siglab-py 0.3.8__tar.gz → 0.3.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

Files changed (43) hide show
  1. {siglab_py-0.3.8 → siglab_py-0.3.10}/PKG-INFO +1 -1
  2. {siglab_py-0.3.8 → siglab_py-0.3.10}/pyproject.toml +1 -1
  3. {siglab_py-0.3.8 → siglab_py-0.3.10}/setup.cfg +1 -1
  4. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/analytic_util.py +8 -1
  5. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/market_data_util.py +45 -44
  6. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py.egg-info/PKG-INFO +1 -1
  7. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py.egg-info/SOURCES.txt +0 -1
  8. siglab_py-0.3.8/siglab_py/util/test_market_data_analytic_util.py +0 -64
  9. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/__init__.py +0 -0
  10. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/constants.py +0 -0
  11. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/exchanges/__init__.py +0 -0
  12. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/exchanges/any_exchange.py +0 -0
  13. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/exchanges/futubull.py +0 -0
  14. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/__init__.py +0 -0
  15. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/aggregated_orderbook_provider.py +0 -0
  16. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/candles_provider.py +0 -0
  17. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/candles_ta_provider.py +0 -0
  18. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py +0 -0
  19. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/deribit_options_expiry_provider.py +0 -0
  20. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/futu_candles_ta_to_csv.py +0 -0
  21. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/orderbooks_provider.py +0 -0
  22. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/market_data_providers/test_provider.py +0 -0
  23. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/ordergateway/__init__.py +0 -0
  24. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/ordergateway/client.py +0 -0
  25. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/ordergateway/encrypt_keys_util.py +0 -0
  26. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/ordergateway/gateway.py +0 -0
  27. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/ordergateway/test_ordergateway.py +0 -0
  28. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/__init__.py +0 -0
  29. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/integration/__init__.py +0 -0
  30. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/integration/market_data_util_tests.py +0 -0
  31. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/unit/__init__.py +0 -0
  32. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/unit/analytic_util_tests.py +0 -0
  33. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/unit/market_data_util_tests.py +0 -0
  34. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/tests/unit/trading_util_tests.py +0 -0
  35. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/__init__.py +0 -0
  36. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/aws_util.py +0 -0
  37. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/notification_util.py +0 -0
  38. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/retry_util.py +0 -0
  39. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/slack_notification_util.py +0 -0
  40. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py/util/trading_util.py +0 -0
  41. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py.egg-info/dependency_links.txt +0 -0
  42. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py.egg-info/requires.txt +0 -0
  43. {siglab_py-0.3.8 → siglab_py-0.3.10}/siglab_py.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab_py
3
- Version: 0.3.8
3
+ Version: 0.3.10
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "siglab_py"
7
- version = "0.3.8"
7
+ version = "0.3.10"
8
8
  description = "Market data fetches, TA calculations and generic order gateway."
9
9
  authors = [{name = "r0bbarh00d", email = "r0bbarh00d@gmail.com"}]
10
10
  license = {text = "MIT"}
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = siglab_py
3
- version = 0.3.8
3
+ version = 0.3.10
4
4
  description = Market data fetches, TA calculations and generic order gateway.
5
5
  author = r0bbarh00d
6
6
  author_email = r0bbarh00d@gmail.com
@@ -894,4 +894,11 @@ def compute_pair_stats(
894
894
  pd_candles['close_spread_std'] = std
895
895
  pd_candles['zscore_close_spread'] = (pd_candles['close_spread'] - mean)/std
896
896
  pd_candles['zscore_close_spread_min'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).min()
897
- pd_candles['zscore_close_spread_max'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).max()
897
+ pd_candles['zscore_close_spread_max'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).max()
898
+
899
+ calculate_slope(
900
+ pd_data=pd_candles,
901
+ src_col_name='zscore_close_spread',
902
+ slope_col_name='zscore_slope',
903
+ sliding_window_how_many_candles=how_many_candles
904
+ )
@@ -516,55 +516,56 @@ def _fetch_candles_ccxt(
516
516
  candle_size : str,
517
517
  num_candles_limit : int = 100
518
518
  ) -> Dict[str, Union[pd.DataFrame, None]]:
519
- ticker = normalized_symbols[0]
519
+ rsp = {}
520
520
 
