siat 3.10.131__py3-none-any.whl → 3.10.132__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- build/lib/build/lib/siat/__init__.py +75 -0
- build/lib/build/lib/siat/allin.py +137 -0
- build/lib/build/lib/siat/assets_liquidity.py +915 -0
- build/lib/build/lib/siat/beta_adjustment.py +1058 -0
- build/lib/build/lib/siat/beta_adjustment_china.py +548 -0
- build/lib/build/lib/siat/blockchain.py +143 -0
- build/lib/build/lib/siat/bond.py +2900 -0
- build/lib/build/lib/siat/bond_base.py +992 -0
- build/lib/build/lib/siat/bond_china.py +100 -0
- build/lib/build/lib/siat/bond_zh_sina.py +143 -0
- build/lib/build/lib/siat/capm_beta.py +783 -0
- build/lib/build/lib/siat/capm_beta2.py +887 -0
- build/lib/build/lib/siat/common.py +5360 -0
- build/lib/build/lib/siat/compare_cross.py +642 -0
- build/lib/build/lib/siat/copyrights.py +18 -0
- build/lib/build/lib/siat/cryptocurrency.py +667 -0
- build/lib/build/lib/siat/economy.py +1471 -0
- build/lib/build/lib/siat/economy2.py +1853 -0
- build/lib/build/lib/siat/esg.py +536 -0
- build/lib/build/lib/siat/event_study.py +815 -0
- build/lib/build/lib/siat/fama_french.py +1521 -0
- build/lib/build/lib/siat/fin_stmt2_yahoo.py +982 -0
- build/lib/build/lib/siat/financial_base.py +1160 -0
- build/lib/build/lib/siat/financial_statements.py +598 -0
- build/lib/build/lib/siat/financials.py +2339 -0
- build/lib/build/lib/siat/financials2.py +1278 -0
- build/lib/build/lib/siat/financials_china.py +4433 -0
- build/lib/build/lib/siat/financials_china2.py +2212 -0
- build/lib/build/lib/siat/fund.py +629 -0
- build/lib/build/lib/siat/fund_china.py +3307 -0
- build/lib/build/lib/siat/future_china.py +551 -0
- build/lib/build/lib/siat/google_authenticator.py +47 -0
- build/lib/build/lib/siat/grafix.py +3636 -0
- build/lib/build/lib/siat/holding_risk.py +867 -0
- build/lib/build/lib/siat/luchy_draw.py +638 -0
- build/lib/build/lib/siat/market_china.py +1168 -0
- build/lib/build/lib/siat/markowitz.py +2363 -0
- build/lib/build/lib/siat/markowitz2.py +3150 -0
- build/lib/build/lib/siat/markowitz2_20250704.py +2969 -0
- build/lib/build/lib/siat/markowitz2_20250705.py +3158 -0
- build/lib/build/lib/siat/markowitz_simple.py +373 -0
- build/lib/build/lib/siat/ml_cases.py +2291 -0
- build/lib/build/lib/siat/ml_cases_example.py +60 -0
- build/lib/build/lib/siat/option_china.py +3069 -0
- build/lib/build/lib/siat/option_pricing.py +1925 -0
- build/lib/build/lib/siat/other_indexes.py +409 -0
- build/lib/build/lib/siat/risk_adjusted_return.py +1576 -0
- build/lib/build/lib/siat/risk_adjusted_return2.py +1900 -0
- build/lib/build/lib/siat/risk_evaluation.py +2218 -0
- build/lib/build/lib/siat/risk_free_rate.py +351 -0
- build/lib/build/lib/siat/sector_china.py +4140 -0
- build/lib/build/lib/siat/security_price2.py +727 -0
- build/lib/build/lib/siat/security_prices.py +3408 -0
- build/lib/build/lib/siat/security_trend.py +402 -0
- build/lib/build/lib/siat/security_trend2.py +646 -0
- build/lib/build/lib/siat/stock.py +4284 -0
- build/lib/build/lib/siat/stock_advice_linear.py +934 -0
- build/lib/build/lib/siat/stock_base.py +26 -0
- build/lib/build/lib/siat/stock_china.py +2095 -0
- build/lib/build/lib/siat/stock_prices_kneighbors.py +910 -0
- build/lib/build/lib/siat/stock_prices_linear.py +386 -0
- build/lib/build/lib/siat/stock_profile.py +707 -0
