siat 3.10.132__py3-none-any.whl → 3.10.133__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (218) hide show
  1. siat/__init__.py +0 -0
  2. siat/allin.py +0 -0
  3. siat/assets_liquidity.py +0 -0
  4. siat/beta_adjustment.py +0 -0
  5. siat/beta_adjustment_china.py +0 -0
  6. siat/blockchain.py +0 -0
  7. siat/bond.py +0 -0
  8. siat/bond_base.py +0 -0
  9. siat/bond_china.py +0 -0
  10. siat/bond_zh_sina.py +0 -0
  11. siat/capm_beta.py +0 -0
  12. siat/capm_beta2.py +0 -0
  13. siat/compare_cross.py +0 -0
  14. siat/copyrights.py +0 -0
  15. siat/cryptocurrency.py +0 -0
  16. siat/economy.py +0 -0
  17. siat/economy2.py +0 -0
  18. siat/esg.py +0 -0
  19. siat/event_study.py +0 -0
  20. siat/exchange_bond_china.pickle +0 -0
  21. siat/fama_french.py +0 -0
  22. siat/fin_stmt2_yahoo.py +0 -0
  23. siat/financial_base.py +0 -0
  24. siat/financial_statements.py +0 -0
  25. siat/financials.py +0 -0
  26. siat/financials2.py +0 -0
  27. siat/financials_china.py +0 -0
  28. siat/financials_china2.py +0 -0
  29. siat/fund.py +0 -0
  30. siat/fund_china.pickle +0 -0
  31. siat/fund_china.py +0 -0
  32. siat/future_china.py +0 -0
  33. siat/google_authenticator.py +0 -0
  34. siat/grafix.py +0 -0
  35. siat/holding_risk.py +0 -0
  36. siat/luchy_draw.py +0 -0
  37. siat/market_china.py +0 -0
  38. siat/markowitz.py +0 -0
  39. siat/markowitz2.py +0 -0
  40. siat/markowitz2_20250704.py +0 -0
  41. siat/markowitz2_20250705.py +0 -0
  42. siat/markowitz_simple.py +0 -0
  43. siat/ml_cases.py +0 -0
  44. siat/ml_cases_example.py +0 -0
  45. siat/option_china.py +0 -0
  46. siat/option_pricing.py +0 -0
  47. siat/other_indexes.py +0 -0
  48. siat/risk_adjusted_return.py +0 -0
  49. siat/risk_adjusted_return2.py +0 -0
  50. siat/risk_evaluation.py +0 -0
  51. siat/risk_free_rate.py +0 -0
  52. siat/sector_china.py +0 -0
  53. siat/security_price2.py +0 -0
  54. siat/security_prices.py +40 -2
  55. siat/security_trend.py +0 -0
  56. siat/security_trend2.py +0 -0
  57. siat/stock.py +0 -0
  58. siat/stock_advice_linear.py +0 -0
  59. siat/stock_base.py +0 -0
  60. siat/stock_china.py +0 -0
  61. siat/stock_info.pickle +0 -0
  62. siat/stock_prices_kneighbors.py +0 -0
  63. siat/stock_prices_linear.py +0 -0
  64. siat/stock_profile.py +0 -0
  65. siat/stock_technical.py +0 -0
  66. siat/stooq.py +0 -0
  67. siat/transaction.py +0 -0
  68. siat/translate.py +0 -0
  69. siat/valuation.py +0 -0
  70. siat/valuation_china.py +0 -0
  71. siat/var_model_validation.py +0 -0
  72. siat/yf_name.py +0 -0
  73. {siat-3.10.132.dist-info/licenses → siat-3.10.133.dist-info}/LICENSE +0 -0
  74. {siat-3.10.132.dist-info → siat-3.10.133.dist-info}/METADATA +232 -235
  75. siat-3.10.133.dist-info/RECORD +78 -0
  76. {siat-3.10.132.dist-info → siat-3.10.133.dist-info}/WHEEL +1 -1
  77. {siat-3.10.132.dist-info → siat-3.10.133.dist-info}/top_level.txt +0 -1
  78. build/lib/build/lib/siat/__init__.py +0 -75
  79. build/lib/build/lib/siat/allin.py +0 -137
  80. build/lib/build/lib/siat/assets_liquidity.py +0 -915