521
- def _fetch_ohlcv(exchange, symbol, timeframe, since, limit, params) -> Union[List, NoReturn]:
522
- one_timeframe = f"1{timeframe[-1]}"
523
- candles = exchange.fetch_ohlcv(symbol=symbol, timeframe=one_timeframe, since=since, limit=limit, params=params)
524
- if candles and len(candles)>0:
525
- candles.sort(key=lambda x : x[0], reverse=False)
521
+ for ticker in normalized_symbols:
522
+ def _fetch_ohlcv(exchange, symbol, timeframe, since, limit, params) -> Union[List, NoReturn]:
523
+ one_timeframe = f"1{timeframe[-1]}"
524
+ candles = exchange.fetch_ohlcv(symbol=symbol, timeframe=one_timeframe, since=since, limit=limit, params=params)
525
+ if candles and len(candles)>0:
526
+ candles.sort(key=lambda x : x[0], reverse=False)
526
527
 
527
- return candles
528
-
529
- def _calc_increment(candle_size):
530
- increment = 1
531
- num_intervals = int(candle_size[0])
532
- interval_type = candle_size[-1]
533
- if interval_type == "m":
534
- increment = 60
535
- elif interval_type == "h":
536
- increment = 60*60
537
- elif interval_type == "d":
538
- increment = 60*60*24
539
- else:
540
- raise ValueError(f"Invalid candle_size {candle_size}")
541
- return num_intervals * increment
542
-
543
- all_candles = []
544
- params = {}
545
- this_cutoff = start_ts
546
- while this_cutoff<end_ts:
547
- candles = _fetch_ohlcv(exchange=exchange, symbol=ticker, timeframe=candle_size, since=int(this_cutoff * 1000), limit=num_candles_limit, params=params)
548
- if candles and len(candles)>0:
549
- all_candles = all_candles + [[ int(x[0]), float(x[1]), float(x[2]), float(x[3]), float(x[4]), float(x[5]) ] for x in candles if x[1] and x[2] and x[3] and x[4] and x[5] ]
550
-
551
- record_ts = max([int(record[0]) for record in candles])
552
- record_ts_str : str = str(record_ts)
553
- if len(record_ts_str)==13:
554
- record_ts = int(int(record_ts_str)/1000) # Convert from milli-seconds to seconds
528
+ return candles
555
529
 
556
- this_cutoff = record_ts + _calc_increment(candle_size)
557
- else:
558
- this_cutoff += _calc_increment(candle_size)
530
+ def _calc_increment(candle_size):
531
+ increment = 1
532
+ num_intervals = int(candle_size[0])
533
+ interval_type = candle_size[-1]
534
+ if interval_type == "m":
535
+ increment = 60
536
+ elif interval_type == "h":
537
+ increment = 60*60
538
+ elif interval_type == "d":
539
+ increment = 60*60*24
540
+ else:
541
+ raise ValueError(f"Invalid candle_size {candle_size}")
542
+ return num_intervals * increment
543
+
544
+ all_candles = []
545
+ params = {}
546
+ this_cutoff = start_ts
547
+ while this_cutoff<end_ts:
548
+ candles = _fetch_ohlcv(exchange=exchange, symbol=ticker, timeframe=candle_size, since=int(this_cutoff * 1000), limit=num_candles_limit, params=params)
549
+ if candles and len(candles)>0:
550
+ all_candles = all_candles + [[ int(x[0]), float(x[1]), float(x[2]), float(x[3]), float(x[4]), float(x[5]) ] for x in candles if x[1] and x[2] and x[3] and x[4] and x[5] ]
551
+
552
+ record_ts = max([int(record[0]) for record in candles])
553
+ record_ts_str : str = str(record_ts)
554
+ if len(record_ts_str)==13:
555
+ record_ts = int(int(record_ts_str)/1000) # Convert from milli-seconds to seconds
556
+
557
+ this_cutoff = record_ts + _calc_increment(candle_size)
558
+ else:
559
+ this_cutoff += _calc_increment(candle_size)
559
560
 
