siat 3.10.132__py3-none-any.whl → 3.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. siat/__init__.py +0 -0
  2. siat/allin.py +8 -0
  3. siat/assets_liquidity.py +0 -0
  4. siat/beta_adjustment.py +0 -0
  5. siat/beta_adjustment_china.py +0 -0
  6. siat/blockchain.py +0 -0
  7. siat/bond.py +0 -0
  8. siat/bond_base.py +0 -0
  9. siat/bond_china.py +0 -0
  10. siat/bond_zh_sina.py +0 -0
  11. siat/capm_beta.py +0 -0
  12. siat/capm_beta2.py +4 -4
  13. siat/common.py +9 -6
  14. siat/compare_cross.py +0 -0
  15. siat/copyrights.py +0 -0
  16. siat/cryptocurrency.py +0 -0
  17. siat/economy.py +0 -0
  18. siat/economy2.py +0 -0
  19. siat/esg.py +0 -0
  20. siat/event_study.py +0 -0
  21. siat/exchange_bond_china.pickle +0 -0
  22. siat/fama_french.py +0 -0
  23. siat/fin_stmt2_yahoo.py +0 -0
  24. siat/financial_base.py +0 -0
  25. siat/financial_statements.py +0 -0
  26. siat/financials.py +0 -0
  27. siat/financials2.py +0 -0
  28. siat/financials_china.py +0 -0
  29. siat/financials_china2.py +0 -0
  30. siat/fund.py +0 -0
  31. siat/fund_china.pickle +0 -0
  32. siat/fund_china.py +0 -0
  33. siat/future_china.py +0 -0
  34. siat/google_authenticator.py +0 -0
  35. siat/grafix.py +55 -4
  36. siat/holding_risk.py +0 -0
  37. siat/luchy_draw.py +0 -0
  38. siat/market_china.py +0 -0
  39. siat/markowitz.py +0 -0
  40. siat/markowitz2.py +1 -0
  41. siat/markowitz2_20250704.py +0 -0
  42. siat/markowitz2_20250705.py +0 -0
  43. siat/markowitz_simple.py +0 -0
  44. siat/ml_cases.py +0 -0
  45. siat/ml_cases_example.py +0 -0
  46. siat/option_china.py +0 -0
  47. siat/option_pricing.py +0 -0
  48. siat/other_indexes.py +0 -0
  49. siat/risk_adjusted_return.py +0 -0
  50. siat/risk_adjusted_return2.py +8 -4
  51. siat/risk_evaluation.py +0 -0
  52. siat/risk_free_rate.py +0 -0
  53. siat/save2docx.py +345 -0
  54. siat/save2pdf.py +145 -0
  55. siat/sector_china.py +0 -0
  56. siat/security_price2.py +0 -0
  57. siat/security_prices.py +168 -6
  58. siat/security_trend.py +0 -0
  59. siat/security_trend2.py +2 -2
  60. siat/stock.py +11 -1
  61. siat/stock_advice_linear.py +0 -0
  62. siat/stock_base.py +0 -0
  63. siat/stock_china.py +0 -0
  64. siat/stock_info.pickle +0 -0
  65. siat/stock_prices_kneighbors.py +0 -0
  66. siat/stock_prices_linear.py +0 -0
  67. siat/stock_profile.py +0 -0
  68. siat/stock_technical.py +0 -0
  69. siat/stooq.py +0 -0
  70. siat/transaction.py +0 -0
  71. siat/translate.py +0 -0
  72. siat/valuation.py +0 -0
  73. siat/valuation_china.py +0 -0
  74. siat/var_model_validation.py +0 -0
  75. siat/yf_name.py +0 -0
  76. {siat-3.10.132.dist-info/licenses → siat-3.11.1.dist-info}/LICENSE +0 -0
  77. {siat-3.10.132.dist-info → siat-3.11.1.dist-info}/METADATA +234 -235
  78. siat-3.11.1.dist-info/RECORD +80 -0
  79. {siat-3.10.132.dist-info → siat-3.11.1.dist-info}/WHEEL +1 -1
  80. {siat-3.10.132.dist-info → siat-3.11.1.dist-info}/top_level.txt +0 -1
  81. build/lib/build/lib/siat/__init__.py +0 -75
  82. build/lib/build/lib/siat/allin.py +0 -137
