siibra 0.4a82__tar.gz → 0.4a84__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of siibra might be problematic. Click here for more details.
- {siibra-0.4a82/siibra.egg-info → siibra-0.4a84}/PKG-INFO +1 -1
- siibra-0.4a84/siibra/VERSION +1 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/configuration/factory.py +8 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/connectivity/regional_connectivity.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/feature.py +8 -1
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/image/image.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/cell_density_profile.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/cortical_profile.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/layerwise_cell_density.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/receptor_density_fingerprint.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/receptor_density_profile.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/regional_timeseries_activity.py +3 -1
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/tabular.py +2 -0
- {siibra-0.4a82 → siibra-0.4a84/siibra.egg-info}/PKG-INFO +1 -1
- siibra-0.4a82/siibra/VERSION +0 -1
- {siibra-0.4a82 → siibra-0.4a84}/LICENSE +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/MANIFEST.in +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/README.rst +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/setup.cfg +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/setup.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/commons.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/configuration/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/configuration/configuration.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/atlas.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/concept.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/parcellation.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/region.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/relation_qualification.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/core/space.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/explorer/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/explorer/url.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/explorer/util.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/anchor.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/connectivity/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/connectivity/functional_connectivity.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/connectivity/streamline_counts.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/connectivity/streamline_lengths.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/connectivity/tracing_connectivity.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/dataset/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/dataset/ebrains.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/image/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/image/sections.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/image/volume_of_interest.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/bigbrain_intensity_profile.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/gene_expression.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/features/tabular/layerwise_bigbrain_intensities.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/livequeries/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/livequeries/allen.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/livequeries/bigbrain.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/livequeries/ebrains.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/livequeries/query.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/locations/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/locations/boundingbox.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/locations/location.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/locations/point.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/locations/pointset.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/retrieval/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/retrieval/cache.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/retrieval/datasets.