  81. build/lib/build/lib/siat/beta_adjustment.py +0 -1058
  82. build/lib/build/lib/siat/beta_adjustment_china.py +0 -548
  83. build/lib/build/lib/siat/blockchain.py +0 -143
  84. build/lib/build/lib/siat/bond.py +0 -2900
  85. build/lib/build/lib/siat/bond_base.py +0 -992
  86. build/lib/build/lib/siat/bond_china.py +0 -100
  87. build/lib/build/lib/siat/bond_zh_sina.py +0 -143
  88. build/lib/build/lib/siat/capm_beta.py +0 -783
  89. build/lib/build/lib/siat/capm_beta2.py +0 -887
  90. build/lib/build/lib/siat/common.py +0 -5360
  91. build/lib/build/lib/siat/compare_cross.py +0 -642
  92. build/lib/build/lib/siat/copyrights.py +0 -18
  93. build/lib/build/lib/siat/cryptocurrency.py +0 -667
  94. build/lib/build/lib/siat/economy.py +0 -1471
  95. build/lib/build/lib/siat/economy2.py +0 -1853
  96. build/lib/build/lib/siat/esg.py +0 -536
  97. build/lib/build/lib/siat/event_study.py +0 -815
  98. build/lib/build/lib/siat/fama_french.py +0 -1521
  99. build/lib/build/lib/siat/fin_stmt2_yahoo.py +0 -982
  100. build/lib/build/lib/siat/financial_base.py +0 -1160
  101. build/lib/build/lib/siat/financial_statements.py +0 -598
  102. build/lib/build/lib/siat/financials.py +0 -2339
  103. build/lib/build/lib/siat/financials2.py +0 -1278
  104. build/lib/build/lib/siat/financials_china.py +0 -4433
  105. build/lib/build/lib/siat/financials_china2.py +0 -2212
  106. build/lib/build/lib/siat/fund.py +0 -629
  107. build/lib/build/lib/siat/fund_china.py +0 -3307
  108. build/lib/build/lib/siat/future_china.py +0 -551
  109. build/lib/build/lib/siat/google_authenticator.py +0 -47
  110. build/lib/build/lib/siat/grafix.py +0 -3636
  111. build/lib/build/lib/siat/holding_risk.py +0 -867
  112. build/lib/build/lib/siat/luchy_draw.py +0 -638
  113. build/lib/build/lib/siat/market_china.py +0 -1168
  114. build/lib/build/lib/siat/markowitz.py +0 -2363
  115. build/lib/build/lib/siat/markowitz2.py +0 -3150
  116. build/lib/build/lib/siat/markowitz2_20250704.py +0 -2969
  117. build/lib/build/lib/siat/markowitz2_20250705.py +0 -3158
  118. build/lib/build/lib/siat/markowitz_simple.py +0 -373
  119. build/lib/build/lib/siat/ml_cases.py +0 -2291
  120. build/lib/build/lib/siat/ml_cases_example.py +0 -60
  121. build/lib/build/lib/siat/option_china.py +0 -3069
  122. build/lib/build/lib/siat/option_pricing.py +0 -1925
  123. build/lib/build/lib/siat/other_indexes.py +0 -409
  124. build/lib/build/lib/siat/risk_adjusted_return.py +0 -1576
  125. build/lib/build/lib/siat/risk_adjusted_return2.py +0 -1900
  126. build/lib/build/lib/siat/risk_evaluation.py +0 -2218
  127. build/lib/build/lib/siat/risk_free_rate.py +0 -351
  128. build/lib/build/lib/siat/sector_china.py +0 -4140
  129. build/lib/build/lib/siat/security_price2.py +0 -727
  130. build/lib/build/lib/siat/security_prices.py +0 -3408
  131. build/lib/build/lib/siat/security_trend.py +0 -402
  132. build/lib/build/lib/siat/security_trend2.py +0 -646
  133. build/lib/build/lib/siat/stock.py +0 -4284
  134. build/lib/build/lib/siat/stock_advice_linear.py +0 -934
