siat 3.10.132__py3-none-any.whl → 3.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. siat/__init__.py +0 -0
  2. siat/allin.py +8 -0
  3. siat/assets_liquidity.py +0 -0
  4. siat/beta_adjustment.py +0 -0
  5. siat/beta_adjustment_china.py +0 -0
  6. siat/blockchain.py +0 -0
  7. siat/bond.py +0 -0
  8. siat/bond_base.py +0 -0
  9. siat/bond_china.py +0 -0
  10. siat/bond_zh_sina.py +0 -0
  11. siat/capm_beta.py +0 -0
  12. siat/capm_beta2.py +4 -4
  13. siat/common.py +9 -6
  14. siat/compare_cross.py +0 -0
  15. siat/copyrights.py +0 -0
  16. siat/cryptocurrency.py +0 -0
  17. siat/economy.py +0 -0
  18. siat/economy2.py +0 -0
  19. siat/esg.py +0 -0
  20. siat/event_study.py +0 -0
  21. siat/exchange_bond_china.pickle +0 -0
  22. siat/fama_french.py +0 -0
  23. siat/fin_stmt2_yahoo.py +0 -0
  24. siat/financial_base.py +0 -0
  25. siat/financial_statements.py +0 -0
  26. siat/financials.py +0 -0
  27. siat/financials2.py +0 -0
  28. siat/financials_china.py +0 -0
  29. siat/financials_china2.py +0 -0
  30. siat/fund.py +0 -0
  31. siat/fund_china.pickle +0 -0
  32. siat/fund_china.py +0 -0
  33. siat/future_china.py +0 -0
  34. siat/google_authenticator.py +0 -0
  35. siat/grafix.py +55 -4
  36. siat/holding_risk.py +0 -0
  37. siat/luchy_draw.py +0 -0
  38. siat/market_china.py +0 -0
  39. siat/markowitz.py +0 -0
  40. siat/markowitz2.py +1 -0
  41. siat/markowitz2_20250704.py +0 -0
  42. siat/markowitz2_20250705.py +0 -0
  43. siat/markowitz_simple.py +0 -0
  44. siat/ml_cases.py +0 -0
  45. siat/ml_cases_example.py +0 -0
  46. siat/option_china.py +0 -0
  47. siat/option_pricing.py +0 -0
  48. siat/other_indexes.py +0 -0
  49. siat/risk_adjusted_return.py +0 -0
  50. siat/risk_adjusted_return2.py +8 -4
  51. siat/risk_evaluation.py +0 -0
  52. siat/risk_free_rate.py +0 -0
  53. siat/save2docx.py +345 -0
  54. siat/save2pdf.py +145 -0
  55. siat/sector_china.py +0 -0
  56. siat/security_price2.py +0 -0
  57. siat/security_prices.py +168 -6
  58. siat/security_trend.py +0 -0
  59. siat/security_trend2.py +2 -2
  60. siat/stock.py +11 -1
  61. siat/stock_advice_linear.py +0 -0
  62. siat/stock_base.py +0 -0
  63. siat/stock_china.py +0 -0
  64. siat/stock_info.pickle +0 -0
  65. siat/stock_prices_kneighbors.py +0 -0
  66. siat/stock_prices_linear.py +0 -0
  67. siat/stock_profile.py +0 -0
  68. siat/stock_technical.py +0 -0
  69. siat/stooq.py +0 -0
  70. siat/transaction.py +0 -0
  71. siat/translate.py +0 -0
  72. siat/valuation.py +0 -0
  73. siat/valuation_china.py +0 -0
  74. siat/var_model_validation.py +0 -0
  75. siat/yf_name.py +0 -0
  76. {siat-3.10.132.dist-info/licenses → siat-3.11.1.dist-info}/LICENSE +0 -0
  77. {siat-3.10.132.dist-info → siat-3.11.1.dist-info}/METADATA +234 -235
  78. siat-3.11.1.dist-info/RECORD +80 -0
  79. {siat-3.10.132.dist-info → siat-3.11.1.dist-info}/WHEEL +1 -1
  80. {siat-3.10.132.dist-info → siat-3.11.1.dist-info}/top_level.txt +0 -1
  81. build/lib/build/lib/siat/__init__.py +0 -75
  82. build/lib/build/lib/siat/allin.py +0 -137
  83. build/lib/build/lib/siat/assets_liquidity.py +0 -915
  84. build/lib/build/lib/siat/beta_adjustment.py +0 -1058
  85. build/lib/build/lib/siat/beta_adjustment_china.py +0 -548
  86. build/lib/build/lib/siat/blockchain.py +0 -143
  87. build/lib/build/lib/siat/bond.py +0 -2900
  88. build/lib/build/lib/siat/bond_base.py +0 -992
  89. build/lib/build/lib/siat/bond_china.py +0 -100
  90. build/lib/build/lib/siat/bond_zh_sina.py +0 -143
  91. build/lib/build/lib/siat/capm_beta.py +0 -783