  83. build/lib/build/lib/siat/assets_liquidity.py +0 -915
  84. build/lib/build/lib/siat/beta_adjustment.py +0 -1058
  85. build/lib/build/lib/siat/beta_adjustment_china.py +0 -548
  86. build/lib/build/lib/siat/blockchain.py +0 -143
  87. build/lib/build/lib/siat/bond.py +0 -2900
  88. build/lib/build/lib/siat/bond_base.py +0 -992
  89. build/lib/build/lib/siat/bond_china.py +0 -100
  90. build/lib/build/lib/siat/bond_zh_sina.py +0 -143
  91. build/lib/build/lib/siat/capm_beta.py +0 -783
  92. build/lib/build/lib/siat/capm_beta2.py +0 -887
  93. build/lib/build/lib/siat/common.py +0 -5360
  94. build/lib/build/lib/siat/compare_cross.py +0 -642
  95. build/lib/build/lib/siat/copyrights.py +0 -18
  96. build/lib/build/lib/siat/cryptocurrency.py +0 -667
  97. build/lib/build/lib/siat/economy.py +0 -1471
  98. build/lib/build/lib/siat/economy2.py +0 -1853
  99. build/lib/build/lib/siat/esg.py +0 -536
  100. build/lib/build/lib/siat/event_study.py +0 -815
  101. build/lib/build/lib/siat/fama_french.py +0 -1521
  102. build/lib/build/lib/siat/fin_stmt2_yahoo.py +0 -982
  103. build/lib/build/lib/siat/financial_base.py +0 -1160
  104. build/lib/build/lib/siat/financial_statements.py +0 -598
  105. build/lib/build/lib/siat/financials.py +0 -2339
  106. build/lib/build/lib/siat/financials2.py +0 -1278
  107. build/lib/build/lib/siat/financials_china.py +0 -4433
  108. build/lib/build/lib/siat/financials_china2.py +0 -2212
  109. build/lib/build/lib/siat/fund.py +0 -629
  110. build/lib/build/lib/siat/fund_china.py +0 -3307
  111. build/lib/build/lib/siat/future_china.py +0 -551
  112. build/lib/build/lib/siat/google_authenticator.py +0 -47
  113. build/lib/build/lib/siat/grafix.py +0 -3636
  114. build/lib/build/lib/siat/holding_risk.py +0 -867
  115. build/lib/build/lib/siat/luchy_draw.py +0 -638
  116. build/lib/build/lib/siat/market_china.py +0 -1168
  117. build/lib/build/lib/siat/markowitz.py +0 -2363
  118. build/lib/build/lib/siat/markowitz2.py +0 -3150
  119. build/lib/build/lib/siat/markowitz2_20250704.py +0 -2969
  120. build/lib/build/lib/siat/markowitz2_20250705.py +0 -3158
  121. build/lib/build/lib/siat/markowitz_simple.py +0 -373
  122. build/lib/build/lib/siat/ml_cases.py +0 -2291
  123. build/lib/build/lib/siat/ml_cases_example.py +0 -60
  124. build/lib/build/lib/siat/option_china.py +0 -3069
  125. build/lib/build/lib/siat/option_pricing.py +0 -1925
  126. build/lib/build/lib/siat/other_indexes.py +0 -409
  127. build/lib/build/lib/siat/risk_adjusted_return.py +0 -1576
  128. build/lib/build/lib/siat/risk_adjusted_return2.py +0 -1900
  129. build/lib/build/lib/siat/risk_evaluation.py +0 -2218
  130. build/lib/build/lib/siat/risk_free_rate.py +0 -351
  131. build/lib/build/lib/siat/sector_china.py +0 -4140
  132. build/lib/build/lib/siat/security_price2.py +0 -727
  133. build/lib/build/lib/siat/security_prices.py +0 -3408
  134. build/lib/build/lib/siat/security_trend.py +0 -402
  135. build/lib/build/lib/siat/security_trend2.py +0 -646
  136. build/lib/build/lib/siat/stock.py +0 -4284
