlx3rw22+/HaNGjYpnnnkmvvKVr3S75qqrropDhw7FY4891rnvoosuismTJ8fq1auP6n1yuVyUlZVFa2trlJaWHuu4MKC91/5RnHv7kxER8coPZsWwosLEEwGD3dH+/D6uZ0ZaW1sjIuKMM87ocU1jY2PU1tZ22Tdr1qxobGzs8Zi2trbI5XJdNgBgYDrmGOno6Igbb7wxvvzlL8f555/f47rm5uYoLy/vsq+8vDyam5t7PKauri7Kyso6t6qqqmMdEwA4yR1zjCxevDh27twZ69ev7815IiJi2bJl0dra2rnt2bOn198DADg5HNMfKi9ZsiQee+yxePbZZ2Ps2LGfuraioiJaWlq67GtpaYmKiooejykuLo7i4uJjGQ0A6GfyujOSZVksWbIkHnnkkXj66adjwoQJRzympqYmGhoauuyrr6+Pmpqa/CYFAAakvO6MLF68OO6///549NFHY/jw4Z3PfZSVlcWpp54aERHz58+PMWPGRF1dXURE3HDDDTFjxoxYsWJFzJkzJ9avXx/btm2LNWvW9PKpAAD9UV53Ru6+++5obW2NmTNnxujRozu3DRs2dK7ZvXt37Nu3r/Priy++OO6///5Ys2ZNVFdXx+9+97vYuHHjpz70CgAMHnndGTmav5Jk8+bNn9g3b968mDdvXj5vBQAMEv5tGgAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSKkw9ANA7hhUVxj/+35zUYwDkzZ0RACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkso7Rp599tm4/PLLo7KyMgoKCmLjxo2fun7z5s1RUFDwia25uflYZwYABpC8Y+TQoUNRXV0dq1atyuu41157Lfbt29e5jRo1Kt+3BgAGoMJ8D5g9e3bMnj077zcaNWpUjBgxIu/jAICB7YQ9MzJ58uQYPXp0fPWrX43nn3/+U9e2tbVFLpfrsgEAA1Ofx8jo0aNj9erV8dBDD8VDDz0UVVVVMXPmzHjxxRd7PKauri7Kyso6t6qqqr4eEwBIpCDLsuyYDy4oiEceeSTmzp2b13EzZsyIcePGxa9//etuX29ra4u2trbOr3O5XFRVVUVra2uUlpYe67gAwAmUy+WirKzsiD+/835mpDdMmzYtnnvuuR5fLy4ujuLi4hM4EQCQSpK/Z6SpqSlGjx6d4q0BgJNM3ndGDh48GK+//nrn12+88UY0NTXFGWecEePGjYtly5bFW2+9Fffdd19ERKxcuTImTJgQ5513XnzwwQdxzz33xNNPPx2///3ve+8sAIB+K+8Y2bZtW1xyySWdXy9dujQiIhYsWBDr1q2Lffv2xe7duztfb29vj5tuuineeuutGDZsWHzxi1+Mp556qsv3AAAGr+N6gPVEOdoHYACAk8fR/vz2b9MAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUaAfu299o9i/K2bYvytm+K99o8G7QxwLE6W/3fFCACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAklXeMPPvss3H55ZdHZWVlFBQUxMaNG494zObNm+OCCy6I4uLiOPvss2PdunXHMCoAMBDlHSOHDh2K6urqWLVq1VGtf+ONN2LOnDlxySWXRFNTU9x4441x3XXXxZNPPpn3sADAwFOY7wGzZ8+O2bNnH/X61atXx4QJE2LFihUREXHOOefEc889F3feeWfMmjUr37cHAAaYPn9mpLGxMWpra7vsmzVrVjQ2NvZ4TFtbW+RyuS4bADAw9XmMNDc3R3l5eZd95eXlkcvl4v333+/2mLq6uigrK+vcqqqq+npMACCRk/LTNMuWLYvW1tbObc+ePalHAgD6SN7PjOSroqIiWlpauuxraWmJ0tLSOPXUU7s9pri4OIqLi/t6NADgJNDnd0ZqamqioaGhy776+vqoqanp