  135. build/lib/build/lib/siat/stock_base.py +0 -26
  136. build/lib/build/lib/siat/stock_china.py +0 -2095
  137. build/lib/build/lib/siat/stock_prices_kneighbors.py +0 -910
  138. build/lib/build/lib/siat/stock_prices_linear.py +0 -386
  139. build/lib/build/lib/siat/stock_profile.py +0 -707
  140. build/lib/build/lib/siat/stock_technical.py +0 -3305
  141. build/lib/build/lib/siat/stooq.py +0 -74
  142. build/lib/build/lib/siat/transaction.py +0 -347
  143. build/lib/build/lib/siat/translate.py +0 -5183
  144. build/lib/build/lib/siat/valuation.py +0 -1378
  145. build/lib/build/lib/siat/valuation_china.py +0 -2076
  146. build/lib/build/lib/siat/var_model_validation.py +0 -444
  147. build/lib/build/lib/siat/yf_name.py +0 -811
  148. build/lib/siat/__init__.py +0 -75
  149. build/lib/siat/allin.py +0 -137
  150. build/lib/siat/assets_liquidity.py +0 -915
  151. build/lib/siat/beta_adjustment.py +0 -1058
  152. build/lib/siat/beta_adjustment_china.py +0 -548
  153. build/lib/siat/blockchain.py +0 -143
  154. build/lib/siat/bond.py +0 -2900
  155. build/lib/siat/bond_base.py +0 -992
  156. build/lib/siat/bond_china.py +0 -100
  157. build/lib/siat/bond_zh_sina.py +0 -143
  158. build/lib/siat/capm_beta.py +0 -783
  159. build/lib/siat/capm_beta2.py +0 -887
  160. build/lib/siat/common.py +0 -5360
  161. build/lib/siat/compare_cross.py +0 -642
  162. build/lib/siat/copyrights.py +0 -18
  163. build/lib/siat/cryptocurrency.py +0 -667
  164. build/lib/siat/economy.py +0 -1471
  165. build/lib/siat/economy2.py +0 -1853
  166. build/lib/siat/esg.py +0 -536
  167. build/lib/siat/event_study.py +0 -815
  168. build/lib/siat/fama_french.py +0 -1521
  169. build/lib/siat/fin_stmt2_yahoo.py +0 -982
  170. build/lib/siat/financial_base.py +0 -1160
  171. build/lib/siat/financial_statements.py +0 -598
  172. build/lib/siat/financials.py +0 -2339
  173. build/lib/siat/financials2.py +0 -1278
  174. build/lib/siat/financials_china.py +0 -4433
  175. build/lib/siat/financials_china2.py +0 -2212
  176. build/lib/siat/fund.py +0 -629
  177. build/lib/siat/fund_china.py +0 -3307
  178. build/lib/siat/future_china.py +0 -551
  179. build/lib/siat/google_authenticator.py +0 -47
  180. build/lib/siat/grafix.py +0 -3636
  181. build/lib/siat/holding_risk.py +0 -867
  182. build/lib/siat/luchy_draw.py +0 -638
  183. build/lib/siat/market_china.py +0 -1168
  184. build/lib/siat/markowitz.py +0 -2363
  185. build/lib/siat/markowitz2.py +0 -3150
  186. build/lib/siat/markowitz2_20250704.py +0 -2969
  187. build/lib/siat/markowitz2_20250705.py +0 -3158
  188. build/lib/siat/markowitz_simple.py +0 -373
  189. build/lib/siat/ml_cases.py +0 -2291
  190. build/lib/siat/ml_cases_example.py +0 -60
  191. build/lib/siat/option_china.py +0 -3069
  192. build/lib/siat/option_pricing.py +0 -1925
  193. build/lib/siat/other_indexes.py +0 -409
  194. build/lib/siat/risk_adjusted_return.py +0 -1576
  195. build/lib/siat/risk_adjusted_return2.py +0 -1900
  196. build/lib/siat/risk_evaluation.py +0 -2218