  137. build/lib/build/lib/siat/stock_advice_linear.py +0 -934
  138. build/lib/build/lib/siat/stock_base.py +0 -26
  139. build/lib/build/lib/siat/stock_china.py +0 -2095
  140. build/lib/build/lib/siat/stock_prices_kneighbors.py +0 -910
  141. build/lib/build/lib/siat/stock_prices_linear.py +0 -386
  142. build/lib/build/lib/siat/stock_profile.py +0 -707
  143. build/lib/build/lib/siat/stock_technical.py +0 -3305
  144. build/lib/build/lib/siat/stooq.py +0 -74
  145. build/lib/build/lib/siat/transaction.py +0 -347
  146. build/lib/build/lib/siat/translate.py +0 -5183
  147. build/lib/build/lib/siat/valuation.py +0 -1378
  148. build/lib/build/lib/siat/valuation_china.py +0 -2076
  149. build/lib/build/lib/siat/var_model_validation.py +0 -444
  150. build/lib/build/lib/siat/yf_name.py +0 -811
  151. build/lib/siat/__init__.py +0 -75
  152. build/lib/siat/allin.py +0 -137
  153. build/lib/siat/assets_liquidity.py +0 -915
  154. build/lib/siat/beta_adjustment.py +0 -1058
  155. build/lib/siat/beta_adjustment_china.py +0 -548
  156. build/lib/siat/blockchain.py +0 -143
  157. build/lib/siat/bond.py +0 -2900
  158. build/lib/siat/bond_base.py +0 -992
  159. build/lib/siat/bond_china.py +0 -100
  160. build/lib/siat/bond_zh_sina.py +0 -143
  161. build/lib/siat/capm_beta.py +0 -783
  162. build/lib/siat/capm_beta2.py +0 -887
  163. build/lib/siat/common.py +0 -5360
  164. build/lib/siat/compare_cross.py +0 -642
  165. build/lib/siat/copyrights.py +0 -18
  166. build/lib/siat/cryptocurrency.py +0 -667
  167. build/lib/siat/economy.py +0 -1471
  168. build/lib/siat/economy2.py +0 -1853
  169. build/lib/siat/esg.py +0 -536
  170. build/lib/siat/event_study.py +0 -815
  171. build/lib/siat/fama_french.py +0 -1521
  172. build/lib/siat/fin_stmt2_yahoo.py +0 -982
  173. build/lib/siat/financial_base.py +0 -1160
  174. build/lib/siat/financial_statements.py +0 -598
  175. build/lib/siat/financials.py +0 -2339
  176. build/lib/siat/financials2.py +0 -1278
  177. build/lib/siat/financials_china.py +0 -4433
  178. build/lib/siat/financials_china2.py +0 -2212
  179. build/lib/siat/fund.py +0 -629
  180. build/lib/siat/fund_china.py +0 -3307
  181. build/lib/siat/future_china.py +0 -551
  182. build/lib/siat/google_authenticator.py +0 -47
  183. build/lib/siat/grafix.py +0 -3636
  184. build/lib/siat/holding_risk.py +0 -867
  185. build/lib/siat/luchy_draw.py +0 -638
  186. build/lib/siat/market_china.py +0 -1168
  187. build/lib/siat/markowitz.py +0 -2363
  188. build/lib/siat/markowitz2.py +0 -3150
  189. build/lib/siat/markowitz2_20250704.py +0 -2969
  190. build/lib/siat/markowitz2_20250705.py +0 -3158
  191. build/lib/siat/markowitz_simple.py +0 -373
  192. build/lib/siat/ml_cases.py +0 -2291
  193. build/lib/siat/ml_cases_example.py +0 -60
  194. build/lib/siat/option_china.py +0 -3069
  195. build/lib/siat/option_pricing.py +0 -1925
  196. build/lib/siat/other_indexes.py +0 -409
  197. build/lib/siat/risk_adjusted_return.py +0 -1576
  198. build/lib/siat/risk_adjusted_return2.py +0 -1900