67cGAPqBvGPk4MGD0dTUFE1NTRHx74/uNjU1xe7duyPi33/EMn/+/M71119/ffz973+P73znO/Hqq6/GL37xi3jggQfi29/+du+cAQDQr+UdI9u2bYspU6bElClTIiJi6dKlMWXKlLj99tsjImLfvn2dYRIRMWHChNi0aVPU19dHdXV1rFixIu655x4f6wUAIuIYnhmZOXNmZFnW4+vd/e2qM2fOjB07duT7VgDAIHBSfpoGABg8xAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEiqIMuyLPUQR5LL5aKsrCxaW1ujtLQ09TgAwFE42p/f7owAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQ1DHFyKpVq2L8+PFRUlIS06dPj61bt/a4dt26dVFQUNBlKykpOeaBAYCBJe8Y2bBhQyxdujSWL18eL774YlRXV8esWbNi//79PR5TWloa+/bt69x27dp1XEMDAANH3jFyxx13xKJFi2LhwoVx7rnnxurVq2PYsGGxdu3aHo8pKCiIioqKzq28vPy4hgYABo68YqS9vT22b98etbW1//kGQ4ZEbW1tNDY29njcwYMH46yzzoqqqqr42te+Fi+//PKnvk9bW1vkcrkuGwAwMOUVI++8804cPnz4E3c2ysvLo7m5udtjvvCFL8TatWvj0Ucfjd/85jfR0dERF198cbz55ps9vk9dXV2UlZV1blVVVfmMCQD0I33+aZqampqYP39+TJ48OWbMmBEPP/xwfPazn43/+7//6/GYZcuWRWtra+e2Z8+evh4TAEikMJ/FI0eOjKFDh0ZLS0uX/S0tLVFRUXFU3+OUU06JKVOmxOuvv97jmuLi4iguLs5nNACgn8rrzkhRUVFMnTo1GhoaOvd1dHREQ0ND1NTUHNX3OHz4cLz00ksxevTo/CYFAAakvO6MREQsXbo0FixYEBdeeGFMmzYtVq5cGYcOHYqFCxdGRMT8+fNjzJgxUVdXFxERP/jBD+Kiiy6Ks88+O9599934yU9+Ert27Yrrrruud88EAOiX8o6Rq666Kt5+++24/fbbo7m5OSZPnhxPPPFE50Otu3fvjiFD/nPD5V//+lcsWrQompub4/TTT4+pU6fGli1b4txzz+29swAA+q2CLMuy1EMcSS6Xi7KysmhtbY3S0tLU4wAAR+Fof377t2kAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSGrQx8l77RzH+1k0x/tZN8V77R6nH6XSyzpWP/z2Hvj6nT/v+3b02EP4bc2yO9tr7fySNwfjffTCec3cGbYwAACcHMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABISowAAEmJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEjqmGJk1apVMX78+CgpKYnp06fH1q1bP3X9gw8+GBMnToySkpKYNGlSPP7448c0LAAw8OQdIxs2bIilS5fG8uXL48UXX4zq6uqYNWtW7N+/v9v1W7Zsiauvvjquvfba2LFjR8ydOzfmzp0bO3fuPO7hAYD+L+8YueOOO2LRokWxcOHCOPfcc2P16tUxbNiwWLt2bbfr77rrrrjsssvi5ptvjnPOOSd++MMfxgUXXBA///nPj3t4AKD/yytG2tvbY/v27VFbW/ufbzBkSNTW1kZjY2O3xzQ2NnZZHxExa9asHtdHRLS1tUUul+uyAQADU14x8s4778Thw4ejvLy8y/7y8vJobm7u9pjm5ua81kdE1NXVRVlZWedWVVWVz5gAQD9yUn6aZtmyZdHa2tq57dmzJ/VIAEAfKcxn8ciRI2Po0KHR0tLSZX9LS0tUVFR0e0xFRUVe6yMiiouLo7i4OJ/RAIB+Kq87I0VFRTF16tRoaGjo3NfR0RENDQ1RU1PT7TE1