- build/lib/build/lib/siat/stock_technical.py +3305 -0
- build/lib/build/lib/siat/stooq.py +74 -0
- build/lib/build/lib/siat/transaction.py +347 -0
- build/lib/build/lib/siat/translate.py +5183 -0
- build/lib/build/lib/siat/valuation.py +1378 -0
- build/lib/build/lib/siat/valuation_china.py +2076 -0
- build/lib/build/lib/siat/var_model_validation.py +444 -0
- build/lib/build/lib/siat/yf_name.py +811 -0
- build/lib/siat/__init__.py +75 -0
- build/lib/siat/allin.py +137 -0
- build/lib/siat/assets_liquidity.py +915 -0
- build/lib/siat/beta_adjustment.py +1058 -0
- build/lib/siat/beta_adjustment_china.py +548 -0
- build/lib/siat/blockchain.py +143 -0
- build/lib/siat/bond.py +2900 -0
- build/lib/siat/bond_base.py +992 -0
- build/lib/siat/bond_china.py +100 -0
- build/lib/siat/bond_zh_sina.py +143 -0
- build/lib/siat/capm_beta.py +783 -0
- build/lib/siat/capm_beta2.py +887 -0
- build/lib/siat/common.py +5360 -0
- build/lib/siat/compare_cross.py +642 -0
- build/lib/siat/copyrights.py +18 -0
- build/lib/siat/cryptocurrency.py +667 -0
- build/lib/siat/economy.py +1471 -0
- build/lib/siat/economy2.py +1853 -0
- build/lib/siat/esg.py +536 -0
- build/lib/siat/event_study.py +815 -0
- build/lib/siat/fama_french.py +1521 -0
- build/lib/siat/fin_stmt2_yahoo.py +982 -0
- build/lib/siat/financial_base.py +1160 -0
- build/lib/siat/financial_statements.py +598 -0
- build/lib/siat/financials.py +2339 -0
- build/lib/siat/financials2.py +1278 -0
- build/lib/siat/financials_china.py +4433 -0
- build/lib/siat/financials_china2.py +2212 -0
- build/lib/siat/fund.py +629 -0
- build/lib/siat/fund_china.py +3307 -0
- build/lib/siat/future_china.py +551 -0
- build/lib/siat/google_authenticator.py +47 -0
- build/lib/siat/grafix.py +3636 -0
- build/lib/siat/holding_risk.py +867 -0
- build/lib/siat/luchy_draw.py +638 -0
- build/lib/siat/market_china.py +1168 -0
- build/lib/siat/markowitz.py +2363 -0
- build/lib/siat/markowitz2.py +3150 -0
- build/lib/siat/markowitz2_20250704.py +2969 -0
- build/lib/siat/markowitz2_20250705.py +3158 -0
- build/lib/siat/markowitz_simple.py +373 -0
- build/lib/siat/ml_cases.py +2291 -0
- build/lib/siat/ml_cases_example.py +60 -0
- build/lib/siat/option_china.py +3069 -0
- build/lib/siat/option_pricing.py +1925 -0
- build/lib/siat/other_indexes.py +409 -0
- build/lib/siat/risk_adjusted_return.py +1576 -0
- build/lib/siat/risk_adjusted_return2.py +1900 -0
- build/lib/siat/risk_evaluation.py +2218 -0
- build/lib/siat/risk_free_rate.py +351 -0
- build/lib/siat/sector_china.py +4140 -0
- build/lib/siat/security_price2.py +727 -0
- build/lib/siat/security_prices.py +3408 -0
- build/lib/siat/security_trend.py +402 -0
- build/lib/siat/security_trend2.py +646 -0
- build/lib/siat/stock.py +4284 -0
- build/lib/siat/stock_advice_linear.py +934 -0
- build/lib/siat/stock_base.py +26 -0
- build/lib/siat/stock_china.py +2095 -0
- build/lib/siat/stock_prices_kneighbors.py +910 -0
- build/lib/siat/stock_prices_linear.py +386 -0
- build/lib/siat/stock_profile.py +707 -0
- build/lib/siat/stock_technical.py +3305 -0
- build/lib/siat/stooq.py +74 -0
- build/lib/siat/transaction.py +347 -0
- build/lib/siat/translate.py +5183 -0
- build/lib/siat/valuation.py +1378 -0
- build/lib/siat/valuation_china.py +2076 -0
