siglab-py 0.1.27__tar.gz → 0.1.29__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

Files changed (39) hide show
  1. {siglab_py-0.1.27 → siglab_py-0.1.29}/PKG-INFO +1 -1
  2. {siglab_py-0.1.27 → siglab_py-0.1.29}/pyproject.toml +1 -1
  3. {siglab_py-0.1.27 → siglab_py-0.1.29}/setup.cfg +1 -1
  4. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py +12 -1
  5. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/futu_candles_ta_to_csv.py +12 -1
  6. siglab_py-0.1.29/siglab_py/tests/unit/analytic_util_tests.py +73 -0
  7. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/util/analytic_util.py +2 -1
  8. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py.egg-info/PKG-INFO +1 -1
  9. siglab_py-0.1.27/siglab_py/tests/unit/analytic_util_tests.py +0 -45
  10. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/__init__.py +0 -0
  11. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/constants.py +0 -0
  12. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/exchanges/__init__.py +0 -0
  13. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/exchanges/any_exchange.py +0 -0
  14. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/exchanges/futubull.py +0 -0
  15. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/__init__.py +0 -0
  16. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/aggregated_orderbook_provider.py +0 -0
  17. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/candles_provider.py +0 -0
  18. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/candles_ta_provider.py +0 -0
  19. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/deribit_options_expiry_provider.py +0 -0
  20. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/orderbooks_provider.py +0 -0
  21. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/market_data_providers/test_provider.py +0 -0
  22. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/ordergateway/__init__.py +0 -0
  23. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/ordergateway/client.py +0 -0
  24. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/ordergateway/encrypt_keys_util.py +0 -0
  25. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/ordergateway/gateway.py +0 -0
  26. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/ordergateway/test_ordergateway.py +0 -0
  27. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/tests/__init__.py +0 -0
  28. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/tests/integration/__init__.py +0 -0
  29. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/tests/integration/market_data_util_tests.py +0 -0
  30. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/tests/unit/__init__.py +0 -0
  31. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/tests/unit/market_data_util_tests.py +0 -0
  32. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/util/__init__.py +0 -0
  33. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/util/aws_util.py +0 -0
  34. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/util/market_data_util.py +0 -0
  35. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py/util/retry_util.py +0 -0
  36. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py.egg-info/SOURCES.txt +0 -0
  37. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py.egg-info/dependency_links.txt +0 -0
  38. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py.egg-info/requires.txt +0 -0
  39. {siglab_py-0.1.27 → siglab_py-0.1.29}/siglab_py.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab_py
3
- Version: 0.1.27
3
+ Version: 0.1.29
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "siglab_py"
7
- version = "0.1.27"
7
+ version = "0.1.29"
8
8
  description = "Market data fetches, TA calculations and generic order gateway."
9
9
  authors = [{name = "r0bbarh00d", email = "r0bbarh00d@gmail.com"}]
10
10
  license = {text = "MIT"}
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = siglab_py
3
- version = 0.1.27
3
+ version = 0.1.29
4
4
  description = Market data fetches, TA calculations and generic order gateway.
5
5
  author = r0bbarh00d
6
6
  author_email = r0bbarh00d@gmail.com
@@ -26,7 +26,7 @@ from siglab_py.util.analytic_util import compute_candles_stats
26
26
  '''
27
27
  Usage:
28
28
  set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
29
- python ccxt_candles_ta_to_csv.py --exchange_name bybit --symbol BTC/USDT:USDT --end_date "2025-03-11 0:0:0" --start_date "2024-03-11 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
29
+ python ccxt_candles_ta_to_csv.py --exchange_name bybit --symbol BTC/USDT:USDT --end_date "2025-03-11 0:0:0" --start_date "2021-03-11 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
30
30
 
31
31
  (Remember: python -mpip install siglab_py)
32
32
 
@@ -35,6 +35,17 @@ This script is pypy compatible. Set "pypy_compatible" to True, in which case "co
35
35
 