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/retrieval/exceptions/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/retrieval/repositories.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/retrieval/requests.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/vocabularies/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/vocabularies/gene_names.json +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/vocabularies/receptor_symbols.json +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/vocabularies/region_aliases.json +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/__init__.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/gifti.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/neuroglancer.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/nifti.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/parcellationmap.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/sparsemap.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra/volumes/volume.py +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra.egg-info/SOURCES.txt +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra.egg-info/dependency_links.txt +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra.egg-info/requires.txt +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/siibra.egg-info/top_level.txt +0 -0
- {siibra-0.4a82 → siibra-0.4a84}/test/test_siibra.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: siibra
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.4a84
|
|
4
4
|
Summary: siibra - Software interfaces for interacting with brain atlases
|
|
5
5
|
Home-page: https://github.com/FZJ-INM1-BDA/siibra-python
|
|
6
6
|
Author: Big Data Analytics Group, Forschungszentrum Juelich, Institute of Neuroscience and Medicine (INM-1)
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
0.4a84
|
|
@@ -357,6 +357,7 @@ class Factory:
|
|
|
357
357
|
anchor=cls.extract_anchor(spec),
|
|
358
358
|
datasets=cls.extract_datasets(spec),
|
|
359
359
|
prerelease=spec.get("prerelease", False),
|
|
360
|
+
id=spec.get("@id", None),
|
|
360
361
|
)
|
|
361
362
|
|
|
362
363
|
@classmethod
|
|
@@ -368,6 +369,7 @@ class Factory:
|
|
|
368
369
|
anchor=cls.extract_anchor(spec),
|
|
369
370
|
datasets=cls.extract_datasets(spec),
|
|
370
371
|
prerelease=spec.get("prerelease", False),
|
|
372
|
+
id=spec.get("@id", None),
|
|
371
373
|
)
|
|
372
374
|
|
|
373
375
|
@classmethod
|
|
@@ -379,6 +381,7 @@ class Factory:
|
|
|
379
381
|
anchor=cls.extract_anchor(spec),
|
|
380
382
|
datasets=cls.extract_datasets(spec),
|
|
381
383
|
prerelease=spec.get("prerelease", False),
|
|
384
|
+
id=spec.get("@id", None),
|
|
382
385
|
)
|
|
383
386
|
|
|
384
387
|
@classmethod
|
|
@@ -391,6 +394,7 @@ class Factory:
|
|
|
391
394
|
anchor=cls.extract_anchor(spec),
|
|
392
395
|
datasets=cls.extract_datasets(spec),
|
|
393
396
|
prerelease=spec.get("prerelease", False),
|
|
397
|
+
id=spec.get("@id", None),
|
|
394
398
|
)
|
|
395
399
|
|
|
396
400
|
@classmethod
|
|
@@ -404,6 +408,7 @@ class Factory:
|
|
|
404
408
|
"providers": vol._providers.values(),
|
|
405
409
|
"datasets": cls.extract_datasets(spec),
|
|
406
410
|
"prerelease": spec.get("prerelease", False),
|
|
411
|
+
"id": spec.get("@id", None),
|
|
407
412
|
}
|
|
408
413
|
modality = spec.get('modality', "")
|
|
409
414
|
if modality == "cell body staining":
|
|
@@ -422,6 +427,7 @@ class Factory:
|
|
|
422
427
|
"providers": vol._providers.values(),
|
|
423
428
|
"datasets": cls.extract_datasets(spec),
|
|
424
429
|
"prerelease": spec.get("prerelease", False),
|
|
430
|
+
"id": spec.get("@id", None),
|
|
425
431
|
}
|
|
426
432
|
modality = spec.get('modality', "")
|
|
427
433
|
if modality == "cell body staining":
|
|
@@ -472,6 +478,7 @@ class Factory:
|
|
|
472
478
|
"description": spec.get("description", ""),
|
|
473
479
|
"datasets": cls.extract_datasets(spec),
|
|
474
480
|
"prerelease": spec.get("prerelease", False),
|
|
481
|
+
"id": spec.get("@id", None),
|
|
475
482
|
}
|
|
476
483
|
if modality == "StreamlineCounts":
|
|
477
484
|
return connectivity.StreamlineCounts(**kwargs)
|
|
@@ -504,6 +511,7 @@ class Factory:
|
|
|
504
511
|
"datasets": cls.extract_datasets(spec),
|
|
505
512
|
"timestep": spec.get("timestep", ("1 no_unit")),
|
|
506
513
|
"prerelease": spec.get("prerelease", False),
|
|
514
|
+
"id": spec.get("@id", None),