- build/lib/siat/var_model_validation.py +444 -0
- build/lib/siat/yf_name.py +811 -0
- siat/__init__.py +0 -0
- siat/allin.py +0 -0
- siat/assets_liquidity.py +0 -0
- siat/beta_adjustment.py +0 -0
- siat/beta_adjustment_china.py +0 -0
- siat/blockchain.py +0 -0
- siat/bond.py +0 -0
- siat/bond_base.py +0 -0
- siat/bond_china.py +0 -0
- siat/bond_zh_sina.py +0 -0
- siat/capm_beta.py +0 -0
- siat/capm_beta2.py +0 -0
- siat/common.py +136 -3
- siat/compare_cross.py +0 -0
- siat/copyrights.py +0 -0
- siat/cryptocurrency.py +0 -0
- siat/economy.py +0 -0
- siat/economy2.py +0 -0
- siat/esg.py +0 -0
- siat/event_study.py +0 -0
- siat/exchange_bond_china.pickle +0 -0
- siat/fama_french.py +0 -0
- siat/fin_stmt2_yahoo.py +0 -0
- siat/financial_base.py +0 -0
- siat/financial_statements.py +0 -0
- siat/financials.py +0 -0
- siat/financials2.py +0 -0
- siat/financials_china.py +0 -0
- siat/financials_china2.py +0 -0
- siat/fund.py +0 -0
- siat/fund_china.pickle +0 -0
- siat/fund_china.py +0 -0
- siat/future_china.py +0 -0
- siat/google_authenticator.py +0 -0
- siat/grafix.py +1 -1
- siat/holding_risk.py +0 -0
- siat/luchy_draw.py +0 -0
- siat/market_china.py +1 -1
- siat/markowitz.py +0 -0
- siat/markowitz2.py +240 -39
- siat/markowitz2_20250704.py +2969 -0
- siat/markowitz2_20250705.py +3158 -0
- siat/markowitz_simple.py +0 -0
- siat/ml_cases.py +0 -0
- siat/ml_cases_example.py +0 -0
- siat/option_china.py +0 -0
- siat/option_pricing.py +0 -0
- siat/other_indexes.py +0 -0
- siat/risk_adjusted_return.py +0 -0
- siat/risk_adjusted_return2.py +0 -0
- siat/risk_evaluation.py +0 -0
- siat/risk_free_rate.py +0 -0
- siat/sector_china.py +0 -0
- siat/security_price2.py +0 -0
- siat/security_prices.py +3 -1
- siat/security_trend.py +0 -0
- siat/security_trend2.py +1 -1
- siat/stock.py +4 -2
- siat/stock_advice_linear.py +0 -0
- siat/stock_base.py +0 -0
- siat/stock_china.py +0 -0
- siat/stock_info.pickle +0 -0
- siat/stock_prices_kneighbors.py +0 -0
- siat/stock_prices_linear.py +0 -0
- siat/stock_profile.py +0 -0
- siat/stock_technical.py +0 -0
- siat/stooq.py +0 -0
- siat/transaction.py +0 -0
- siat/translate.py +11 -11
- siat/valuation.py +0 -0
- siat/valuation_china.py +0 -0
- siat/var_model_validation.py +0 -0
- siat/yf_name.py +0 -0
- {siat-3.10.131.dist-info → siat-3.10.132.dist-info}/METADATA +235 -227
- siat-3.10.132.dist-info/RECORD +218 -0
- {siat-3.10.131.dist-info → siat-3.10.132.dist-info}/WHEEL +1 -1
- {siat-3.10.131.dist-info → siat-3.10.132.dist-info/licenses}/LICENSE +0 -0
- siat-3.10.132.dist-info/top_level.txt +4 -0
- siat-3.10.131.dist-info/RECORD +0 -76
- siat-3.10.131.dist-info/top_level.txt +0 -1
@@ -0,0 +1,386 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
"""
|
3
|
+
@function: 预测美股股价,教学演示用,其他用途责任自负
|
4
|
+
@model:线性模型,ols, righe, lasso, elasticnet
|
5
|
+
@version:v1.0,2019.4.4
|
6
|
+
@purpose: 仅限机器学习课程案例使用
|
7
|
+
@author: 王德宏,北京外国语大学国际商学院
|
8
|
+
"""
|
9
|
+
|
10
|
+
#=====================================================================
|
11
|
+
def get_stock_price(ticker,atdate,fromdate):
|
12
|
+
"""
|
13
|
+
功能:抓取美股股价
|
14
|
+
输出:指定美股的收盘价格序列,最新日期的股价排列在前
|
15
|
+
ticker:美股股票代码
|
16
|
+
atdate:当前日期,既可以是今天日期,也可以是一个历史日期,datetime类型
|
17
|
+
fromdate:样本开始日期,尽量远的日期,以便取得足够多的原始样本,类型同atdate
|
18
|
+
"""
|
19
|
+
|
20
|
+
#仅为调试用的函数入口参数,正式使用前需要注释掉!