560
- columns = ['exchange', 'symbol', 'timestamp_ms', 'open', 'high', 'low', 'close', 'volume']
561
- pd_all_candles = pd.DataFrame([ [ exchange.name, ticker, x[0], x[1], x[2], x[3], x[4], x[5] ] for x in all_candles], columns=columns)
562
- fix_column_types(pd_all_candles)
563
- pd_all_candles['pct_chg_on_close'] = pd_all_candles['close'].pct_change()
561
+ columns = ['exchange', 'symbol', 'timestamp_ms', 'open', 'high', 'low', 'close', 'volume']
562
+ pd_all_candles = pd.DataFrame([ [ exchange.name, ticker, x[0], x[1], x[2], x[3], x[4], x[5] ] for x in all_candles], columns=columns)
563
+ fix_column_types(pd_all_candles)
564
+ pd_all_candles['pct_chg_on_close'] = pd_all_candles['close'].pct_change()
564
565
 
565
- return {
566
- ticker : pd_all_candles
567
- }
566
+ rsp[ticker] = pd_all_candles
567
+
568
+ return rsp
568
569
 
569
570
  def fetch_deribit_btc_option_expiries(
570
571
  market: str = 'BTC'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab-py
3
- Version: 0.3.8
3
+ Version: 0.3.10
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -38,5 +38,4 @@ siglab_py/util/market_data_util.py
38
38
  siglab_py/util/notification_util.py
39
39
  siglab_py/util/retry_util.py
40
40
  siglab_py/util/slack_notification_util.py
41
- siglab_py/util/test_market_data_analytic_util.py
42
41
  siglab_py/util/trading_util.py
@@ -1,64 +0,0 @@
1
- from datetime import datetime
2
- import time
3
- from typing import Union
4
- import pandas as pd
5
-
6
- from ccxt.okx import okx
7
-
8
- from market_data_util import fetch_candles
9
- from analytic_util import compute_candles_stats
10
-
11
- base_ccy : str = "BTC"
12
- # ticker = "GRIFFAIN/USDT:USDT"
13
- # ticker = "OL/USDT:USDT"
14
- ticker = f"{base_ccy}/USDT:USDT"
15
-
16
- reload_raw_candles : bool = True
17
- raw_candles_file : str = f"{base_ccy}_raw_candles.csv"
18
- candles_with_ta_file : str = f"{base_ccy}_candles_ta.csv"
19
-
20
- param = {
21
- 'rateLimit' : 100, # In ms
22
- 'options' : {
23
- 'defaultType': 'swap', # Should test linear instead
24
- }
25
- }
26
- exchange = okx(param) # type: ignore
27
-
28
- start_date : datetime = datetime(2024,1,1)
29
- end_date : datetime = datetime(2025,4,22)
30
- candle_size : str = '1h'
31
- ma_long_intervals : int = 24*30
32
- ma_short_intervals : int = 24
33
- boillenger_std_multiples : int = 2
34
- pypy_compatible : bool = False
35
-
36
- markets = exchange.load_markets()
37
- assert(ticker in markets)
38
-
39
- start = time.time()
40
-
41
- if reload_raw_candles:
42
- pd_candles: Union[pd.DataFrame, None] = fetch_candles(
43
- start_ts=int(start_date.timestamp()),
44
- end_ts=int(end_date.timestamp()),
45
- exchange=exchange,
46
- normalized_symbols=[ ticker ],
47
- candle_size=candle_size
48
- )[ ticker ]
49
-
50
- pd_candles.to_csv(raw_candles_file) # type: ignore
51
- else:
52
- pd_candles = pd.read_csv(raw_candles_file) # type: ignore
53
-
54
- compute_candles_stats(
55
- pd_candles=pd_candles, # type: ignore
56
- boillenger_std_multiples=boillenger_std_multiples,
57
- sliding_window_how_many_candles=ma_long_intervals,
58
- slow_fast_interval_ratio=(ma_long_intervals/ma_short_intervals),
59
- pypy_compat=pypy_compatible
60
- )
61
- pd_candles.to_csv(candles_with_ta_file) # type: ignore
62
-
63
- compute_candles_stats_elapsed_ms = int((time.time() - start) *1000)
64
- print(f"elapsed (ms): {compute_candles_stats_elapsed_ms}")