|
|
507
515
|
}
|
|
508
516
|
if modality == "Regional BOLD signal":
|
|
509
517
|
kwargs["paradigm"] = spec.get("paradigm", "")
|
|
@@ -52,6 +52,7 @@ class RegionalConnectivity(Feature):
|
|
|
52
52
|
description: str = "",
|
|
53
53
|
datasets: list = [],
|
|
54
54
|
prerelease: bool = False,
|
|
55
|
+
id: str = None,
|
|
55
56
|
):
|
|
56
57
|
"""
|
|
57
58
|
Construct a parcellation-averaged connectivity matrix.
|
|
@@ -86,6 +87,7 @@ class RegionalConnectivity(Feature):
|
|
|
86
87
|
anchor=anchor,
|
|
87
88
|
datasets=datasets,
|
|
88
89
|
prerelease=prerelease,
|
|
90
|
+
id=id,
|
|
89
91
|
)
|
|
90
92
|
self.cohort = cohort.upper()
|
|
91
93
|
self._connector = connector
|
|
@@ -94,6 +94,8 @@ class Feature:
|
|
|
94
94
|
anchor: _anchor.AnatomicalAnchor,
|
|
95
95
|
datasets: List['TypeDataset'] = [],
|
|
96
96
|
prerelease: bool = False,
|
|
97
|
+
id: str = None,
|
|
98
|
+
|
|
97
99
|
):
|
|
98
100
|
"""
|
|
99
101
|
Parameters
|
|
@@ -111,6 +113,7 @@ class Feature:
|
|
|
111
113
|
self._anchor_cached = anchor
|
|
112
114
|
self.datasets = datasets
|
|
113
115
|
self._prerelease = prerelease
|
|
116
|
+
self._id = id
|
|
114
117
|
|
|
115
118
|
@property
|
|
116
119
|
def modality(self):
|
|
@@ -255,12 +258,16 @@ class Feature:
|
|
|
255
258
|
|
|
256
259
|
@property
|
|
257
260
|
def id(self):
|
|
261
|
+
if self._id:
|
|
262
|
+
return self._id
|
|
263
|
+
|
|
258
264
|
prefix = ''
|
|
259
265
|
for ds in self.datasets:
|
|
260
266
|
if hasattr(ds, "id"):
|
|
261
267
|
prefix = ds.id + '--'
|
|
262
268
|
break
|
|
263
|
-
|
|
269
|
+
name_ = self.name.lstrip("[PRERELEASE] ")
|
|
270
|
+
return prefix + md5(name_.encode("utf-8")).hexdigest()
|
|
264
271
|
|
|
265
272
|
def _export(self, fh: ZipFile):
|
|
266
273
|
"""
|
|
@@ -63,6 +63,7 @@ class Image(feature.Feature, _volume.Volume):
|
|
|
63
63
|
region: str = None,
|
|
64
64
|
datasets: List = [],
|
|
65
65
|
prerelease: bool = False,
|
|
66
|
+
id: str = None,
|
|
66
67
|
):
|
|
67
68
|
feature.Feature.__init__(
|
|
68
69
|
self,
|
|
@@ -71,6 +72,7 @@ class Image(feature.Feature, _volume.Volume):
|
|
|
71
72
|
anchor=None, # lazy implementation below!
|
|
72
73
|
datasets=datasets,
|
|
73
74
|
prerelease=prerelease,
|
|
75
|
+
id=id,
|
|
74
76
|
)
|
|
75
77
|
|
|
76
78
|
_volume.Volume.__init__(
|
|
@@ -69,6 +69,7 @@ class CellDensityProfile(
|
|
|
69
69
|
anchor: _anchor.AnatomicalAnchor,
|
|
70
70
|
datasets: list = [],
|
|
71
71
|
prerelease: bool = False,
|
|
72
|
+
id: str = None,
|
|
72
73
|
):
|
|
73
74
|
"""
|
|
74
75
|
Generate a cell density profile from a URL to a cloud folder
|
|
@@ -82,6 +83,7 @@ class CellDensityProfile(
|
|
|
82
83
|
anchor=anchor,
|
|
83
84
|
datasets=datasets,
|
|
84
85
|
prerelease=prerelease,
|
|
86
|
+
id=id,
|
|
85
87
|
)
|
|
86
88
|
self._step = 0.01
|
|
87
89
|
self._url = url
|
|
@@ -54,6 +54,7 @@ class CorticalProfile(tabular.Tabular):
|
|
|
54
54
|
boundary_positions: Dict[Tuple[int, int], float] = None,
|
|
55
55
|
datasets: list = [],
|
|
56
56
|
prerelease: bool = False,
|
|
57
|
+
id: str = None,
|
|
57
58
|
):
|
|
58
59
|
"""Initialize profile.
|
|
59
60
|
|
|
@@ -95,6 +96,7 @@ class CorticalProfile(tabular.Tabular):
|
|
|
95
96
|
data=None, # lazy loader below
|
|
96
97
|
datasets=datasets,
|
|
97
98
|
prerelease=prerelease,
|
|
99
|
+
id=id,
|
|
98
100
|
)
|
|
99
101
|
|
|
100
102
|
def _check_sanity(self):
|
|
@@ -57,6 +57,7 @@ class LayerwiseCellDensity(
|
|
|
57
57
|
anchor: _anchor.AnatomicalAnchor,
|
|
58
58
|
datasets: list = [],
|
|
59
59
|
prerelease: bool = False,
|
|
60
|
+
id: str = None,
|
|
60
61
|
):
|
|
61
62
|
tabular.Tabular.__init__(
|
|
62
63
|
self,
|
|
@@ -66,6 +67,7 @@ class LayerwiseCellDensity(
|
|
|
66
67
|
datasets=datasets,
|
|
67
68
|
data=None, # lazy loading below
|
|
68
69
|
prerelease=prerelease,
|
|
70
|
+
id=id,
|
|
69
71
|
)
|
|
70
72
|
self.unit = "# detected cells/0.1mm3"
|
|
71
73
|
self._filepairs = list(zip(segmentfiles, layerfiles))
|
|
@@ -44,6 +44,7 @@ class ReceptorDensityFingerprint(
|
|
|
44
44
|
anchor: _anchor.AnatomicalAnchor,
|
|
45
45
|
datasets: list = [],
|
|
46
46
|
prerelease: bool = False,
|
|
47
|
+
id: str = None,
|
|
47
48
|
):
|
|
48
49
|
""" Generate a receptor fingerprint from a URL to a .tsv file
|
|
49
50
|
formatted according to the structure used by Palomero-Gallagher et al.