|
21
|
+
#ticker='MSFT'
|
22
|
+
#atdate='3/29/2019'
|
23
|
+
#fromdate='1/1/2015'
|
24
|
+
#---------------------------------------------
|
25
|
+
|
26
|
+
#抓取美股股票价格
|
27
|
+
from pandas_datareader import data
|
28
|
+
price=data.DataReader(ticker,'stooq',fromdate,atdate)
|
29
|
+
|
30
|
+
#去掉比起始日期更早的样本
|
31
|
+
price2=price[price.index >= fromdate]
|
32
|
+
|
33
|
+
|
34
|
+
#按日期降序排序,近期的价格排在前面
|
35
|
+
sortedprice=price2.sort_index(axis=0,ascending=False)
|
36
|
+
|
37
|
+
#提取日期和星期几
|
38
|
+
#sortedprice['Date']=sortedprice.index.date
|
39
|
+
sortedprice['Date']=sortedprice.index.strftime("%Y-%m-%d")
|
40
|
+
sortedprice['Weekday']=sortedprice.index.weekday+1
|
41
|
+
|
42
|
+
#生成输出数据格式:日期,星期几,收盘价
|
43
|
+
dfprice=sortedprice[['Date','Weekday','Close']]
|
44
|
+
|
45
|
+
return dfprice
|
46
|
+
|
47
|
+
|
48
|
+
if __name__=='__main__':
|
49
|
+
dfprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
50
|
+
dfprice.head(5)
|
51
|
+
dfprice.tail(3)
|
52
|
+
dfprice[dfprice.Date == '2019-03-29']
|
53
|
+
dfprice[(dfprice.Date>='2019-03-20') & (dfprice.Date<='2019-03-29')]
|
54
|
+
|
55
|
+
|
56
|
+
#=====================================================================
|
57
|
+
def make_price_sample(dfprice,n_nextdays=1,n_samples=240,n_features=20):
|
58
|
+
"""
|
59
|
+
功能:生成指定股票的价格样本
|
60
|
+
ticker:美股股票代码
|
61
|
+
n_nextdays:预测从atdate开始未来第几天的股价,默认为1
|
62
|
+
n_samples:需要生成的样本个数,默认240个(一年的平均交易天数)
|
63
|
+
n_features:使用的特征数量,默认20个(一个月的平均交易天数)
|
64
|
+
"""
|
65
|
+
|
66
|
+
#提取收盘价,Series类型
|
67
|
+
closeprice=dfprice.Close
|
68
|
+
|
69
|
+
#将closeprice转换为机器学习需要的ndarray类型ndprice
|
70
|
+
import numpy as np
|
71
|
+
ndprice=np.asmatrix(closeprice,dtype=None)
|
72
|
+
|
73
|
+
#生成第一个标签样本:标签矩阵y(形状:n_samples x 1)
|
74
|
+
import numpy as np
|
75
|
+
y=np.asmatrix(ndprice[0,0])
|
76
|
+
#生成第一个特征样本:特征矩阵X(形状:n_samples x n_features)
|
77
|
+
X=ndprice[0,n_nextdays:n_features+n_nextdays]
|
78
|
+
|
79
|
+
#生成其余的标签样本和特征样本
|
80
|
+
for i in range(1,n_samples):
|
81
|
+
y_row=np.asmatrix(ndprice[0,i])
|
82
|
+
y=np.append(y,y_row,axis=0)
|
83
|
+
|
84
|
+
X_row=ndprice[0,(n_nextdays+i):(n_features+n_nextdays+i)]
|
85
|
+
X=np.append(X,X_row,axis=0)
|
86
|
+
|
87
|
+
return X,y,ndprice
|
88
|
+
|
89
|
+
if __name__=='__main__':
|
90
|
+
fdprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
91
|
+
X,y,ndprice=make_price_sample(fdprice,1,240,20)
|
92
|
+
y[:5]
|
93
|
+
y[2:5] #第1行的序号为0
|
94
|
+
X[:5]
|
95
|
+
X[:-5]
|
96
|
+
X[3-1,2-1]
|
97
|
+
|
98
|
+
|
99
|
+
#=====================================================================
|
100
|
+
def bestR1(X,y):
|
101
|
+
"""
|
102
|
+
功能:给定特征矩阵和标签,使用岭回归,返回最优的alpha参数和模型