  92. build/lib/build/lib/siat/capm_beta2.py +0 -887
  93. build/lib/build/lib/siat/common.py +0 -5360
  94. build/lib/build/lib/siat/compare_cross.py +0 -642
  95. build/lib/build/lib/siat/copyrights.py +0 -18
  96. build/lib/build/lib/siat/cryptocurrency.py +0 -667
  97. build/lib/build/lib/siat/economy.py +0 -1471
  98. build/lib/build/lib/siat/economy2.py +0 -1853
  99. build/lib/build/lib/siat/esg.py +0 -536
  100. build/lib/build/lib/siat/event_study.py +0 -815
  101. build/lib/build/lib/siat/fama_french.py +0 -1521
  102. build/lib/build/lib/siat/fin_stmt2_yahoo.py +0 -982
  103. build/lib/build/lib/siat/financial_base.py +0 -1160
  104. build/lib/build/lib/siat/financial_statements.py +0 -598
  105. build/lib/build/lib/siat/financials.py +0 -2339
  106. build/lib/build/lib/siat/financials2.py +0 -1278
  107. build/lib/build/lib/siat/financials_china.py +0 -4433
  108. build/lib/build/lib/siat/financials_china2.py +0 -2212
  109. build/lib/build/lib/siat/fund.py +0 -629
  110. build/lib/build/lib/siat/fund_china.py +0 -3307
  111. build/lib/build/lib/siat/future_china.py +0 -551
  112. build/lib/build/lib/siat/google_authenticator.py +0 -47
  113. build/lib/build/lib/siat/grafix.py +0 -3636
  114. build/lib/build/lib/siat/holding_risk.py +0 -867
  115. build/lib/build/lib/siat/luchy_draw.py +0 -638
  116. build/lib/build/lib/siat/market_china.py +0 -1168
  117. build/lib/build/lib/siat/markowitz.py +0 -2363
  118. build/lib/build/lib/siat/markowitz2.py +0 -3150
  119. build/lib/build/lib/siat/markowitz2_20250704.py +0 -2969
  120. build/lib/build/lib/siat/markowitz2_20250705.py +0 -3158
  121. build/lib/build/lib/siat/markowitz_simple.py +0 -373
  122. build/lib/build/lib/siat/ml_cases.py +0 -2291
  123. build/lib/build/lib/siat/ml_cases_example.py +0 -60
  124. build/lib/build/lib/siat/option_china.py +0 -3069
  125. build/lib/build/lib/siat/option_pricing.py +0 -1925
  126. build/lib/build/lib/siat/other_indexes.py +0 -409
  127. build/lib/build/lib/siat/risk_adjusted_return.py +0 -1576
  128. build/lib/build/lib/siat/risk_adjusted_return2.py +0 -1900
  129. build/lib/build/lib/siat/risk_evaluation.py +0 -2218
  130. build/lib/build/lib/siat/risk_free_rate.py +0 -351
  131. build/lib/build/lib/siat/sector_china.py +0 -4140
  132. build/lib/build/lib/siat/security_price2.py +0 -727
  133. build/lib/build/lib/siat/security_prices.py +0 -3408
  134. build/lib/build/lib/siat/security_trend.py +0 -402
  135. build/lib/build/lib/siat/security_trend2.py +0 -646
  136. build/lib/build/lib/siat/stock.py +0 -4284
  137. build/lib/build/lib/siat/stock_advice_linear.py +0 -934
  138. build/lib/build/lib/siat/stock_base.py +0 -26
  139. build/lib/build/lib/siat/stock_china.py +0 -2095
  140. build/lib/build/lib/siat/stock_prices_kneighbors.py +0 -910
  141. build/lib/build/lib/siat/stock_prices_linear.py +0 -386
  142. build/lib/build/lib/siat/stock_profile.py +0 -707
  143. build/lib/build/lib/siat/stock_technical.py +0 -3305
  144. build/lib/build/lib/siat/stooq.py +0 -74
  145. build/lib/build/lib/siat/transaction.py +0 -347
  146. build/lib/build/lib/siat/translate.py +0 -5183
  147. build/lib/build/lib/siat/valuation.py +0 -1378
  148. build/lib/build/lib/siat/valuation_china.py +0 -2076
  149. build/lib/build/lib/siat/var_model_validation.py +0 -444
  150. build/lib/build/lib/siat/yf_name.py +0 -811
  151. build/lib/siat/__init__.py +0 -75
  152. build/lib/siat/allin.py +0 -137
  153. build/lib/siat/assets_liquidity.py +0 -915