  197. build/lib/siat/risk_free_rate.py +0 -351
  198. build/lib/siat/sector_china.py +0 -4140
  199. build/lib/siat/security_price2.py +0 -727
  200. build/lib/siat/security_prices.py +0 -3408
  201. build/lib/siat/security_trend.py +0 -402
  202. build/lib/siat/security_trend2.py +0 -646
  203. build/lib/siat/stock.py +0 -4284
  204. build/lib/siat/stock_advice_linear.py +0 -934
  205. build/lib/siat/stock_base.py +0 -26
  206. build/lib/siat/stock_china.py +0 -2095
  207. build/lib/siat/stock_prices_kneighbors.py +0 -910
  208. build/lib/siat/stock_prices_linear.py +0 -386
  209. build/lib/siat/stock_profile.py +0 -707
  210. build/lib/siat/stock_technical.py +0 -3305
  211. build/lib/siat/stooq.py +0 -74
  212. build/lib/siat/transaction.py +0 -347
  213. build/lib/siat/translate.py +0 -5183
  214. build/lib/siat/valuation.py +0 -1378
  215. build/lib/siat/valuation_china.py +0 -2076
  216. build/lib/siat/var_model_validation.py +0 -444
  217. build/lib/siat/yf_name.py +0 -811
  218. siat-3.10.132.dist-info/RECORD +0 -218
@@ -1,351 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- 版权:王德宏,北京外国语大学国际商学院
4
- 功能:
5
- 1、基于股票或股票组合计算无风险收益率
6
- 2、绘制无风险收益率的变化趋势图:日,周,月
7
- 3、与实际的无风险收益率比较
8
- 版本:1.0,2021-2-6
9
- """
10
-
11
- #==============================================================================
12
- #关闭所有警告
13
- import warnings; warnings.filterwarnings('ignore')
14
- import siat.common as com
15
- from siat.translate import *
16
- #==============================================================================
17
- #==============================================================================
18
- #==============================================================================
19
- def compare_rf(rf1,col1,rf2,col2,fromdate,todate,power=0,zeroline=True,twinx=False):
20
- """
21
- 功能:比较两个无风险收益率的时间序列,并绘制趋势线
22
- """
23
- #检查日期期间的合理性
24
- result,start,end=com.check_period(fromdate,todate)
25
- if not result:
26
- print(" Error(compare_rf): invalide date period from",fromdate,"to",todate)
27
- return None
28
-
29
- #检查并筛选两个无风险收益率的时间序列
30
- if rf1 is None:
31
- print(" Error(compare_rf): 1st risk-free-rate series is empty")
32
- return None
33
- if rf2 is None:
34
- print(" Error(compare_rf): 2nd risk-free-rate series is empty")
35
- return None
36
- df1a=rf1[rf1.index >= start]
37
- df1b=df1a[df1a.index <= end]
38
- df1b[col1+'%']=df1b[col1]*100.0
39
-
40
- df2a=rf2[rf2.index >= start]
41
- df2b=df2a[df2a.index <= end]
42
- df2b[col2+'%']=df2b[col2]*100.0
43
-
44
- #绘制对比图
45
- import siat.grafix as g
46
- ticker1=g.ticker_name(df1b['ticker'][0])
47
- colname1=col1+'%'
48
- label1=col1+'%'
49
- ticker2=g.ticker_name(df2b['ticker'][0])
50
- colname2=col2+'%'
51
- label2=col2+'%'
52
- ylabeltxt='无风险收益率%'
53
- titletxt="基于CAPM计算的无风险收益率变化趋势"
54
-
55
- import datetime; today = datetime.date.today()
56
- rf1note=df1b['footnote'][0]
57
- rf2note=df2b['footnote'][0]
58
- footnote="无风险收益率1:"+str(rf1note)+ \
59
- "\n无风险收益率2:"+str(rf2note)+ \
60
- "\n数据来源:雅虎财经, "+str(today)
61
-
62