|
103
|
+
最优策略:测试集分数最高,不管过拟合问题
|
104
|
+
"""
|
105
|
+
|
106
|
+
import numpy as np
|
107
|
+
#将整个样本随机分割为训练集和测试集
|
108
|
+
from sklearn.model_selection import train_test_split
|
109
|
+
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0)
|
110
|
+
|
111
|
+
#初始化alpha,便于判断上行下行方向
|
112
|
+
alphalist=[0.001,0.0011,0.00999,0.01,0.01001,0.999,1,1.01, \
|
113
|
+
9.99,10,10.01,99,100,101,999,1000,1001,10000]
|
114
|
+
|
115
|
+
from sklearn.linear_model import RidgeCV
|
116
|
+
reg=RidgeCV(alphas=alphalist,cv=5,fit_intercept=True,normalize=True)
|
117
|
+
|
118
|
+
reg.fit(X_train, y_train)
|
119
|
+
score_train=reg.score(X_train, y_train)
|
120
|
+
score_test=reg.score(X_test, y_test)
|
121
|
+
alpha=reg.alpha_
|
122
|
+
#print("%.5f, %.5f, %.5f"%(alpha,score_train,score_test))
|
123
|
+
|
124
|
+
#确定alpha参数的优化范围
|
125
|
+
if alpha in [0.001,0.01,1,2,10,100,1000,10000]:
|
126
|
+
#print("%.5f, %.5f, %.5f"%(alpha,score_train,score_test))
|
127
|
+
return reg,alpha,score_train,score_test
|
128
|
+
|
129
|
+
if 0.001 < alpha < 0.01:
|
130
|
+
alphalist1=np.arange(0.001,0.01,0.0005)
|
131
|
+
if 0.01 < alpha < 1:
|
132
|
+
alphalist1=np.arange(0.01,1,0.005)
|
133
|
+
if 1 < alpha < 10:
|
134
|
+
alphalist1=np.arange(1,10,0.01)
|
135
|
+
if 10 < alpha < 100:
|
136
|
+
alphalist1=np.arange(10,100,0.1)
|
137
|
+
if 100 < alpha < 1000:
|
138
|
+
alphalist1=np.arange(100,1000,1)
|
139
|
+
if 1000 < alpha < 10000:
|
140
|
+
alphalist1=np.arange(1000,10000,10)
|
141
|
+
|
142
|
+
reg1=RidgeCV(alphas=alphalist1,cv=5,fit_intercept=True,normalize=True)
|
143
|
+
reg1.fit(X_train, y_train)
|
144
|
+
score1_train=reg1.score(X_train,y_train)
|
145
|
+
score1_test =reg1.score(X_test, y_test)
|
146
|
+
alpha1=reg1.alpha_
|
147
|
+
|
148
|
+
#print("%.5f, %.5f, %.5f"%(alpha1,score1_train,score1_test))
|
149
|
+
return reg1,alpha1,score1_train,score1_test
|
150
|
+
|
151
|
+
|
152
|
+
if __name__=='__main__':
|
153
|
+
dfprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
154
|
+
X,y,ndprice=make_price_sample(dfprice,1,240,20)
|
155
|
+
|
156
|
+
model,alpha,score_train,score_test=bestR1(X,y)
|
157
|
+
print("%.5f, %.5f, %.5f"%(alpha,score_train,score_test))
|
158
|
+
#结果:0.045,0.9277,0.8940
|
159
|
+
|
160
|
+
X_new=ndprice[0,0:20]
|
161
|
+
y_new=model.predict(X_new)
|
162
|
+
print("%.2f"%y_new)
|
163
|
+
#结果:119.43
|
164
|
+
#=====================================================================
|
165
|
+
def bestL1(X,y):
|
166
|
+
"""
|
167
|
+
功能:给定特征矩阵和标签,使用拉索回归,返回最优的alpha参数和模型
|
168
|
+
最优策略:测试集分数最高,不管过拟合问题
|
169
|
+
"""
|
170
|
+
import numpy as np
|
171
|
+
#将整个样本随机分割为训练集和测试集
|
172
|