  154. build/lib/siat/beta_adjustment.py +0 -1058
  155. build/lib/siat/beta_adjustment_china.py +0 -548
  156. build/lib/siat/blockchain.py +0 -143
  157. build/lib/siat/bond.py +0 -2900
  158. build/lib/siat/bond_base.py +0 -992
  159. build/lib/siat/bond_china.py +0 -100
  160. build/lib/siat/bond_zh_sina.py +0 -143
  161. build/lib/siat/capm_beta.py +0 -783
  162. build/lib/siat/capm_beta2.py +0 -887
  163. build/lib/siat/common.py +0 -5360
  164. build/lib/siat/compare_cross.py +0 -642
  165. build/lib/siat/copyrights.py +0 -18
  166. build/lib/siat/cryptocurrency.py +0 -667
  167. build/lib/siat/economy.py +0 -1471
  168. build/lib/siat/economy2.py +0 -1853
  169. build/lib/siat/esg.py +0 -536
  170. build/lib/siat/event_study.py +0 -815
  171. build/lib/siat/fama_french.py +0 -1521
  172. build/lib/siat/fin_stmt2_yahoo.py +0 -982
  173. build/lib/siat/financial_base.py +0 -1160
  174. build/lib/siat/financial_statements.py +0 -598
  175. build/lib/siat/financials.py +0 -2339
  176. build/lib/siat/financials2.py +0 -1278
  177. build/lib/siat/financials_china.py +0 -4433
  178. build/lib/siat/financials_china2.py +0 -2212
  179. build/lib/siat/fund.py +0 -629
  180. build/lib/siat/fund_china.py +0 -3307
  181. build/lib/siat/future_china.py +0 -551
  182. build/lib/siat/google_authenticator.py +0 -47
  183. build/lib/siat/grafix.py +0 -3636
  184. build/lib/siat/holding_risk.py +0 -867
  185. build/lib/siat/luchy_draw.py +0 -638
  186. build/lib/siat/market_china.py +0 -1168
  187. build/lib/siat/markowitz.py +0 -2363
  188. build/lib/siat/markowitz2.py +0 -3150
  189. build/lib/siat/markowitz2_20250704.py +0 -2969
  190. build/lib/siat/markowitz2_20250705.py +0 -3158
  191. build/lib/siat/markowitz_simple.py +0 -373
  192. build/lib/siat/ml_cases.py +0 -2291
  193. build/lib/siat/ml_cases_example.py +0 -60
  194. build/lib/siat/option_china.py +0 -3069
  195. build/lib/siat/option_pricing.py +0 -1925
  196. build/lib/siat/other_indexes.py +0 -409
  197. build/lib/siat/risk_adjusted_return.py +0 -1576
  198. build/lib/siat/risk_adjusted_return2.py +0 -1900
  199. build/lib/siat/risk_evaluation.py +0 -2218
  200. build/lib/siat/risk_free_rate.py +0 -351
  201. build/lib/siat/sector_china.py +0 -4140
  202. build/lib/siat/security_price2.py +0 -727
  203. build/lib/siat/security_prices.py +0 -3408
  204. build/lib/siat/security_trend.py +0 -402
  205. build/lib/siat/security_trend2.py +0 -646
  206. build/lib/siat/stock.py +0 -4284
  207. build/lib/siat/stock_advice_linear.py +0 -934
  208. build/lib/siat/stock_base.py +0 -26
  209. build/lib/siat/stock_china.py +0 -2095
  210. build/lib/siat/stock_prices_kneighbors.py +0 -910
  211. build/lib/siat/stock_prices_linear.py +0 -386
  212. build/lib/siat/stock_profile.py +0 -707
  213. build/lib/siat/stock_technical.py +0 -3305
  214. build/lib/siat/stooq.py +0 -74
  215. build/lib/siat/transaction.py +0 -347
  216. build/lib/siat/translate.py +0 -5183
  217. build/lib/siat/valuation.py +0 -1378
  218. build/lib/siat/valuation_china.py +0 -2076
  219. build/lib/siat/var_model_validation.py +0 -444
  220. build/lib/siat/yf_name.py +0 -811
  221. siat-3.10.132.dist-info/RECORD +0 -218
@@ -1,536 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- 本模块功能:提供全球股票ESG信息
4
- 所属工具包:证券投资分析工具SIAT
5
- SIAT:Security Investment Analysis Tool
6
- 创建日期:2019年8月18日
7
- 最新修订日期:2020年7月25日
8
- 作者:王德宏 (WANG Dehong, Peter)
9
- 作者单位:北京外国语大学国际商学院
10
- 版权所有:王德宏
11
- 用途限制:仅限研究与教学使用,不可商用!商用需要额外授权。
12
- 特别声明:作者不对使用本工具进行证券投资导致的任何损益负责!