NTVd1kdE1NfX97geABhc8rozEhGxdOnSWLBgQVx44YUxbdq0WLlyZRw6dCgWLlwYERHz58+PMWPGRF1dXURE3HDDDTFjxoxYsWJFzJkzJ9avXx/btm2LNWvW9O6ZAAD9Ut4xctVVV8Xbb78dt99+ezQ3N8fkyZPjiSee6HxIdffu3TFkyH9uuFx88cVx//33x2233Rbf/e5343Of+1xs3Lgxzj///N47CwCg38o7RiIilixZEkuWLOn2tc2bN39i37x582LevHnH8lYAwAB3Un6aBgAYPMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFJiBABIqiDLsiz1EEeSy+WirKwsWltbo7S0NPU4AMBRONqf3+6MAABJiREAICkxAgAkJUYAgKTECACQlBgBAJISIwBAUmIEAEhKjAAASYkRACApMQIAJCVGAICkxAgAkJQYAQCSEiMAQFKFqQc4GlmWRURELpdLPAkAcLQ+/rn98c/xnvSLGDlw4EBERFRVVSWeBADI14EDB6KsrKzH1wuyI+XKSaCjoyP27t0bw4cPj4KCgtTj8D9yuVxUVVXFnj17orS0NPU4fArXqv9wrfoP16pnWZbFgQMHorKyMoYM6fnJkH5xZ2TIkCExduzY1GNwBKWlpX4h9hOuVf/hWvUfrlX3Pu2OyMc8wAoAJCVGAICkxAjHrbi4OJYvXx7FxcWpR+EIXKv+w7XqP1yr49cvHmAFAAYud0YAgKTECACQlBgBAJISIwBAUmKEbq1atSrGjx8fJSUlMX369Ni6deunrn/wwQdj4sSJUVJSEpMmTYrHH3+8y+sPP/xwXHrppXHmmWdGQUFBNDU19eH0g0tvXqsPP/wwbrnllpg0aVKcdtppUVlZGfPnz4+9e/f29WkMCr396+p73/teTJw4MU477bQ4/fTTo7a2Nv70pz/15SkMGr19rf7b9ddfHwUFBbFy5cpenrofy+B/rF+/PisqKsrWrl2bvfzyy9miRYuyESNGZC0tLd2uf/7557OhQ4dmP/7xj7NXXnklu+2227JTTjkle+mllzrX3Hfffdn3v//97Je//GUWEdmOHTtO0NkMbL19rd59992strY227BhQ/bqq69mjY2N2bRp07KpU6eeyNMakPri19Vvf/vbrL6+Pvvb3/6W7dy5M7v22muz0tLSbP/+/SfqtAakvrhWH3v44Yez6urqrLKyMrvzzjv7+Ez6DzHCJ0ybNi1bvHhx59eHDx/OKisrs7q6um7XX3nlldmcOXO67Js+fXr2zW9+8xNr33jjDTHSi/ryWn1s69atWURku3bt6p2hB6kTca1aW1uziMieeuqp3hl6kOqra/Xmm29mY8aMyXbu3JmdddZZYuS/+GMaumhvb4/t27dHbW1t574hQ4ZEbW1tNDY2dntMY2Njl/UREbNmzepxPb3jRF2r1tbWKCgoiBEjRvTK3IPRibhW7e3tsWbNmigrK4vq6ureG36Q6atr1dHREddcc03cfPPNcd555/XN8P2YGKGLd955Jw4fPhzl5eVd9peXl0dzc3O3xzQ3N+e1nt5xIq7VBx98ELfccktcffXV/gGw49CX1+qxxx6Lz3zmM1FSUhJ33nln1NfXx8iRI3v3BAaRvrpWP/rRj6KwsDC+9a1v9f7QA4AYAbr14YcfxpVXXhlZlsXdd9+dehx6cMkll0RTU1Ns2bIlLrvssrjyyitj//79qcfiv2zfvj3uuuuuWLduXRQUFKQe56QkRuhi5MiRMXTo0Ghpaemyv6WlJSoqKro9pqKiIq/19I6+vFYfh8iuXbuivr7eXZHj1JfX6rTTTouzzz47Lrroorj33nujsLAw7r333t49gUGkL67VH//4x9i/f3+MGzcuCgsLo7CwMHbt2hU33XRTjB8/vk/Oo78RI3RRVFQUU6dOjYaGhs59HR0d0dDQEDU1Nd0eU1NT02V9RER9fX2P6+kdfXWtPg6Rv/71r/HUU