  199. build/lib/siat/risk_evaluation.py +0 -2218
  200. build/lib/siat/risk_free_rate.py +0 -351
  201. build/lib/siat/sector_china.py +0 -4140
  202. build/lib/siat/security_price2.py +0 -727
  203. build/lib/siat/security_prices.py +0 -3408
  204. build/lib/siat/security_trend.py +0 -402
  205. build/lib/siat/security_trend2.py +0 -646
  206. build/lib/siat/stock.py +0 -4284
  207. build/lib/siat/stock_advice_linear.py +0 -934
  208. build/lib/siat/stock_base.py +0 -26
  209. build/lib/siat/stock_china.py +0 -2095
  210. build/lib/siat/stock_prices_kneighbors.py +0 -910
  211. build/lib/siat/stock_prices_linear.py +0 -386
  212. build/lib/siat/stock_profile.py +0 -707
  213. build/lib/siat/stock_technical.py +0 -3305
  214. build/lib/siat/stooq.py +0 -74
  215. build/lib/siat/transaction.py +0 -347
  216. build/lib/siat/translate.py +0 -5183
  217. build/lib/siat/valuation.py +0 -1378
  218. build/lib/siat/valuation_china.py +0 -2076
  219. build/lib/siat/var_model_validation.py +0 -444
  220. build/lib/siat/yf_name.py +0 -811
  221. siat-3.10.132.dist-info/RECORD +0 -218
@@ -1,444 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- 本模块功能:检验VaR(在险价值)模型计算结果的有效性
4
- 所属工具包:证券投资分析工具SIAT
5
- SIAT:Security Investment Analysis Tool
6
- 创建日期:2019年7月16日
7
- 最新修订日期:2019年8月19日
8
- 作者:王德宏 (WANG Dehong, Peter)
9
- 作者单位:北京外国语大学国际商学院
10
- 作者邮件:wdehong2000@163.com
11
- 版权所有:王德宏
12
- 用途限制:仅限研究与教学使用,不可商用!商用需要额外授权。
13
- 特别声明:作者不对使用本工具进行证券投资导致的任何损益负责!
14
- """
15
-
16
- #==============================================================================
17
- #统一屏蔽一般性警告
18
- import warnings; warnings.filterwarnings("ignore")
19
- from siat.common import *
20
- from siat.translate import *
21
- from siat.security_prices import *
22
- from siat.security_price2 import *
23
- #==============================================================================
24
- #==============================================================================
25
- def calc_ret(price_series,groupsize=1):
26
- """
27
- 功能:计算日收益率,根据分组大小,计算组内累计收益率
28
- 输入参数:价格序列数据框,分组大小(默认为1,即不分组)
29
- 输出:带分组的收益率序列,数据框
30
- """
31
-
32
- #仅用于测试
33
- #price_series=get_price(['AAPL'],[1],'2019-1-1','2019-8-18')
34
- #groupsize=3
35
-
36
- #计算日收益率
37
- import pandas as pd
38
- #rets=pd.DataFrame(price_series['Value'].pct_change())
39
- rets=pd.DataFrame(price_series['Close'].pct_change())
40
-
41
- import numpy as np
42
- if groupsize >1:
43
- group=np.arange(1,groupsize)
44
- colname=rets.columns.to_list()[0]
45
- for i in group:
46
- #print(i)
47
- newcol="Shift"+i.astype('str')
48
- rets[newcol]=rets[colname].shift(i)
49
- rets=rets.dropna()
50
- rets['Ret']=rets.apply(lambda row:np.product(1+row),axis=1)-1
51
-
52
- #ret_group=pd.DataFrame(rets['Ret'])
53
- ret_group=rets['Ret']
54
- return ret_group
55
-
56
-
57
- if __name__ =="__main__":
58
- p=get_prices_portfolio(['AAPL','MSFT'],[1,1],'2019-1-1','2019-8-18')
59
- rg=calc_ret(p,5)
60
-
61
-
62
- #==============================================================================
63