13
- """
14
- #==============================================================================
15
- #屏蔽所有警告性信息
16
- import warnings; warnings.filterwarnings('ignore')
17
- from siat.common import *
18
- from siat.translate import *
19
- from siat.grafix import *
20
- #==============================================================================
21
- #==============================================================================
22
- #以下使用yfinance数据源
23
- #==============================================================================
24
- def get_esg(stocklist):
25
- """
26
- 功能:根据股票代码列表,抓取企业最新的可持续性发展ESG数据
27
- 输入参数:
28
- stocklist:股票代码列表,例如单个股票["AAPL"], 多只股票["AAPL","MSFT","GOOG"]
29
- 输出参数:
30
- 企业最新的可持续性发展ESG数据,数据框
31
- """
32
-
33
- #引用插件
34
- try:
35
- import yfinance as yf
36
- except:
37
- print("#Error(get_esg), need plugin: yfinance")
38
- print(" Solution: open Anaconda Prompt, type in command \"pip install yfinance\", Enter!")
39
- return None
40
- tickerlist=stocklist.copy()
41
-
42
- #测试数据,使用后请注释掉
43
- """
44
- tickerlist=["PDD","MSFT","BABA","JD","GOOG"]
45
- """
46
-
47
- #处理股票列表中的第一只股票,跳过无数据的项目
48
- skiplist=[]
49
- for t in tickerlist:
50
- tp=yf.Ticker(t)
51
- try:
52
- print("...正在搜索ESG信息:",t,"...",end='')
53
- sst=tp.sustainability
54
- sst.rename(columns={'Value':t},inplace=True)
55
- sstt=sst.T
56
- except: #本项目无数据,进入下一次循环
57
- print("未找到:-(")
58
- skiplist=skiplist+[t]
59
- continue
60
- skiplist=skiplist+[t]
61
- print("完成!")
62
- break
63
-
64
- #仅保留尚未处理的项目
65
- for t in skiplist: tickerlist.remove(t)
66
-
67
- #处理股票列表中的其他股票
68
- for t in tickerlist:
69
- #print("---stock:",t)
70
- tp=yf.Ticker(t)
71
- try:
72
- print("...正在搜索ESG信息:",t,"...",end='')
73
- sst1=tp.sustainability
74
- sst1.rename(columns={'Value':t},inplace=True)
75
- except:
76
- print("未找到:-(")
77
- continue #未抓取到数据
78
- sst1t=sst1.T
79
- try:
80
- sstt=sstt.append([sst1t])
81
- except:
82
- sstt=sstt._append([sst1t])
83
- print("完成!")