+
from sklearn.utils import column_or_1d
|
173
|
+
y=column_or_1d(y,warn=False)
|
174
|
+
from sklearn.model_selection import train_test_split
|
175
|
+
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0)
|
176
|
+
|
177
|
+
|
178
|
+
#初始alpha,便于判断上行下行方向
|
179
|
+
alphalist=[0.001,0.0011,0.00999,0.01,0.01001,0.999,1,1.01,1.99,2,2.01, \
|
180
|
+
9.99,10,10.01,99,100,101,999,1000,1001,10000]
|
181
|
+
|
182
|
+
from sklearn.linear_model import LassoCV
|
183
|
+
reg=LassoCV(alphas=alphalist,max_iter=10**6, \
|
184
|
+
cv=5,fit_intercept=True,normalize=True)
|
185
|
+
reg.fit(X_train, y_train)
|
186
|
+
score_train=reg.score(X_train,y_train)
|
187
|
+
score_test =reg.score(X_test, y_test)
|
188
|
+
alpha=reg.alpha_
|
189
|
+
#print("Step0: %.4f, %.5f, %.5f"%(alpha,score_train,score_test))
|
190
|
+
|
191
|
+
#确定alpha参数的优化范围
|
192
|
+
if alpha in [0.001,0.01,1,2,10,100,1000,10000]:
|
193
|
+
#print("Step01: %.5f, %.5f, %.5f"%(alpha,score_train,score_test))
|
194
|
+
return reg,alpha,score_train,score_test
|
195
|
+
|
196
|
+
if 0.001 < alpha < 0.01:
|
197
|
+
alphalist1=np.arange(0.0015,0.01,0.0005)
|
198
|
+
|
199
|
+
if 0.01 < alpha < 1:
|
200
|
+
alphalist1=np.arange(0.015,1,0.005)
|
201
|
+
|
202
|
+
if 1 < alpha < 10:
|
203
|
+
alphalist1=np.arange(1.01,10,0.01)
|
204
|
+
|
205
|
+
if 10 < alpha < 100:
|
206
|
+
alphalist1=np.arange(10.1,100,0.1)
|
207
|
+
|
208
|
+
if 100 < alpha < 1000:
|
209
|
+
alphalist1=np.arange(101,1000,1)
|
210
|
+
|
211
|
+
if 1000 < alpha < 10000:
|
212
|
+
alphalist1=np.arange(1010,10000,10)
|
213
|
+
|
214
|
+
reg1=LassoCV(alphas=alphalist1,cv=5,fit_intercept=True,normalize=True)
|
215
|
+
reg1.fit(X_train, y_train)
|
216
|
+
score1_train=reg1.score(X_train,y_train)
|
217
|
+
score1_test =reg1.score(X_test, y_test)
|
218
|
+
alpha1=reg1.alpha_
|
219
|
+
#print("Step1: %.4f, %.5f, %.5f"%(alpha1,score1_train,score1_test))
|
220
|
+
return reg1,alpha1,score1_train,score1_test
|
221
|
+
|
222
|
+
if __name__=='__main__':
|
223
|
+
dfprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
224
|
+
X,y,ndprice=make_price_sample(dfprice,1,240,20)
|
225
|
+
|
226
|
+
model,alpha,score_train,score_test=bestL1(X,y)
|
227
|
+
print("%.5f, %.5f, %.5f"%(alpha,score_train,score_test))
|
228
|
+
#结果:0.015,0.9284,0.9043
|
229
|
+
|
230
|
+
X_new=ndprice[0,0:20]
|
231
|
+
y_new=model.predict(X_new)
|
232
|
+
print("%.2f"%y_new)
|
233
|
+
#结果:119.37
|
234
|
+
|
235
|
+
#=====================================================================
|
236
|
+
|
237
|
+
def bestEN2(X,y,maxalpha=2):
|
238
|
+
"""
|
239
|
+
功能:给定特征矩阵和标签,使用弹性网络回归,返回最优的alpha参数和模型
|
240
|
+
最优策略:利用ElasticNetCV筛选机制,速度慢