- g.plot_line2(df1b,ticker1,colname1,label1, \
63
- df2b,ticker2,colname2,label2, \
64
- ylabeltxt,titletxt,footnote, \
65
- power=power,zeroline=zeroline,twinx=twinx)
66
-
67
- return
68
-
69
- if __name__=='__main__':
70
- df1=get_rf_capm('AAPL','^GSPC','2018-1-1','2020-12-31',window=40)
71
- df2=get_rf_capm('MSFT','^GSPC','2018-1-1','2020-12-31',window=40)
72
- compare_rf(df1,'Rf',df2,'Rf','2019-1-1','2019-12-31')
73
- compare_rf(df1,'Rf',df2,'Rf','2019-1-1','2019-12-31',twinx=True)
74
-
75
- df1['Rf_20']=df1['Rf'].rolling(window=20).mean()
76
- compare_rf(df1,'Rf',df1,'Rf_20','2019-1-1','2019-12-31')
77
-
78
- #==============================================================================
79
-
80
- def calc_rolling_cumret(dfc,col,period='Weekly'):
81
- """
82
- 传入日收益率col的数据表dfc
83
- 传出不同期间的累计收益率序列cumret
84
- """
85
- df=dfc.copy()
86
- #检查period类型
87
- periodlist = ["Weekly","Biweekly","Monthly","Quarterly","Semiannual","Annual"]
88
- if not (period in periodlist):
89
- print(" Error(calc_rolling_cumret): only supports:",periodlist)
90
- return None
91
-
92
- #换算期间对应的实际交易天数
93
- perioddays=[5,10,20,60,120,240]
94
- rollingnum=perioddays[periodlist.index(period)]
95
-
96
- import numpy as np
97
- df['logdret']=np.log(df[col]+1)
98
- df['cumret']=np.exp(df['logdret'].rolling(rollingnum).sum())-1.0
99
-
100
- return df['cumret']
101
-
102
- #==============================================================================
103
-
104
- if __name__ =="__main__":
105
- col='Rf'
106
- limits=[0.01,0.01]
107
-
108
- def winsor(df,col,limits=[0.01,0.01]):
109
- """
110
- 功能:对于数据表df1中的列col进行下1%(参数1)和上1%(参数2)的处理
111
- """
112
- import numpy as np
113
- from scipy.stats.mstats import winsorize
114
-
115
- a = np.array(df[col])
116
- aw=winsorize(a,limits=limits)
117
-
118
- return aw.data
119
- #==============================================================================
120
- if __name__=='__main__':
121
- ticker='399001.SZ'
122
- mktidx='000300.SS'
123
- fromdate='2020-1-1'
124
- todate='2020-12-31'
125
- window=240
126
-
127
- def get_rf_capm(ticker,mktidx,fromdate,todate,window=240,sharelist=[]):
128
- """
129
- 功能:计算无风险收益率的时间序列
130
- ticker:股票或股票组合
131
- mktidx:股票市场指数
132
- fromdate:开始时间
133
- todate:截止时间
134
- window:每次回归的样本个数
135
- sharelist:第一个参数为投资组合的持股比例,默认为等权重;为单个股票时无用
136
- """
137
- #检查日期期间的合理性
138
- result,start,end=com.check_period(fromdate,todate)
139
- if not result:
140
- print(" Error(get_rf_capm): invalide date period from",fromdate,"to",todate)
141
- return None
142
-
143
- #提前开始日期,留出回归窗口
144
- start1=com.date_adjust(start,adjust=-window*2)
145
-
146
- #获得股票或股票组合的历史收益率
147
- import siat.security_prices as sp
148
- #单个股票情形
149
- if isinstance(ticker,str):
150
- spdf=sp.get_prices(ticker,start1,end)
151
- #股票组合情形
152
- if isinstance(ticker,list):
153
- if sharelist == []:
154
- num=len(ticker)
155
- sharelist=[1]*num
156
- spdf=sp.get_prices_portfolio(ticker,sharelist,start1,end)
157
- if spdf is None:
158
- print(" Error(get_rf_capm): info not found or unavailable for",ticker)
159