|
|
@@ -56,6 +57,7 @@ class ReceptorDensityFingerprint(
|
|
|
56
57
|
data=None, # lazy loading below
|
|
57
58
|
datasets=datasets,
|
|
58
59
|
prerelease=prerelease,
|
|
60
|
+
id=id,
|
|
59
61
|
)
|
|
60
62
|
self._loader = requests.HttpRequest(tsvfile)
|
|
61
63
|
|
|
@@ -41,6 +41,7 @@ class ReceptorDensityProfile(
|
|
|
41
41
|
anchor: _anchor.AnatomicalAnchor,
|
|
42
42
|
datasets: list = [],
|
|
43
43
|
prerelease: bool = False,
|
|
44
|
+
id: str = None,
|
|
44
45
|
):
|
|
45
46
|
"""Generate a receptor density profile from a URL to a .tsv file
|
|
46
47
|
formatted according to the structure used by Palomero-Gallagher et al.
|
|
@@ -52,6 +53,7 @@ class ReceptorDensityProfile(
|
|
|
52
53
|
anchor=anchor,
|
|
53
54
|
datasets=datasets,
|
|
54
55
|
prerelease=prerelease,
|
|
56
|
+
id=id
|
|
55
57
|
)
|
|
56
58
|
self.type = receptor
|
|
57
59
|
self._data_cached = None
|
|
@@ -49,6 +49,7 @@ class RegionalTimeseriesActivity(tabular.Tabular):
|
|
|
49
49
|
datasets: list = [],
|
|
50
50
|
paradigm: str = "",
|
|
51
51
|
prerelease: bool = False,
|
|
52
|
+
id: str = None,
|
|
52
53
|
):
|
|
53
54
|
"""
|
|
54
55
|
"""
|
|
@@ -59,7 +60,8 @@ class RegionalTimeseriesActivity(tabular.Tabular):
|
|
|
59
60
|
anchor=anchor,
|
|
60
61
|
datasets=datasets,
|
|
61
62
|
data=None, # lazy loading below
|
|
62
|
-
prerelease=prerelease
|
|
63
|
+
prerelease=prerelease,
|
|
64
|
+
id=id,
|
|
63
65
|
)
|
|
64
66
|
self.cohort = cohort.upper()
|
|
65
67
|
self._connector = connector
|
|
@@ -46,6 +46,7 @@ class Tabular(feature.Feature):
|
|
|
46
46
|
data: pd.DataFrame, # sample x feature dimension
|
|
47
47
|
datasets: list = [],
|
|
48
48
|
prerelease: bool = False,
|
|
49
|
+
id: str = None,
|
|
49
50
|
):
|
|
50
51
|
feature.Feature.__init__(
|
|
51
52
|
self,
|
|
@@ -54,6 +55,7 @@ class Tabular(feature.Feature):
|
|
|
54
55
|
anchor=anchor,
|
|
55
56
|
datasets=datasets,
|
|
56
57
|
prerelease=prerelease,
|
|
58
|
+
id=id,
|
|
57
59
|
)
|
|
58
60
|
self._data_cached = data
|
|
59
61
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: siibra
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.4a84
|
|
4
4
|
Summary: siibra - Software interfaces for interacting with brain atlases
|
|
5
5
|
Home-page: https://github.com/FZJ-INM1-BDA/siibra-python
|
|
6
6
|
Author: Big Data Analytics Group, Forschungszentrum Juelich, Institute of Neuroscience and Medicine (INM-1)
|
siibra-0.4a82/siibra/VERSION
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
0.4a82
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|