84
-
85
- try:
86
- if len(sstt)==0: return None
87
- except:
88
- return None
89
-
90
- #只保留需要的列
91
- sust=sstt[['totalEsg','percentile','esgPerformance','environmentScore', \
92
- 'environmentPercentile','socialScore','socialPercentile', \
93
- 'governanceScore','governancePercentile','peerGroup','peerCount']].copy()
94
- sust.rename(columns={'totalEsg':'ESGscore','percentile':'ESGpercentile', \
95
- 'esgPerformance':'ESGperformance','environmentScore':'EPscore', \
96
- 'environmentPercentile':'EPpercentile','socialScore':'CSRscore', \
97
- 'socialPercentile':'CSRpercentile','governanceScore':'CGscore', \
98
- 'governancePercentile':'CGpercentile', \
99
- 'peerGroup':'Peer Group','peerCount':'Count'},inplace=True)
100
-
101
- return sust
102
-
103
- if __name__ =="__main__":
104
- stocklist=["VIPS","BABA","JD","MSFT","WMT"]
105
- sust=get_esg(stocklist)
106
-
107
-
108
- #==============================================================================
109
- def print_esg(sustainability,option="ESG"):
110
- """
111
- 功能:显示企业的可持续性发展数据
112
- 输入参数:
113
- sustainability:抓取到的企业可持续性数据框
114
- 输出参数:无
115
- """
116
-
117
- if not (option in ['ESG','EP','CSR','CG']):
118
- print("...Error 01(print_sustainability): only ESG/EP/CSR/CG are valid")
119
- return
120
-
121
- import datetime as dt
122
- today=dt.date.today()
123
- s=sustainability.copy()
124
-
125
- #修改评级为中文
126
- s['ESGperformance']=s['ESGperformance'].apply(lambda x: "高" if x=='OUT_PERF' else x)
127
- s['ESGperformance']=s['ESGperformance'].apply(lambda x: "中" if x=='AVG_PERF' else x)
128
-
129
- #列改中文名,并删除含0的无效列
130
- colnames=list(s)
131
- for c in colnames:
132
- if len(s[s[c]==0]) >= 1:
133
- del s[c]; continue
134
- s.rename(columns={c:ectranslate(c)},inplace=True)
135
-
136
- #打印输出对齐
137
- import pandas as pd
138
- pd.set_option('display.unicode.ambiguous_as_wide', True)
139
- pd.set_option('display.unicode.east_asian_width', True)
140
- pd.set_option('display.width', 180) # 设置打印宽度(**重要**)
141
-
142
- #显示分数和分位数
143
- colnames=list(s)
144
- printnames=[]
145
- if option=="ESG":
146
- s=s.sort_values([ectranslate('ESGscore')],ascending=False)
147
- esgnames=[ectranslate('ESGscore'),ectranslate('ESGperformance'), \
148
- ectranslate('ESGpercentile'),ectranslate('Peer Group')]
149
- for i in esgnames:
150
- if i in colnames: printnames=printnames+[i]
151
- print("\n=== 企业发展可持续性:ESG综合风险 ===\n")
152
- print(s[printnames])
153
- print("来源: 雅虎财经,",str(today))
154
-
155
- if option=="EP":
156
- s=s.sort_values([ectranslate('EPscore')],ascending=False)
157
- esgnames=[ectranslate('EPscore'), \
158
- ectranslate('EPpercentile'),ectranslate('Peer Group')]
159
- for i in esgnames:
160
- if i in colnames: printnames=printnames+[i]
161
- print("\n=== 企业发展可持续性:环保风险指数 ===\n")
162
- print(s[printnames])
163
- print("来源: 雅虎财经,",str(today))
164
-
165
- if option=="CSR":
166
- s=s.sort_values([ectranslate('CSRscore')],ascending=False)
167
- esgnames=[ectranslate('CSRscore'), \
168
- ectranslate('CSRpercentile'),ectranslate('Peer Group')]
169
- for i in esgnames:
170
- if i in colnames: printnames=printnames+[i]
171
- print("\n=== 企业发展可持续性:社会责任风险指数 ===\n")
172
- print(s[printnames])
173
- print("来源: 雅虎财经,",str(today))
174
-
175
- if option=="CG":
176
- s=s.sort_values([ectranslate('CGscore')],ascending=False)
177
- esgnames=[ectranslate('CGscore'), \
178
- ectranslate('CGpercentile'),ectranslate('Peer Group')]
179
- for i in esgnames:
180
- if i in colnames: printnames=printnames+[i]
181
- print("\n=== 企业发展可持续性:公司治理风险指数 ===\n")
182
- print(s[printnames])
183