- def VaR_normal_standard(position,ret_series,future_days=1,alpha=0.99):
64
-
65
- """
66
- 标准正太法VaR基本算法
67
- 输入参数:当前持有头寸金额,收益率序列(非百分比),未来持有时间(天),置信度
68
- 输出参数:VaR(金额,单位与当前头寸的金额单位相同),负数
69
- """
70
- import numpy as np
71
- from scipy import stats
72
-
73
- #注意:这里z为负数
74
- z=stats.norm.ppf(1-alpha)
75
- miu_daily=np.mean(ret_series)
76
- #print("DEBUG: miu_daily",miu_daily)
77
- miu_days=np.power(miu_daily+1,future_days)-1
78
- sigma_daily=np.std(ret_series)
79
- #print("DEBUG: sigma_daily",sigma_daily)
80
- sigma_days=np.sqrt(future_days)*sigma_daily
81
-
82
- ratio=miu_days+z*sigma_days
83
- #print("DEBUG: ratio",ratio)
84
- #损失份额最多100%全损
85
- if np.abs(ratio) > 1.0: ratio=-1.0
86
- VaR_days=position*ratio
87
- return -abs(VaR_days)
88
-
89
-
90
- if __name__ == "__main__":
91
- price=get_prices_portfolio(['AAPL'],[1],'2019-1-1','2019-8-8')
92
- position=price['Close'][-1]
93
- ret=calc_ret(price)
94
- VaR=VaR_normal_standard(position,ret)
95
- #==============================================================================
96
- def VaR_normal_modified(position,ret_series,future_days=1,alpha=0.99):
97
- """
98
- 功能:VaR基本算法,修正正态法
99
- #输入参数:持有头寸金额,日收益率序列,未来持有日期,置信度
100
- #输出参数:VaR(金额)
101
- """
102
- from scipy import stats
103
- import numpy as np
104
-
105
- z=np.abs(stats.norm.ppf(1-alpha))
106
- S=stats.skew(ret_series)
107
- K=stats.kurtosis(ret_series)
108
-
109
- t1=1/6*(np.power(z,2)-1)*S
110
- t2=1/24*(np.power(z,3)-3*z)*K
111
- t3=1/36*(2*np.power(z,3)-5*z)*np.power(S,2)
112
- t=z+t1+t2-t3
113
-
114
- miu_daily=np.mean(ret_series)
115
- miu_days=np.power(miu_daily+1,future_days)-1
116
- sigma_daily=np.std(ret_series)
117
- sigma_days=np.sqrt(future_days)*sigma_daily
118
-
119
- #最多100%全损
120
- ratio=miu_days+t*sigma_days
121
- if np.abs(ratio) > 1.0: ratio=-1.0
122
- VaR_days=position*ratio
123
- return -abs(VaR_days)
124
- #==============================================================================
125
- def VaR_historical_1d(position,ret_series,alpha=0.99):
126
- """
127
- 功能:计算VaR基本算法,历史模拟法,持有1天
128
- 输入参数:持有头寸金额,历史日收益率序列,置信度
129
- 输出:持有一天的VaR(金额)
130
- """
131
- import numpy as np
132
- n=len(ret_series)
133
- t=int(n*(1-alpha))
134
- SR=np.sort(ret_series)
135
- A=SR[t-1] #SR的第一个元素的序号是0
136
- VaR_1d=position*A
137
- return -abs(VaR_1d)
138
- #==============================================================================
139
- def VaR_montecarlo(position,ret_series, \
140
- future_days=1,alpha=0.99,random=10000):
141
- """
142
- 功能:计算VaR基本算法,蒙特卡洛模拟法,持有多日
143
- 输入参数:当前头寸金额,历史日收益率序列,未来持有天数,置信度,重复模拟次数
144
- 注:重复模拟次数越多,准确率就越高,但耗时也越多
145
- 输出:持有多天的VaR(金额)
146
- """
147
- import numpy as np
148
- #取得历史日收益率的均值和标准差
149
- miu=np.mean(ret_series)
150
- sigma=np.std(ret_series)
151
- #生成随机数序列
152
- np.random.seed(12345)
153
- #按照历史日收益率的均值和标准差重复模拟一定次数,生成新的日收益率序列
154
- RR=np.random.normal(miu,sigma,random)
155
- #基于新的日收益率序列,使用标准正态法计算VaR
156
- VaR_days=VaR_normal_standard(position,RR,future_days,alpha)
157
-
158
- #最多100%全损
159
- if abs(VaR_days) > position: VaR_days=-position
160
-
161