|
241
|
+
"""
|
242
|
+
#将整个样本随机分割为训练集和测试集
|
243
|
+
from sklearn.utils import column_or_1d
|
244
|
+
y=column_or_1d(y,warn=False)
|
245
|
+
|
246
|
+
from sklearn.model_selection import train_test_split
|
247
|
+
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=66)
|
248
|
+
|
249
|
+
#限定参数范围
|
250
|
+
import numpy as np
|
251
|
+
alphalist=np.arange(0.01,maxalpha,0.01)
|
252
|
+
l1list =np.arange(0.01,1,0.01)
|
253
|
+
|
254
|
+
from sklearn.linear_model import ElasticNetCV
|
255
|
+
reg=ElasticNetCV(alphas=alphalist,l1_ratio=l1list)
|
256
|
+
|
257
|
+
reg.fit(X_train, y_train)
|
258
|
+
score_train=reg.score(X_train,y_train)
|
259
|
+
score_test =reg.score(X_test, y_test)
|
260
|
+
alpha=reg.alpha_
|
261
|
+
l1ratio=reg.l1_ratio_
|
262
|
+
|
263
|
+
return reg,alpha,l1ratio,score_train,score_test
|
264
|
+
|
265
|
+
if __name__=='__main__':
|
266
|
+
dfprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
267
|
+
X,y,ndprice=make_price_sample(dfprice,1,240,20)
|
268
|
+
|
269
|
+
model,alpha,l1ratio,score_train,score_test=bestEN2(X,y)
|
270
|
+
print("%.5f, %.5f, %.5f, %.5f"%(alpha,l1ratio,score_train,score_test))
|
271
|
+
#结果:0.42,0.99,0.9258,0.9174
|
272
|
+
|
273
|
+
X_new=ndprice[0,0:20]
|
274
|
+
y_new=model.predict(X_new)
|
275
|
+
print("%.2f"%y_new)
|
276
|
+
#结果:119.60
|
277
|
+
|
278
|
+
#=======
|
279
|
+
|
280
|
+
#==============================================================================
|
281
|
+
|
282
|
+
def bestEN3(X,y):
|
283
|
+
"""
|
284
|
+
功能:给定特征矩阵和标签,使用弹性网络回归,返回最优的alpha参数和模型
|
285
|
+
最优策略:利用cv交叉验证,速度快
|
286
|
+
算法贡献者:徐乐欣(韩语国商)
|
287
|
+
"""
|
288
|
+
import numpy as np
|
289
|
+
#将整个样本随机分割为训练集和测试集
|
290
|
+
from sklearn.utils import column_or_1d
|
291
|
+
y=column_or_1d(y,warn=False)
|
292
|
+
from sklearn.model_selection import train_test_split
|
293
|
+
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=66)
|
294
|
+
|
295
|
+
from sklearn.linear_model import ElasticNetCV
|
296
|
+
#reg=ElasticNetCV(cv=5, random_state=0)
|
297
|
+
#reg.fit(X,y)
|
298
|
+
|
299
|
+
l1list=np.arange(0.01,1,0.01)
|
300
|
+
ENet=ElasticNetCV(alphas=None, copy_X=True, cv=5, eps=0.001, \
|
301
|
+
fit_intercept=True,l1_ratio=l1list, max_iter=8000, \
|
302
|
+
n_alphas=100, n_jobs=None,normalize=True, \
|
303
|
+
positive=False, precompute='auto', random_state=0, \
|
304
|
+
selection='cyclic', tol=0.0001, verbose=0)
|
305
|
+
ENet.fit(X_train, y_train)
|
306
|
+
score_train=ENet.score(X_train, y_train)
|
307
|
+
score_test=ENet.score(X_test, y_test)
|
308
|
+
alpha=ENet.alpha_
|
309
|
+
l1ratio=ENet.l1_ratio_
|
310
|
+
#print("S1: %.5f, %.5f, %.5f, %.5f"%(alpha,l1ratio,score_train,score_test))