- print("来源: 雅虎财经,",str(today))
184
-
185
- return
186
-
187
- if __name__ =="__main__":
188
- print_esg(sust,option="ESG")
189
- print_esg(sust,option="EP")
190
- print_esg(sust,option="CSR")
191
- print_esg(sust,option="CG")
192
- print_esg(sust,option="ABC")
193
-
194
-
195
-
196
- #==============================================================================
197
- def ploth_esg(sustainability,option="ESG"):
198
- """
199
- 功能:绘制ESG水平直方图
200
- 输入参数:抓取到的企业可持续性数据框sustainability;选项option。
201
- 输出参数:无
202
- """
203
-
204
- if not (option in ['ESG','EP','CSR','CG']):
205
- print("...Error 01(ploth_esg): only ESG/EP/CSR/CG are valid")
206
- return
207
-
208
- s=sustainability.copy()
209
- import datetime as dt; today=dt.date.today()
210
- footnote="注:数值越小,风险越低。来源:雅虎财经,"+str(today)
211
-
212
- #绘制分数和分位数图
213
- if option=="ESG":
214
- #排序
215
- s=s.sort_values(['ESGscore'],ascending=True)
216
- titletxt1="企业发展可持续性:ESG综合风险指数"
217
- plot_barh(s,'ESGscore',titletxt1,footnote)
218
- titletxt2="企业发展可持续性:ESG综合风险行业分位数%"
219
- plot_barh(s,'ESGpercentile',titletxt2,footnote)
220
-
221
- if option=="EP":
222
- s=s.sort_values(['EPscore'],ascending=True)
223
- titletxt="企业发展可持续性:环保风险指数"
224
- plot_barh(s,'EPscore',titletxt,footnote)
225
-
226
- if option=="CSR":
227
- s=s.sort_values(['CSRscore'],ascending=True)
228
- titletxt="企业发展可持续性:社会责任风险指数"
229
- plot_barh(s,'CSRscore',titletxt,footnote)
230
-
231
- if option=="CG":
232
- s=s.sort_values(['CGscore'],ascending=True)
233
- titletxt="企业发展可持续性:公司治理风险指数"
234
- plot_barh(s,'CGscore',titletxt,footnote)
235
-
236
- return
237
-
238
- if __name__ =="__main__":
239
- ploth_esg(sust,option="ESG")
240
- ploth_esg(sust,option="EP")
241
- ploth_esg(sust,option="CSR")
242
- ploth_esg(sust,option="CG")
243
-
244
- #==============================================================================
245
- def esg(stocklist):
246
- """
247
- 功能:抓取、打印和绘图企业的可持续性发展数据,演示用
248
- 输入参数:
249
- stocklist:股票代码列表,例如单个股票["AAPL"], 多只股票["AAPL","MSFT","GOOG"]
250
- 输出参数:
251
- 企业最新的可持续性发展数据,数据框
252
- """
253
-
254
- #抓取数据
255
- try:
256
- sust=get_esg(stocklist)
257
- except:
258
- print("#Error(esg), fail to get ESG data for",stocklist)
259
- return None
260
- if sust is None:
261
- print("#Error(esg), fail to get ESG data for",stocklist)
262
- return None
263
-
264
- #处理小数点
265
- from pandas.api.types import is_numeric_dtype
266
- cols=list(sust)
267
- for c in cols:
268
- if is_numeric_dtype(sust[c]):
269
- sust[c]=round(sust[c],2)
270
-
271
- #打印和绘图ESG
272
- ploth_esg(sust,option="ESG")
273
- print_esg(sust,option="ESG")
274
- #打印和绘图EP
275
- ploth_esg(sust,option="EP")
276
- print_esg(sust,option="EP")
277
- #打印和绘图CSR
278
- ploth_esg(sust,option="CSR")
279
- print_esg(sust,option="CSR")
280
- #打印和绘图CG
281
- ploth_esg(sust,option="CG")
282
- print_esg(sust,option="CG")
283
-
284
- return sust
285
-
286
- if __name__ =="__main__":
287
- stocklist1=["AMZN","EBAY","BABA"]
288
- sust1=esg(stocklist1)
289
- stocklist2=["AMZN","EBAY","BABA","JD","VIPS","WMT"]
290
- sust2=esg(stocklist2)
291
-
292
- #==============================================================================
293
- def portfolio_esg(portfolio):
294
- """
295
- 功能:抓取、打印和绘图投资组合portfolio的可持续性发展数据,演示用
296
- 输入参数:
297
- 企业最新的可持续性发展数据,数据框
298
- """
299
- #解构投资组合
300
- _,_,stocklist,_,ticker_type=decompose_portfolio(portfolio)
301
-
302
- #抓取数据
303
- try:
304
- sust=get_esg(stocklist)
305
- except:
306
- print("#Error(portfolio_esg), fail to get ESG data for",stocklist)
307
- return None
308
- if sust is None:
309
- #print("#Error(portfolio_esg), fail to get ESG data for",stocklist)