- return -abs(VaR_days)
162
- #==============================================================================
163
- def calc_VaR_1d(position,ret_series,alpha=0.99,model="montecarlo", \
164
- random=10000):
165
- """
166
- 功能:计算一个期间的VaR,允许指定不同的模型
167
- 输入参数:当前头寸,各个期间的收益率序列,置信度,模型,模拟次数(仅适用于蒙特卡洛模型)
168
- 输出:VaR金额
169
- """
170
-
171
- future_days=1
172
- #判断模型选择
173
- modeltype=model.lower()
174
- if modeltype in ['normal_standard','normal standard','ns']:
175
- #标准正态法
176
- mtype='normal_standard'
177
- VaR=VaR_normal_standard(position,ret_series,future_days,alpha)
178
- elif modeltype in ['normal_modified','normal modified','nm']:
179
- #修正正态法
180
- mtype='normal_modified'
181
- VaR=VaR_normal_modified(position,ret_series,future_days,alpha)
182
- elif modeltype in ['historical','historic','history','hist']:
183
- #历史模拟法
184
- mtype='historical'
185
- VaR=VaR_historical_1d(position,ret_series,alpha)
186
- elif modeltype in ['montecarlo','monte carlo','monte_carlo','mc']:
187
- #蒙特卡洛模拟法
188
- mtype='montecarlo'
189
- VaR=VaR_montecarlo(position,ret_series,future_days,alpha,random)
190
- else:
191
- print("Error #1(calc_VaR_1d): Type of model unsupported")
192
- print("Variable(s):",model)
193
- print("Models supported: normal_standard, normal_modificed, historical, montecarlo")
194
- return None
195
-
196
- return mtype,VaR
197
-
198
-
199
- if __name__ == "__main__":
200
- tickerlist=['AAPL','MSFT']
201
- sharelist=[1,2]
202
- start='2019-1-1'
203
- end='2019-6-30'
204
- price=get_prices_portfolio(tickerlist,sharelist,start,end)
205
-
206
- groupsize=5
207
- ret=calc_ret(price,groupsize)
208
-
209
- position=price['Close'][-1]
210
- alpha=0.99
211
- type,VaR=calc_VaR_1d(position,ret,alpha,model="montecarlo")
212
- ratio=abs(VaR/position)
213
-
214
- threshhold_expected=round(len(ret)*(1-alpha),2)
215
- threshhold_actual=len(ret[ret['Ret']<-ratio])
216
-
217
-
218
- #==============================================================================
219
-
220
-
221
-
222
- def backtest_VaR(tickerlist,sharelist,today,future_days=1, \
223
- alpha=0.99,pastyears=1,model="montecarlo",random=10000):
224
- """
225
- 功能:检验VaR模型的有效性,历史回溯测试
226
- 输入参数:股票代码列表,持有股数列表,当前日期,预期持有天数,置信度,
227
- 使用历史书据的年数,模型类型,模拟次数(仅适用于蒙特卡洛法)
228
- """
229
-
230
- #检查当前日期的合理性
231
- if not check_date(today): return
232
-
233
- #计算开始日期
234
- startdate=get_start_date(today,pastyears)
235
- import pandas as pd
236
- enddate=pd.to_datetime(today)
237
-
238
- #下载股价数据
239
- price=get_prices_portfolio(tickerlist,sharelist,startdate,enddate)
240
- #计算收益率,以future_days作为分组大小
241
- ret=calc_ret(price,future_days)
242
-
243
- #计算当前持有的头寸
244
- position=price['Close'][-1]
245
- #计算VaR
246
- type,VaR=calc_VaR_1d(position,ret,alpha,model)
247
- #计算VaR比率
248
- ratio=abs(VaR/position)
249
-
250
- #预期:收益率低于VaR比率的期数(天数或组数)
251
- threshhold_expected=round(len(ret)*(1-alpha),2)
252
- #实际:收益率低于VaR比率的期数(天数或组数)
253
- threshhold_actual=len(ret[ret<-ratio])
254
- alpha_actual=1-threshhold_actual/len(ret)
255
-
256
- #结果判读
257
- if abs(alpha_actual-alpha) < 0.001:
258
- result="准确"
259
- elif alpha_actual < alpha:
260
- result="低估"
261
- else:
262
- result="高估"
263
-
264
- #打印结果
265
- """
266
- print("\n======= VaR模型:回溯测试 =======")
267
- #print("投资组合 :",ticker_name(tickerlist))
268
- print("投资组合 :",end='')
269
- print_list(ticker_name(tickerlist,'bond'))
270
-
271
- print("成分股票配置 :",sharelist)
272
- print("持有日期 :",today)
273
- print("当前头寸 :",format(round(position,2),','))
274
- print("预计持有天数 :",future_days,"天")
275
- print("置信度水平 : ",alpha*100,"%",sep='')
276
- print("使用的历史样本数据:",pastyears,"年")
277
- print("使用的VaR模型 :",type)
278
-
279
- print("\n*** 在险价值 ***")
280
- print("VaR金额:",format(round(VaR,2),','))
281
- print("VaR比率: ",round(ratio*100,2),"%",sep='')
282
-
283
- print("\n*** 回溯测试 ***")
284
- print("期望的置信度水平 : ",alpha*100,"%",sep='')
285
- print("损失超过VaR的预期天数 :",threshhold_expected,'天')
286
- print("损失超过VaR的实际天数 :",threshhold_actual,'天')
287
- print("实际的置信度水平 : ",round(alpha_actual*100,2),"%",sep='')
288
- print("模型验证的回溯测试结果 :",result)
289
- """
290
-
291
- titletxt="VaR模型:回溯测试"
292
- import datetime as dt; todaydt=dt.date.today()
293
- footnote="数据来源:新浪/stooq,"+str(todaydt)
294
- ticker_name_list=list2str(ticker_name(tickerlist,'bond'))
295
- shares=sharelist
296
- if len(sharelist)==1: shares=sharelist[0]
297
-
298
- data_dict={'持有资产:':ticker_name_list, \
299
- '资产配置:':shares, \
300
- '持有日期:':today, \
301
- '预计持有天数:':str(future_days)+'天', \
302
- '置信度:':str(alpha*100)+'%', \
303
- "使用的历史样本数据:":str(pastyears)+"年", \
304
- "使用的VaR模型:":type, \
305
-
306
- "*** 在险价值 ***":'', \
307
- "VaR金额:":format(round(VaR,2),','), \
308
- "VaR比率:":str(round(ratio*100,2))+"%", \
309
-
310
- "*** 回溯测试 ***":'', \
311
- "期望的置信度水平:":str(alpha*100)+"%", \
312
- "损失超过VaR的预期天数:":str(threshhold_expected)+'天', \
313
- "损失超过VaR的实际天数:":str(threshhold_actual)+'天', \
314
- "实际的置信度水平:":str(round(alpha_actual*100,2))+"%", \
315
- "模型验证的回溯测试结果:":result}
316
-
317
- print2CSS(data_dict,titletxt=titletxt,footnote=footnote)
318
-
319
-
320
- return
321
-
322
- if __name__ == "__main__":
323
- tickerlist=['AAPL']
324
- sharelist=[1]
325
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
326
- pastyears=1,model="montecarlo")
327
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
328
- pastyears=1,model="normal_standard")
329
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
330
- pastyears=1,model="normal_modified")
331
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
332
- pastyears=1,model="historical")
333
-
334
- #==============================================================================
335
- def backtest_VaR_portfolio(portfolio,today,future_days=1, \
336
- alpha=0.99,pastyears=1,model="montecarlo",random=10000):
337
- """
338
- 功能:检验VaR模型的有效性,历史回溯测试
339
- 输入参数:股票代码列表,持有股数列表,当前日期,预期持有天数,置信度,
340
- 使用历史书据的年数,模型类型,模拟次数(仅适用于蒙特卡洛法)
341
- """
342
-
343
- #检查当前日期的合理性
344
- if not check_date(today): return
345
-
346
- #解构投资组合
347
- _,_,tickerlist,sharelist,ticker_type=decompose_portfolio(portfolio)
348
-
349
- #计算开始日期
350
- startdate=get_start_date(today,pastyears)