- return None
160
-
161
- spdf['Stock_dailyRet']=spdf['Close'].pct_change()
162
-
163
- #获取市场指数的历史收益率
164
- rmdf=sp.get_prices(mktidx,start1,end)
165
- if rmdf is None:
166
- print(" Error(get_rf_capm): info not found or unavailable for",mktidx)
167
- return None
168
- rmdf['Market_dailyRet']=rmdf['Close'].pct_change()
169
-
170
- #合并股票(组合)与市场指数的收益率为一个数据集
171
- import pandas as pd
172
- df=pd.merge(rmdf['Market_dailyRet'],spdf['Stock_dailyRet'],how='inner',left_index=True,right_index=True)
173
- df['Date']=df.index.strftime("%Y-%m-%d")
174
-
175
- datelist_ts=list(df.index)
176
- datelist=list(df['Date'])
177
- fromdate=start.strftime("%Y-%m-%d")
178
- #start_pos=lookup_datelist(datelist,fromdate,direction='more')
179
- todate=end.strftime("%Y-%m-%d")
180
- #end_pos=lookup_datelist(datelist,todate,direction='less')
181
-
182
- #用于滚动的日期期间
183
- datelist_rolling=[]
184
- for d in datelist:
185
- if (d >= fromdate) and (d <= todate):
186
- datelist_rolling=datelist_rolling+[d]
187
-
188
- #滚动回归
189
- if sharelist == []:
190
- #footnote=[ticker,mktidx,fromdate,todate,window]
191
- footnote=[ticker,mktidx,window]
192
- else:
193
- #footnote=[ticker,mktidx,fromdate,todate,window,sharelist]
194
- footnote=[ticker,mktidx,window,sharelist]
195
- betas=pd.DataFrame(columns=('date','Beta','alpha','R-sqr','p-value','sig','Rf','ticker','footnote'))
196
- from scipy import stats
197
- import numpy as np
198
-
199
- for d in datelist_rolling:
200
- pos2=lookup_datelist(datelist,d)
201
- pos1=pos2 - window
202
- sdate2=datelist_ts[pos2]
203
- sdate1=datelist_ts[pos1]
204
-
205
- sampledf=df[df.index >= sdate1].copy()
206
- sampledf=sampledf[sampledf.index < sdate2]
207
-
208
- (beta,alpha,r_value,p_value,std_err)= \
209
- stats.linregress(sampledf['Market_dailyRet'],sampledf['Stock_dailyRet'])
210
- sig=sig_stars(p_value)
211
- try:
212
- rf=alpha/(1-beta)
213
- except:
214
- rf=np.nan
215
-
216
- row=pd.Series({'date':sdate2,'Beta':beta,'alpha':alpha, \
217
- 'R-sqr':r_value**2,'p-value':p_value,'sig':sig,'Rf':rf,'ticker':ticker,'footnote':footnote})
218
- try:
219
- betas=betas.append(row,ignore_index=True)
220
- except:
221
- betas=betas._append(row,ignore_index=True)
222
-
223
- betas.set_index('date',inplace=True)
224
-
225
- return betas
226
-
227
- if __name__=='__main__':
228
- df1=get_rf_capm('399001.SZ','000001.SS','2020-1-1','2020-12-31',window=240)
229
- df1['Rf'].plot()
230
-
231
- df2=get_rf_capm('000001.SS','399001.SZ','2020-1-1','2020-12-31',window=240)
232
- df2['Rf'].plot()
233
-
234
- df3=get_rf_capm('000001.SS','000300.SS','2020-1-1','2020-12-31',window=240)
235
- df3['Rf'].plot()
236
-
237
- df4=get_rf_capm('AAPL','^GSPC','2020-1-1','2020-12-31',window=240)
238
- df4['Rf'].plot()
239
-
240
- df5=get_rf_capm('^DJI','^GSPC','2020-1-1','2020-12-31',window=240)
241
- df5['Rf'].plot()
242
- #==============================================================================
243
- if __name__=='__main__':
244
- datelist=['2019-12-30','2019-12-31','2020-01-02','2020-01-03','2020-01-06']
245