310
- return None
311
-
312
- #处理小数点
313
- from pandas.api.types import is_numeric_dtype
314
- cols=list(sust)
315
- for c in cols:
316
- if is_numeric_dtype(sust[c]):
317
- sust[c]=round(sust[c],2)
318
-
319
- #显示结果
320
- print("\n***** Portfolio ESG Risk *****")
321
- print("Portfolio:",stocklist)
322
- #显示各个成分股的ESG分数
323
- sust['Stock']=sust.index
324
- esgdf=sust[['Stock','ESGscore','EPscore','CSRscore','CGscore']]
325
- print(esgdf.to_string(index=False))
326
-
327
- print("\nPortfolio ESG Evaluation:")
328
- #木桶短板:EPScore
329
- esg_ep=esgdf.sort_values(['EPscore'], ascending = True)
330
- p_ep=esg_ep['EPscore'][-1]
331
- p_ep_stock=esg_ep.index[-1]
332
- str_ep=" EP score (from "+str(p_ep_stock)+")"
333
- len_ep=len(str_ep)
334
-
335
- #木桶短板:CSRScore
336
- esg_csr=esgdf.sort_values(['CSRscore'], ascending = True)
337
- p_csr=esg_csr['CSRscore'][-1]
338
- p_csr_stock=esg_csr.index[-1]
339
- str_csr=" CSR score (from "+str(p_csr_stock)+")"
340
- len_csr=len(str_csr)
341
-
342
- #木桶短板:CGScore
343
- esg_cg=esgdf.sort_values(['CGscore'], ascending = True)
344
- p_cg=esg_cg['CGscore'][-1]
345
- p_cg_stock=esg_cg.index[-1]
346
- str_cg=" CG score (from "+str(p_cg_stock)+")"
347
- len_cg=len(str_cg)
348
-
349
- str_esg=" Overall ESG score"
350
- len_esg=len(str_esg)
351
-
352
- #计算对齐冒号中间需要的空格数目
353
- len_max=max(len_ep,len_csr,len_cg,len_esg)
354
- str_ep=str_ep+' '*(len_max-len_ep+1)+':'
355
- str_csr=str_csr+' '*(len_max-len_csr+1)+':'
356
- str_cg=str_cg+' '*(len_max-len_cg+1)+':'
357
- str_esg=str_esg+' '*(len_max-len_esg+1)+':'
358
-
359
- #对齐打印
360
- print(str_ep,p_ep)
361
- print(str_csr,p_csr)
362
- print(str_cg,p_cg)
363
- #计算投资组合的ESG综合风险
364
- p_esg=round(p_ep+p_csr+p_cg,2)
365
- print(str_esg,p_esg)
366
-
367
- import datetime as dt; today=dt.date.today()
368
- footnote="The higher the score, the higher the risk. \
369
- \nSource: Yahoo Finance, "+str(today)
370
- print(footnote)
371
-
372
- return p_esg
373
-
374
- if __name__ =="__main__":
375
- #market={'Market':('China','^HSI')}
376
- market={'Market':('US','^GSPC')}
377
- #stocks={'0939.HK':2,'1398.HK':1,'3988.HK':3}
378
- stocks={'VIPS':3,'JD':2,'BABA':1}
379
- portfolio=dict(market,**stocks)
380
- esg=portfolio_esg(portfolio)
381
- #==============================================================================
382
- #==============================================================================
383
- #==============================================================================
384
- #==============================================================================
385
- #====以下使用yahooquery数据源===================================================
386
- if __name__ =="__main__":
387
- stocklist=["BAC", "TD","PNC"]
388
-
389
- def get_esg2(stocklist):
390
- """
391
- 功能:根据股票代码列表,抓取企业最新的可持续性发展ESG数据
392
- 输入参数:
393
- stocklist:股票代码列表,例如单个股票["AAPL"], 多只股票["AAPL","MSFT","GOOG"]
394
- 输出参数:
395
- 企业最新的可持续性发展ESG数据,数据框
396
- """
397
-
398
- import pandas as pd
399
- collist=['symbol','totalEsg','environmentScore','socialScore','governanceScore']
400
- sust=pd.DataFrame(columns=collist)
401
- for t in stocklist:
402
- try:
403
- info=stock_info(t).T
404
- except:
405
- print("#Error(get_esg2): esg info not available for",t)
406
- continue
407
- if (info is None) or (len(info)==0):
408
- print("#Error(get_esg2): failed to get esg info for",t)
409
- continue
410
- sub=info[collist]
411
- sust=pd.concat([sust,sub])
412
-
413
- newcols=['Stock','ESGscore','EPscore','CSRscore','CGscore']
414
- sust.columns=newcols
415
- """
416