36
36
  (Remember: pypy -mpip install siglab_py)
37
37
 
38
+ Other arguments:
39
+ candle_size: default 1h (Hourly candles). You can specify 1d, 1m ...etc
40
+ ma_long_intervals (default 24), ma_short_intervals (default 8):
41
+ analytic_util.compute_candles_stats employ sliding windows to calculate things like std (Standard Deviation), EMA/SMAs, and actually most other technical indicators.
42
+ compute_candles_stats calculate certain things, for example EMA, in two levels: 'long' vs 'short'
43
+ 'long' refers to 'higher timeframe' - this uses a bigger sliding window specified by 'ma_long_intervals'
44
+ 'short' refers to 'lower timeframes' - this uses a smaller sliding window specified by 'ma_short_intervals'
45
+
46
+ compute_ta: Whether you wish to compute technical indicators? Y or N (Default)
47
+ pypy_compatible: Some technical indicators requires python libraries that's not pypy compatible, such as statsmodels.api (slopes and divergence calc) and scipy.stats.linregress. Set to Y, then analytic_util.compute_candles_stats will skip calculations which requires these libraries.
48
+
38
49
  If debugging from VSCode, launch.json:
39
50
 
40
51
  {
@@ -17,7 +17,7 @@ from siglab_py.util.analytic_util import compute_candles_stats
17
17
  '''
18
18
  Usage:
19
19
  set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
20
- python futu_candles_ta_to_csv.py --symbol HK.00700 --end_date "2025-03-11 0:0:0" --start_date "2024-03-11 0:0:0" --market HK --trdmarket HK --security_firm FUTUSECURITIES --security_type STOCK --compute_ta Y --pypy_compatible N
20
+ python futu_candles_ta_to_csv.py --symbol HK.00700 --end_date "2025-03-11 0:0:0" --start_date "2021-03-11 0:0:0" --market HK --trdmarket HK --security_firm FUTUSECURITIES --security_type STOCK --compute_ta Y --pypy_compatible N
21
21
 
22
22
  python futu_candles_ta_to_csv.py --symbol AAPL --end_date "2025-03-11 0:0:0" --start_date "2024-03-11 0:0:0" --market US --trdmarket US --security_firm FUTUSECURITIES --security_type STOCK --compute_ta Y --pypy_compatible N
23
23
 
@@ -28,6 +28,17 @@ This script is pypy compatible. Set "pypy_compatible" to True, in which case "co
28
28
 
29
29
  (Remember: pypy -mpip install siglab_py)
30
30
 
31
+ Other arguments:
32
+ candle_size: default 1h (Hourly candles). You can specify 1d, 1m ...etc
33
+ ma_long_intervals (default 24), ma_short_intervals (default 8):
34
+ analytic_util.compute_candles_stats employ sliding windows to calculate things like std (Standard Deviation), EMA/SMAs, and actually most other technical indicators.
35
+ compute_candles_stats calculate certain things, for example EMA, in two levels: 'long' vs 'short'
36
+ 'long' refers to 'higher timeframe' - this uses a bigger sliding window specified by 'ma_long_intervals'
37
+ 'short' refers to 'lower timeframes' - this uses a smaller sliding window specified by 'ma_short_intervals'
38
+
39
+ compute_ta: Whether you wish to compute technical indicators? Y or N (Default)
40
+ pypy_compatible: Some technical indicators requires python libraries that's not pypy compatible, such as statsmodels.api (slopes and divergence calc) and scipy.stats.linregress. Set to Y, then analytic_util.compute_candles_stats will skip calculations which requires these libraries.
41
+
31
42
  If debugging from VSCode, launch.json:
32
43
 