0/FmWee2TcnMIicyF9XHR0d0dbWdvxDD1J9ca2uueaa+POf/xxNTU2dW2VlZdx8883x5JNP9t3J9Cepn6Dl5LN+/fqsuLg4W7duXfbKK69k3/jGN7IRI0Zkzc3NWZZl2TXXXJPdeuutneuff/75rLCwMPvpT3+a/eUvf8mWL1/+iY+1/fOf/8x27NiRbdq0KYuIbP369dmOHTuyffv2nfDzG0h6+1q1t7dnV1xxRTZ27Nisqakp27dvX+fW1taW5BwHit6+VgcPHsyWLVuWNTY2Zv/4xz+ybdu2ZQsXLsyKi4uznTt3JjnHgaIvfg/8Xz5N05UYoVs/+9nPsnHjxmVFRUXZtGnTshdeeKHztRkzZmQLFizosv6BBx7IPv/5z2dFRUXZeeedl23atKnL67/61a+yiPjEtnz58hNwNgNbb16rjz963d32hz/84QSd0cDVm9fq/fffz77+9a9nlZWVWVFRUTZ69OjsiiuuyLZu3XqiTmdA6+3fA/+XGOmqIMuyLM09GQAAz4wAAImJEQAgKTECACQlRgCApMQIAJCUGAEAkhIjAEBSYgQASEqMAABJiREAICkxAgAkJUYAgKT+P2tJZu7wZ2M1AAAAAElFTkSuQmCC",
|
|
256
|
+
"text/plain": [
|
|
257
|
+
"<Figure size 640x480 with 1 Axes>"
|
|
258
|
+
]
|
|
259
|
+
},
|
|
260
|
+
"metadata": {},
|
|
261
|
+
"output_type": "display_data"
|
|
246
262
|
}
|
|
247
263
|
],
|
|
248
264
|
"source": [
|
|
249
|
-
"poisson = ballena.PoissonGenerator( [100,
|
|
250
|
-
"
|
|
265
|
+
"poisson = ballena.PoissonGenerator( [200,100,50], 0.05 )\n",
|
|
266
|
+
"\n",
|
|
267
|
+
"\n",
|
|
268
|
+
"spikes = poisson.get_spikes()\n",
|
|
269
|
+
"print( [len(spk) for spk in spikes] )\n",
|
|
270
|
+
"\n",
|
|
271
|
+
"for idx,ch in enumerate(spikes):\n",
|
|
272
|
+
" plt.vlines(ch, idx-0.2, idx+0.2)\n",
|
|
273
|
+
" \n",
|
|
274
|
+
"plt.plot()"
|
|
251
275
|
]
|
|
252
276
|
}
|
|
253
277
|
],
|
sim_ballena-0.1.1/test_file.py
DELETED
|
@@ -1,81 +0,0 @@
|
|
|
1
|
-
import sim_ballena as ballena
|
|
2
|
-
import matplotlib.pyplot as plt
|
|
3
|
-
import random
|
|
4
|
-
import time
|
|
5
|
-
|
|
6
|
-
inputs = ballena.Instance( [(40*t/100,0) for t in range(1,100)] )
|
|
7
|
-
n = [ballena.Lif().tau(10).t_refractory(0.001)]
|
|
8
|
-
syn_in = [(0,0)]
|
|
9
|
-
syn_net = []
|
|
10
|
-
w_in = [4]
|
|
11
|
-
w_net = []
|
|
12
|
-
outputs = [0]
|
|
13
|
-
|
|
14
|
-
# ========================
|
|
15
|
-
# RED QUE GRABA VOLTAJES
|
|
16
|
-
# ========================
|
|
17
|
-
net = (ballena.Network(n)
|
|
18
|
-
.synapses_in(syn_in)