351
- import pandas as pd
352
- enddate=pd.to_datetime(today)
353
-
354
- #下载股价数据
355
- price=get_prices_portfolio(tickerlist,sharelist,startdate,enddate)
356
- #计算收益率,以future_days作为分组大小
357
- ret=calc_ret(price,future_days)
358
-
359
- #计算当前持有的头寸
360
- position=price['Close'][-1]
361
- #计算VaR
362
- type,VaR=calc_VaR_1d(position,ret,alpha,model)
363
- #计算VaR比率
364
- ratio=abs(VaR/position)
365
-
366
- #预期:收益率低于VaR比率的期数(天数或组数)
367
- threshhold_expected=round(len(ret)*(1-alpha),2)
368
- #实际:收益率低于VaR比率的期数(天数或组数)
369
- threshhold_actual=len(ret[ret<-ratio])
370
- alpha_actual=1-threshhold_actual/len(ret)
371
-
372
- #结果判读
373
- if abs(alpha_actual-alpha) < 0.001:
374
- result="准确"
375
- elif alpha_actual < alpha:
376
- result="低估"
377
- else:
378
- result="高估"
379
-
380
- #打印结果
381
- """
382
- print("\n======= VaR模型:回溯测试 =======")
383
- print("投资组合 :",tickerlist)
384
- print("成分股票配置 :",sharelist)
385
- print("持有日期 :",today)
386
- print("当前头寸 :",format(round(position,2),','))
387
- print("预计持有天数 :",future_days,"天")
388
- print("置信度水平 : ",alpha*100,"%",sep='')
389
- print("使用的历史样本数据:",pastyears,"年")
390
- print("使用的VaR模型 :",type)
391
-
392
- print("\n*** 在险价值 ***")
393
- print("VaR金额:",format(round(VaR,2),','))
394
- print("VaR比率: ",round(ratio*100,2),"%",sep='')
395
-
396
- print("\n*** 回溯测试 ***")
397
- print("期望的置信度水平 : ",alpha*100,"%",sep='')
398
- print("损失超过VaR的预期天数 :",threshhold_expected,'天')
399
- print("损失超过VaR的实际天数 :",threshhold_actual,'天')
400
- print("实际的置信度水平 : ",round(alpha_actual*100,2),"%",sep='')
401
- print("模型验证的回溯测试结果 :",result)
402
- """
403
-
404
- titletxt="VaR模型:回溯测试"
405
- import datetime as dt; todaydt=dt.date.today()
406
- footnote="数据来源:新浪/stooq,"+str(todaydt)
407
-
408
- data_dict={'投资组合:':portfolio_name(portfolio), \
409
- '持有日期:':today, \
410
- "当前头寸:":format(round(position,2),','), \
411
- '预计持有天数:':str(future_days)+'天', \
412
- '置信度水平:':str(alpha*100)+'%', \
413
- "使用的历史样本数据:":str(pastyears)+"年", \
414
- "使用的VaR模型:":type, \
415
-
416
- "*** 在险价值 ***":'', \
417
- "VaR金额:":format(round(VaR,2),','), \
418
- "VaR比率:":str(round(ratio*100,2))+"%", \
419
-
420
- "*** 回溯测试 ***":'', \
421
- "期望的置信度水平:":str(alpha*100)+"%", \
422
- "损失超过VaR的预期天数:":str(threshhold_expected)+'天', \
423
- "损失超过VaR的实际天数:":str(threshhold_actual)+'天', \
424
- "实际的置信度水平:":str(round(alpha_actual*100,2))+"%", \
425
- "模型验证的回溯测试结果:":result}
426
-
427
- print2CSS(data_dict,titletxt=titletxt,footnote=footnote)
428
-
429
-
430
- return
431
-
432
- if __name__ == "__main__":
433
- tickerlist=['AAPL']
434
- sharelist=[1]
435
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
436
- pastyears=1,model="montecarlo")
437
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
438
- pastyears=1,model="normal_standard")
439
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
440
- pastyears=1,model="normal_modified")
441
- backtest_VaR(tickerlist,sharelist,'2019-8-8',1, \
442
- pastyears=1,model="historical")
443
-
444
- #==============================================================================