- adate='2020-01-01'
246
- adate='2020-01-04'
247
- direction='less'
248
- direction='more'
249
-
250
- def lookup_datelist(datelist,adate,direction='less'):
251
- """
252
- 功能:在日期列表datelist查找与日期adate最接近日期的位置
253
- direction='more':若无匹配的日期,则往日期增加的方向查找最接近日期的位置
254
- direction='less':若无匹配的日期,则往日期减少的方向查找最接近日期的位置
255
- """
256
- i=0
257
- found=False
258
- while not found:
259
- try:
260
- pos=datelist.index(adate)
261
- except:
262
- if direction == 'more':
263
- i=i+1
264
- else:
265
- i=i-1
266
- adate=com.date_adjust(adate,adjust=i)
267
- else:
268
- found=True
269
-
270
- return pos
271
-
272
- #==============================================================================
273
- if __name__=='__main__':
274
- p_value=0.07
275
- p_value=0.02
276
- p_value=0.0009
277
- criteria='accounting'
278
- criteria='financial'
279
-
280
- def sig_stars(p_value,criteria='accounting'):
281
- """
282
- 功能:基于p_value给出星号的个数
283
- p_value:显著性水平
284
- criteria='accounting':默认的显著性基准,<0.1为一颗星;若为'financial',<0.05为一颗星
285
- """
286
- sig=''
287
- if criteria == 'accounting':
288
- if p_value < 0.1: sig='*'*1
289
- if p_value < 0.05: sig='*'*2
290
- if p_value < 0.01: sig='*'*3
291
- else:
292
- if p_value < 0.05: sig='*'*1
293
- if p_value < 0.01: sig='*'*2
294
- if p_value < 0.001: sig='*'*3
295
-
296
- return sig
297
-
298
- if __name__=='__main__':
299
- sig_stars(0.1)
300
- sig_stars(0.07)
301
- sig_stars(0.04)
302
- sig_stars(0.009)
303
-
304
- #==============================================================================
305
- def calc_capm_rf(rmdf,rdf):
306
- """
307
- 功能:CAPM回归
308
- 返回:截距项,贝塔系数,无风险收益率
309
- """
310
- #OLS回归
311
- from scipy import stats
312
- (beta,alpha,r_value,p_value,std_err)=stats.linregress(rmdf,rdf)
313
-
314
- rf=alpha/(1-beta)
315
-
316
- return [beta,alpha,r_value,p_value,std_err,rf]
317
-
318
- #==============================================================================
319
- #==============================================================================
320
- #==============================================================================
321
- #==============================================================================
322
- if __name__=='__main__':
323
- start='2018-1-1'
324
- end='2020-12-31'
325
- scope='US'
326
- freq='daily'
327
-
328
- def get_rf_kfdl(start,end,scope='US',freq='daily'):
329
- """
330
- 功能:从Kenneth R. French's Data Library获得无风险收益率
331
- start/end:日期期间
332
- scope:国家/地区,支持美国/北美/欧洲/日本/不含日本的亚太/不含美国的全球。全球
333
- freq:支持日/月/年收益率,其中美国还支持周数据
334
- 返回:无风险收益率,市场收益率
335
- """
336
- import siat.fama_french as ff
337
- factor='FF3'
338
- df=ff.get_ff_factors(start,end,scope,factor,freq)
339
-
340
- df['Market_dailyRet']=df['Mkt-RF']+df['RF']
341
- df['Rf']=df['RF']
342
- df['ticker']=scope
343
- footnote=[scope,freq]
344
- df['footnote']=df['ticker'].apply(lambda x:footnote)
345
-
346
- df1=df[['Market_dailyRet','Rf','ticker','footnote']]
347
-
348
- return df1
349
-
350
-
351
- #==============================================================================