|
|
19
|
-
.synapses_net(syn_net)
|
|
20
|
-
.weights_in(w_in)
|
|
21
|
-
.weights_net(w_net)
|
|
22
|
-
.outputs(outputs)
|
|
23
|
-
.mode(['VOLTAGES','SPIKES']))
|
|
24
|
-
|
|
25
|
-
start = time.time()
|
|
26
|
-
for _ in range(5000):
|
|
27
|
-
res = net.simulate( inputs, 40 )
|
|
28
|
-
print(f"{time.time()-start}")
|
|
29
|
-
|
|
30
|
-
# ========================
|
|
31
|
-
# RED QUE NO GRABA
|
|
32
|
-
# ========================
|
|
33
|
-
net = (ballena.Network(n)
|
|
34
|
-
.synapses_in(syn_in)
|
|
35
|
-
.synapses_net(syn_net)
|
|
36
|
-
.weights_in(w_in)
|
|
37
|
-
.weights_net(w_net)
|
|
38
|
-
.outputs(outputs)
|
|
39
|
-
.mode(['SPIKES']))
|
|
40
|
-
|
|
41
|
-
start = time.time()
|
|
42
|
-
for _ in range(5000):
|
|
43
|
-
res = net.simulate( inputs, 40 )
|
|
44
|
-
print(f"{time.time()-start}")
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
# inputs_ = [(t/4,0) for t in range(1,40)]
|
|
51
|
-
# inputs = ballena.Instance(inputs_)
|
|
52
|
-
|
|
53
|
-
# n = [ballena.Lif().tau(10).t_refractory(2),
|
|
54
|
-
# ballena.Lif().tau(20)]
|
|
55
|
-
# syn_in = [(0,0)]
|
|
56
|
-
# syn_net = [(0,1)]
|
|
57
|
-
# w_in = [4]
|
|
58
|
-
# w_net = [9]
|
|
59
|
-
# outputs = [0,1]
|
|
60
|
-
|
|
61
|
-
# net = (ballena.Network(n)
|
|
62
|
-
# .synapses_in(syn_in)
|
|
63
|
-
# .synapses_net(syn_net)
|
|
64
|
-
# .weights_in(w_in)
|
|
65
|
-
# .weights_net(w_net)
|
|
66
|
-
# .outputs(outputs)
|
|
67
|
-
# .mode(['VOLTAGES','SPIKES']))
|
|
68
|
-
|
|
69
|
-
# res = net.simulate( inputs, 11 )
|
|
70
|
-
|
|
71
|
-
# time = res.time()
|
|
72
|
-
# volt = res.voltages()
|
|
73
|
-
|
|
74
|
-
# print( res.spikes() )
|
|
75
|
-
|
|
76
|
-
# plt.plot( time,volt[0], label=f'neu {outputs[0]}' )
|
|
77
|
-
# plt.plot( time,volt[1], label=f'neu {outputs[1]}' )
|
|
78
|
-
# plt.vlines(res.spikes()[0], -70, -55, linestyles='dashed', colors='red')
|
|
79
|
-
# plt.legend()
|
|
80
|
-
# plt.grid()
|
|
81
|
-
# plt.show()
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|