33
44
  {
@@ -0,0 +1,73 @@
1
+ import unittest
2
+ from typing import List
3
+ from pathlib import Path
4
+
5
+ from util.analytic_util import compute_candles_stats
6
+
7
+ import pandas as pd
8
+
9
+ '''
10
+ Manual checks against for example Tradingview here: \siglab\siglab_py\tests\manual
11
+ '''
12
+
13
+ # @unittest.skip("Skip all integration tests.")
14
+ class AnalyticUtilTests(unittest.TestCase):
15
+
16
+ def test_compute_candle_stats(self):
17
+ '''
18
+ Folder structure:
19
+ \ siglab
20
+ \ siglab_py <-- python project root
21
+ \ sigab_py
22
+ __init__.py
23
+ \ util
24
+ __init__.py
25
+ market_data_util.py
26
+ \ tests
27
+ \ unit
28
+ __init__.py
29
+ analytic_util_tests.py <-- Tests here
30
+
31
+ \ siglab_rs <-- Rust project root
32
+ \ data <-- Data files here!
33
+ '''
34
+ data_dir = Path(__file__).parent.parent.parent.parent / "data"
35
+ csv_path = data_dir / "sample_btc_candles.csv"
36
+ pd_candles : pd.DataFrame = pd.read_csv(csv_path)
37
+ compute_candles_stats(
38
+ pd_candles=pd_candles,
39
+ boillenger_std_multiples=2,
40
+ sliding_window_how_many_candles=20,
41
+ pypy_compat=True
42
+ )
43
+
44
+ expected_columns : List[str] = [
45
+ 'exchange', 'symbol', 'timestamp_ms',
46
+ 'open', 'high', 'low', 'close', 'volume',
47
+ 'datetime', 'datetime_utc', 'year', 'month', 'day', 'hour', 'minute', 'dayofweek',
48
+ 'pct_chg_on_close', 'candle_height',
49
+ 'week_of_month', 'apac_trading_hr', 'emea_trading_hr', 'amer_trading_hr',
50
+ 'is_green', 'pct_change_close',
51
+ 'sma_short_periods', 'sma_long_periods', 'ema_short_periods', 'ema_long_periods', 'ema_close',
52
+ 'std', 'std_percent', 'candle_height_percent', 'candle_height_percent_rounded',
53
+ 'chop_against_ema',
54
+ 'ema_volume_short_periods', 'ema_volume_long_periods',
55
+ 'max_short_periods', 'max_long_periods', 'idmax_short_periods', 'idmax_long_periods', 'min_short_periods', 'min_long_periods', 'idmin_short_periods', 'idmin_long_periods',
56
+ 'h_l', 'h_pc', 'l_pc', 'tr', 'atr',
57
+ 'hurst_exp',
58
+ 'boillenger_upper', 'boillenger_lower', 'boillenger_channel_height', 'boillenger_upper_agg', 'boillenger_lower_agg', 'boillenger_channel_height_agg',
59
+ 'aggressive_up', 'aggressive_up_index', 'aggressive_up_candle_height', 'aggressive_up_candle_high', 'aggressive_up_candle_low', 'aggressive_down', 'aggressive_down_index', 'aggressive_down_candle_height', 'aggressive_down_candle_high', 'aggressive_down_candle_low',
60
+ 'fvg_low', 'fvg_high', 'fvg_gap', 'fvg_mitigated',
61
+ 'close_delta', 'close_delta_percent', 'up', 'down', 'rsi', 'ema_rsi', 'typical_price',
62
+ 'money_flow', 'money_flow_positive', 'money_flow_negative', 'positive_flow_sum', 'negative_flow_sum', 'money_flow_ratio', 'mfi',
63
+ 'macd', 'signal', 'macd_minus_signal',
64
+ 'fib_618_short_periods', 'fib_618_long_periods',
65
+ 'gap_close_vs_ema',
66
+ 'close_above_or_below_ema',
67
+ 'close_vs_ema_inflection'
68
+ ]
69
+
70
+ missing_columns = [ expected for expected in expected_columns if expected not in pd_candles.columns.to_list() ]
71
+ unexpected_columns = [ actual for actual in pd_candles.columns.to_list() if actual not in expected_columns ]
72
+
73
+ assert(pd_candles.columns.to_list()==expected_columns)
@@ -96,7 +96,8 @@ def compute_candles_stats(
96
96
 