|
311
|
+
|
312
|
+
return ENet,alpha,l1ratio,score_train,score_test
|
313
|
+
|
314
|
+
if __name__=='__main__':
|
315
|
+
dfprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
316
|
+
X,y,ndprice=make_price_sample(dfprice,1,240,20)
|
317
|
+
|
318
|
+
model,alpha,l1ratio,score_train,score_test=bestEN3(X,y)
|
319
|
+
print("%.5f, %.5f, %.5f, %.5f"%(alpha,l1ratio,score_train,score_test))
|
320
|
+
#结果:0.005836,0.99,0.925,0.9194
|
321
|
+
|
322
|
+
X_new=ndprice[0,0:20]
|
323
|
+
y_new=model.predict(X_new)
|
324
|
+
print("%.2f"%y_new)
|
325
|
+
#结果:119.48
|
326
|
+
#==============================================================================
|
327
|
+
|
328
|
+
|
329
|
+
def bestEN1(X,y,maxalpha=2):
|
330
|
+
"""
|
331
|
+
功能:给定特征矩阵和标签,使用弹性网络回归,返回最优的alpha参数和模型
|
332
|
+
最优策略:对alpha和l1_ratio进行暴力枚举,搜索最高测试集分数,速度中等
|
333
|
+
算法贡献者:徐乐欣(韩语国商)
|
334
|
+
"""
|
335
|
+
|
336
|
+
#将整个样本随机分割为训练集和测试集
|
337
|
+
from sklearn.utils import column_or_1d
|
338
|
+
y=column_or_1d(y,warn=False)
|
339
|
+
from sklearn.model_selection import train_test_split
|
340
|
+
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=66)
|
341
|
+
|
342
|
+
#设立初始测试集分数门槛
|
343
|
+
king_score=0.6
|
344
|
+
from sklearn.linear_model import ElasticNet
|
345
|
+
|
346
|
+
#限定参数范围
|
347
|
+
import numpy as np
|
348
|
+
alphalist=np.arange(0.01,maxalpha,0.01)
|
349
|
+
l1list =np.arange(0.01,1,0.01)
|
350
|
+
|
351
|
+
for i in alphalist:
|
352
|
+
for j in l1list:
|
353
|
+
reg=ElasticNet(alpha=i,l1_ratio=j)
|
354
|
+
reg.fit(X_train,y_train)
|
355
|
+
temp_score=reg.score(X_test,y_test)
|
356
|
+
if temp_score > king_score:
|
357
|
+
king_score=temp_score
|
358
|
+
alpha=i
|
359
|
+
l1ratio=j
|
360
|
+
score_train=reg.score(X_train,y_train)
|
361
|
+
score_test=temp_score
|
362
|
+
model=reg
|
363
|
+
|
364
|
+
return model,alpha,l1ratio,score_train,score_test
|
365
|
+
|
366
|
+
if __name__=='__main__':
|
367
|
+
dfprice=get_stock_price('MSFT','4/3/2019','1/1/2015')
|
368
|
+
X,y,ndprice=make_price_sample(dfprice,1,240,20)
|
369
|
+
|
370
|
+
model,alpha,l1ratio,score_train,score_test=bestEN1(X,y)
|
371
|
+
print("%.5f, %.5f, %.5f, %.5f"%(alpha,l1ratio,score_train,score_test))
|
372
|
+
#结果:1.31,0.56,0.9241,0.9196
|
373
|
+
|
374
|
+
X_new=ndprice[0,0:20]
|
375
|
+
y_new=model.predict(X_new)
|
376
|
+
print("%.2f"%y_new)
|
377
|
+
#结果:119.36
|
378
|
+
#==============================================================================
|
379
|
+
|
380
|
+
|
381
|
+
|
382
|
+
|
383
|
+
|
384
|
+
|
385
|
+
#==============================================================================
|
386
|
+
|