siglab-py 0.3.5__tar.gz → 0.3.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

Files changed (43) hide show
  1. {siglab_py-0.3.5 → siglab_py-0.3.7}/PKG-INFO +1 -1
  2. {siglab_py-0.3.5 → siglab_py-0.3.7}/pyproject.toml +1 -1
  3. {siglab_py-0.3.5 → siglab_py-0.3.7}/setup.cfg +1 -1
  4. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py +4 -4
  5. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/analytic_util.py +30 -0
  6. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/market_data_util.py +49 -1
  7. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py.egg-info/PKG-INFO +1 -1
  8. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/__init__.py +0 -0
  9. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/constants.py +0 -0
  10. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/exchanges/__init__.py +0 -0
  11. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/exchanges/any_exchange.py +0 -0
  12. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/exchanges/futubull.py +0 -0
  13. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/__init__.py +0 -0
  14. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/aggregated_orderbook_provider.py +0 -0
  15. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/candles_provider.py +0 -0
  16. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/candles_ta_provider.py +0 -0
  17. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/deribit_options_expiry_provider.py +0 -0
  18. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/futu_candles_ta_to_csv.py +0 -0
  19. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/orderbooks_provider.py +0 -0
  20. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/market_data_providers/test_provider.py +0 -0
  21. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/ordergateway/__init__.py +0 -0
  22. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/ordergateway/client.py +0 -0
  23. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/ordergateway/encrypt_keys_util.py +0 -0
  24. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/ordergateway/gateway.py +0 -0
  25. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/ordergateway/test_ordergateway.py +0 -0
  26. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/__init__.py +0 -0
  27. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/integration/__init__.py +0 -0
  28. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/integration/market_data_util_tests.py +0 -0
  29. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/unit/__init__.py +0 -0
  30. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/unit/analytic_util_tests.py +0 -0
  31. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/unit/market_data_util_tests.py +0 -0
  32. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/tests/unit/trading_util_tests.py +0 -0
  33. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/__init__.py +0 -0
  34. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/aws_util.py +0 -0
  35. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/notification_util.py +0 -0
  36. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/retry_util.py +0 -0
  37. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/slack_notification_util.py +0 -0
  38. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/test_market_data_analytic_util.py +0 -0
  39. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py/util/trading_util.py +0 -0
  40. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py.egg-info/SOURCES.txt +0 -0
  41. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py.egg-info/dependency_links.txt +0 -0
  42. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py.egg-info/requires.txt +0 -0
  43. {siglab_py-0.3.5 → siglab_py-0.3.7}/siglab_py.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab_py
3
- Version: 0.3.5
3
+ Version: 0.3.7
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "siglab_py"
7
- version = "0.3.5"
7
+ version = "0.3.7"
8
8
  description = "Market data fetches, TA calculations and generic order gateway."
9
9
  authors = [{name = "r0bbarh00d", email = "r0bbarh00d@gmail.com"}]
10
10
  license = {text = "MIT"}
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = siglab_py
3
- version = 0.3.5
3
+ version = 0.3.7
4
4
  description = Market data fetches, TA calculations and generic order gateway.
5
5
  author = r0bbarh00d
6
6
  author_email = r0bbarh00d@gmail.com
@@ -26,8 +26,8 @@ from siglab_py.util.analytic_util import compute_candles_stats
26
26
  '''
27
27
  Usage:
28
28
  set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
29
- python ccxt_candles_ta_to_csv.py --exchange_name bybit --symbol BTC/USDT:USDT --end_date "2025-03-11 0:0:0" --start_date "2021-03-11 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
30
-
29
+ python ccxt_candles_ta_to_csv.py --exchange_name okx --symbol BTC/USDT:USDT --candle_size 1h --end_date "2025-04-22 0:0:0" --start_date "2024-01-01 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
30
+
31
31
  (Remember: python -mpip install siglab_py)
32
32
 
33
33
  This script is pypy compatible. Set "pypy_compatible" to True, in which case "compute_candles_stats" will skip calculation for TAs which requires: scipy, statsmodels, scikit-learn, sklearn.preprocessing