- sust=sust.rename(columns={'symbol':'Stock','totalEsg':'ESGscore', \
417
- 'environmentScore':'EPscore', \
418
- 'socialScore':'CSRscore', \
419
- 'governanceScore':'CGscore'})
420
- """
421
- sust.set_index('Stock',inplace=True)
422
-
423
- return sust
424
-
425
- if __name__ =="__main__":
426
- stocklist=["VIPS","BABA","JD","MSFT","WMT"]
427
- sust=get_esg(stocklist)
428
-
429
- #==============================================================================
430
- if __name__ =="__main__":
431
- market={'Market':('China','^HSI')}
432
- stocks={'0700.HK':3,'9618.HK':2,'9988.HK':1}
433
- portfolio=dict(market,**stocks)
434
-
435
- def portfolio_esg2(portfolio):
436
- """
437
- 功能:抓取、打印和绘图投资组合portfolio的可持续性发展数据,演示用
438
- 输入参数:
439
- 企业最新的可持续性发展数据,数据框
440
- """
441
- #解构投资组合
442
- _,_,stocklist,_,ticker_type=decompose_portfolio(portfolio)
443
-
444
- #抓取数据
445
- try:
446
- sust=get_esg2(stocklist)
447
- except:
448
- print("#Error(portfolio_esg), fail to get ESG data for",stocklist)
449
- return None
450
- if sust is None:
451
- #print("#Error(portfolio_esg), fail to get ESG data for",stocklist)
452
- return None
453
-
454
- #处理小数点
455
- from pandas.api.types import is_numeric_dtype
456
- cols=list(sust)
457
- for c in cols:
458
- if is_numeric_dtype(sust[c]):
459
- sust[c]=round(sust[c],2)
460
-
461
- #显示结果
462
- print("\n***** Portfolio ESG Risk *****")
463
- print("Portfolio:",stocklist)
464
- #显示各个成分股的ESG分数
465
- sust['Stock']=sust.index
466
- esgdf=sust[['Stock','ESGscore','EPscore','CSRscore','CGscore']]
467
- print(esgdf.to_string(index=False))
468
-
469
- print("\nPortfolio ESG Evaluation:")
470
- #木桶短板:EPScore
471
- esg_ep=esgdf.sort_values(['EPscore'], ascending = True)
472
- p_ep=esg_ep['EPscore'][-1]
473
- p_ep_stock=esg_ep.index[-1]
474
- str_ep=" EP score (from "+str(p_ep_stock)+")"
475
- len_ep=len(str_ep)
476
-
477
- #木桶短板:CSRScore
478
- esg_csr=esgdf.sort_values(['CSRscore'], ascending = True)
479
- p_csr=esg_csr['CSRscore'][-1]
480
- p_csr_stock=esg_csr.index[-1]
481
- str_csr=" CSR score (from "+str(p_csr_stock)+")"
482
- len_csr=len(str_csr)
483
-
484
- #木桶短板:CGScore
485
- esg_cg=esgdf.sort_values(['CGscore'], ascending = True)
486
- p_cg=esg_cg['CGscore'][-1]
487
- p_cg_stock=esg_cg.index[-1]
488
- str_cg=" CG score (from "+str(p_cg_stock)+")"
489
- len_cg=len(str_cg)
490
-
491
- str_esg=" Overall ESG score"
492
- len_esg=len(str_esg)
493
-
494
- #计算对齐冒号中间需要的空格数目
495
- len_max=max(len_ep,len_csr,len_cg,len_esg)
496
- str_ep=str_ep+' '*(len_max-len_ep+1)+':'
497
- str_csr=str_csr+' '*(len_max-len_csr+1)+':'
498
- str_cg=str_cg+' '*(len_max-len_cg+1)+':'
499
- str_esg=str_esg+' '*(len_max-len_esg+1)+':'
500
-
501
- #对齐打印
502
- print(str_ep,p_ep)
503
- print(str_csr,p_csr)
504
- print(str_cg,p_cg)
505
- #计算投资组合的ESG综合风险
506
- p_esg=round(p_ep+p_csr+p_cg,2)
507
- print(str_esg,p_esg)
508
-
509
- import datetime as dt; today=dt.date.today()
510
- footnote="The higher the score, the higher the risk. \
511
- \nSource: Yahoo Finance, "+str(today)
512
- print(footnote)
513
-
514
- return p_esg
515
-
516
- if __name__ =="__main__":
517
- #market={'Market':('China','^HSI')}
518
- market={'Market':('US','^GSPC')}
519
- #stocks={'0939.HK':2,'1398.HK':1,'3988.HK':3}
520
- stocks={'VIPS':3,'JD':2,'BABA':1}
521
- portfolio=dict(market,**stocks)
522
- esg=portfolio_esg(portfolio)
523
- #==============================================================================
524
-
525
- #==============================================================================
526
-
527
-
528
-
529
-
530
-
531
-
532
-
533
-
534
-
535
-
536
-