97
97
  pd_candles['std_percent'] = pd_candles['std'] / pd_candles['ema_close'] * 100
98
98
  pd_candles['candle_height_percent'] = pd_candles['candle_height'] / pd_candles['ema_close'] * 100
99
-
99
+ pd_candles['candle_height_percent_rounded'] = pd_candles['candle_height_percent'].round().astype(int)
100
+
100
101
  pd_candles['chop_against_ema'] = (
101
102
  (pd_candles['is_green'] & (pd_candles['close'] > pd_candles['ema_close'])) | # Case 1: Green candle and close > EMA
102
103
  (~pd_candles['is_green'] & (pd_candles['close'] < pd_candles['ema_close'])) # Case 2: Red candle and close < EMA
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab-py
3
- Version: 0.1.27
3
+ Version: 0.1.29
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -1,45 +0,0 @@
1
- import unittest
2
- from typing import List
3
- from pathlib import Path
4
-
5
- from util.analytic_util import compute_candles_stats
6
-
7
- import pandas as pd
8
-
9
- '''
10
- Manual checks against for example Tradingview here: \siglab\siglab_py\tests\manual
11
- '''
12
-
13
- # @unittest.skip("Skip all integration tests.")
14
- class AnalyticUtilTests(unittest.TestCase):
15
-
16
- def test_compute_candle_stats(self):
17
- '''
18
- Folder structure:
19
- \ siglab
20
- \ siglab_py <-- python project root
21
- \ sigab_py
22
- __init__.py
23
- \ util
24
- __init__.py
25
- market_data_util.py
26
- \ tests
27
- \ unit
28
- __init__.py
29
- analytic_util_tests.py <-- Tests here
30
-
31
- \ siglab_rs <-- Rust project root
32
- \ data <-- Data files here!
33
- '''
34
- data_dir = Path(__file__).parent.parent.parent.parent / "data"
35
- csv_path = data_dir / "sample_btc_candles.csv"
36
- pd_candles : pd.DataFrame = pd.read_csv(csv_path)
37
- compute_candles_stats(
38
- pd_candles=pd_candles,
39
- boillenger_std_multiples=2,
40
- sliding_window_how_many_candles=20,
41
- pypy_compat=True
42
- )
43
-
44
- expected_columns : List[str] = ['exchange', 'symbol', 'timestamp_ms', 'open', 'high', 'low', 'close', 'volume', 'datetime', 'datetime_utc', 'year', 'month', 'day', 'hour', 'minute', 'dayofweek', 'pct_chg_on_close', 'candle_height', 'is_green', 'pct_change_close', 'sma_short_periods', 'sma_long_periods', 'ema_short_periods', 'ema_long_periods', 'ema_close', 'std', 'std_percent', 'candle_height_percent', 'chop_against_ema', 'ema_volume_short_periods', 'ema_volume_long_periods', 'max_short_periods', 'max_long_periods', 'idmax_short_periods', 'idmax_long_periods', 'min_short_periods', 'min_long_periods', 'idmin_short_periods', 'idmin_long_periods', 'h_l', 'h_pc', 'l_pc', 'tr', 'atr', 'hurst_exp', 'boillenger_upper', 'boillenger_lower', 'boillenger_channel_height', 'boillenger_upper_agg', 'boillenger_lower_agg', 'boillenger_channel_height_agg', 'aggressive_up', 'aggressive_up_index', 'aggressive_up_candle_height', 'aggressive_up_candle_high', 'aggressive_up_candle_low', 'aggressive_down', 'aggressive_down_index', 'aggressive_down_candle_height', 'aggressive_down_candle_high', 'aggressive_down_candle_low', 'fvg_low', 'fvg_high', 'fvg_gap', 'fvg_mitigated', 'close_delta', 'close_delta_percent', 'up', 'down', 'rsi', 'ema_rsi', 'typical_price', 'money_flow', 'money_flow_positive', 'money_flow_negative', 'positive_flow_sum', 'negative_flow_sum', 'money_flow_ratio', 'mfi', 'macd', 'signal', 'macd_minus_signal', 'fib_618_short_periods', 'fib_618_long_periods', 'gap_close_vs_ema', 'close_above_or_below_ema', 'close_vs_ema_inflection']
45
- assert(pd_candles.columns.to_list()==expected_columns)