@@ -60,8 +60,8 @@ If debugging from VSCode, launch.json:
60
60
  "args" : [
61
61
  "--exchange_name", "bybit",
62
62
  "--symbol", "BTC/USDT:USDT",
63
- "--end_date", "2025-03-11 0:0:0",
64
- "--start_date", "2024-03-11 0:0:0",
63
+ "--end_date", "2025-04-22 0:0:0",
64
+ "--start_date", "2024-01-01 0:0:0",
65
65
  "--default_type", "linear",
66
66
  "--compute_ta", "Y",
67
67
  "--pypy_compatible", "N"
@@ -865,3 +865,33 @@ def partition_sliding_window(
865
865
  'maxima' : maxima,
866
866
  'segments' : consolidated_segements
867
867
  }
868
+
869
+ # This relies on statsmodels.api, which is not pypy compatible
870
+ def compute_pair_stats(
871
+ pd_candles : pd.DataFrame,
872
+ how_many_candles : int = 24*7
873
+ ) -> None:
874
+ import statsmodels.api as sm
875
+
876
+ def _compute_hedge_ratio(
877
+ prices0 : List[float],
878
+ prices1 : List[float]
879
+ ):
880
+ model = sm.OLS(prices0, prices1).fit()
881
+ hedge_ratio = model.params[0]
882
+ return hedge_ratio
883
+
884
+ pd_candles['hedge_ratio'] = np.nan
885
+ for j in range(how_many_candles, pd_candles.shape[0]):
886
+ window = pd_candles.iloc[j-how_many_candles:j]
887
+ hedge_ratio = _compute_hedge_ratio(window['close_1'].values, window['close_2'].values) # type: ignore
888
+ pd_candles.loc[j, 'hedge_ratio'] = hedge_ratio
889
+
890
+ pd_candles['close_spread'] = pd_candles['close_1'] - (pd_candles['close_2'] * pd_candles['hedge_ratio']) # You're fitting one hedge_ratio over a windows
891
+ mean = pd_candles['close_spread'].rolling(how_many_candles).mean()
892
+ std = pd_candles['close_spread'].rolling(how_many_candles).std()
893
+ pd_candles['close_spread_mean'] = mean
894
+ pd_candles['close_spread_std'] = std
895
+ pd_candles['zscore_close_spread'] = (pd_candles['close_spread'] - mean)/std
896
+ pd_candles['zscore_close_spread_min'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).min()
897
+ pd_candles['zscore_close_spread_max'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).max()
@@ -626,4 +626,52 @@ def fetch_deribit_btc_option_expiries(
626
626
  'index_price' : index_price,
627
627
  'by_expiry' : sorted_expiry_data, # type: ignore Otherwise, Error: Type "dict[str, list[tuple[str, float]] | dict[str, Dict[Unknown, Unknown]]]" is not assignable to return type "Dict[str, Dict[str, float] | Dict[str, Dict[str, str | float]]]"
628
628
  'by_expiry_and_strike' : expiry_data_breakdown_by_strike
629
- }
629
+ }
630
+
631
+ def build_pair_candles(
632
+ pd_candles1 : pd.DataFrame,
633
+ pd_candles2 : pd.DataFrame
634
+ ) -> pd.DataFrame:
635
+ min_timestamp_ms1 = int(pd_candles1.iloc[0]['timestamp_ms'])
636
+ max_timestamp_ms1 = int(pd_candles1.iloc[-1]['timestamp_ms'])
637
+ min_timestamp_ms2 = int(pd_candles2.iloc[0]['timestamp_ms'])
638
+ max_timestamp_ms2 = int(pd_candles2.iloc[-1]['timestamp_ms'])
639
+
640
+ pd_candles1 = pd_candles1[(pd_candles1.timestamp_ms>=min_timestamp_ms2) & (pd_candles1.timestamp_ms<=max_timestamp_ms2) & (~pd_candles1.timestamp_ms.isna()) ]
641
+ pd_candles2 = pd_candles2[(pd_candles2.timestamp_ms>=min_timestamp_ms1) & (pd_candles2.timestamp_ms<=max_timestamp_ms1) & (~pd_candles2.timestamp_ms.isna())]
642
+ assert(pd_candles1.shape[0]==pd_candles2.shape[0])
643
+
644
+ pd_candles1['timestamp_ms_gap'] = pd_candles1['timestamp_ms'] - pd_candles1['timestamp_ms'].shift(1)
645
+ timestamp_ms_gap = pd_candles1.iloc[-1]['timestamp_ms_gap']
646
+
647
+ assert(pd_candles1[~pd_candles1.timestamp_ms_gap.isna()][pd_candles1.timestamp_ms_gap!=timestamp_ms_gap].shape[0]==0)
648
+ pd_candles1.drop(columns=['timestamp_ms_gap'], inplace=True)
649
+
650
+ pd_candles2['timestamp_ms_gap'] = pd_candles2['timestamp_ms'] - pd_candles2['timestamp_ms'].shift(1)
651
+ timestamp_ms_gap = pd_candles2.iloc[-1]['timestamp_ms_gap']
652
+ assert(pd_candles2[~pd_candles2.timestamp_ms_gap.isna()][pd_candles2.timestamp_ms_gap!=timestamp_ms_gap].shape[0]==0)
653
+ pd_candles2.drop(columns=['timestamp_ms_gap'], inplace=True)
654
+
655
+ min_timestamp_ms1 = int(pd_candles1.iloc[0]['timestamp_ms'])
656
+ max_timestamp_ms1 = int(pd_candles1.iloc[-1]['timestamp_ms'])
657
+ min_timestamp_ms2 = int(pd_candles2.iloc[0]['timestamp_ms'])
658
+ max_timestamp_ms2 = int(pd_candles2.iloc[-1]['timestamp_ms'])
659
+ assert(min_timestamp_ms1==min_timestamp_ms2)
660
+ assert(max_timestamp_ms1==max_timestamp_ms2)
661
+ assert(pd_candles1.shape[0]==pd_candles2.shape[0])
662
+
663
+ if len([ col for col in pd_candles1.columns if col[-2:]=='_1' ]) == 0:
664
+ pd_candles1.columns = [str(col) + '_1' for col in pd_candles1.columns]
665
+
666
+ if len([ col for col in pd_candles2.columns if col[-2:]=='_2' ]) == 0:
667
+ pd_candles2.columns = [str(col) + '_2' for col in pd_candles2.columns]
668
+
669
+ pd_candles1.reset_index(drop=True, inplace=True)
670
+ pd_candles2.reset_index(drop=True, inplace=True)
671
+ pd_candles = pd.concat([pd_candles1, pd_candles2], axis=1)
672
+ pd_candles['timestamp_ms_gap'] = pd_candles['timestamp_ms_1'] - pd_candles['timestamp_ms_2']
673
+ assert(pd_candles[pd_candles.timestamp_ms_gap!=0].shape[0]==0)
674
+
675
+ return pd_candles
676
+
677
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab-py
3
- Version: 0.3.5
3
+ Version: 0.3.7
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>