siat 3.10.131__py3-none-any.whl → 3.10.132__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. build/lib/build/lib/siat/__init__.py +75 -0
  2. build/lib/build/lib/siat/allin.py +137 -0
  3. build/lib/build/lib/siat/assets_liquidity.py +915 -0
  4. build/lib/build/lib/siat/beta_adjustment.py +1058 -0
  5. build/lib/build/lib/siat/beta_adjustment_china.py +548 -0
  6. build/lib/build/lib/siat/blockchain.py +143 -0
  7. build/lib/build/lib/siat/bond.py +2900 -0
  8. build/lib/build/lib/siat/bond_base.py +992 -0
  9. build/lib/build/lib/siat/bond_china.py +100 -0
  10. build/lib/build/lib/siat/bond_zh_sina.py +143 -0
  11. build/lib/build/lib/siat/capm_beta.py +783 -0
  12. build/lib/build/lib/siat/capm_beta2.py +887 -0
  13. build/lib/build/lib/siat/common.py +5360 -0
  14. build/lib/build/lib/siat/compare_cross.py +642 -0
  15. build/lib/build/lib/siat/copyrights.py +18 -0
  16. build/lib/build/lib/siat/cryptocurrency.py +667 -0
  17. build/lib/build/lib/siat/economy.py +1471 -0
  18. build/lib/build/lib/siat/economy2.py +1853 -0
  19. build/lib/build/lib/siat/esg.py +536 -0
  20. build/lib/build/lib/siat/event_study.py +815 -0
  21. build/lib/build/lib/siat/fama_french.py +1521 -0
  22. build/lib/build/lib/siat/fin_stmt2_yahoo.py +982 -0
  23. build/lib/build/lib/siat/financial_base.py +1160 -0
  24. build/lib/build/lib/siat/financial_statements.py +598 -0
  25. build/lib/build/lib/siat/financials.py +2339 -0
  26. build/lib/build/lib/siat/financials2.py +1278 -0
  27. build/lib/build/lib/siat/financials_china.py +4433 -0
  28. build/lib/build/lib/siat/financials_china2.py +2212 -0
  29. build/lib/build/lib/siat/fund.py +629 -0
  30. build/lib/build/lib/siat/fund_china.py +3307 -0
  31. build/lib/build/lib/siat/future_china.py +551 -0
  32. build/lib/build/lib/siat/google_authenticator.py +47 -0
  33. build/lib/build/lib/siat/grafix.py +3636 -0
  34. build/lib/build/lib/siat/holding_risk.py +867 -0
  35. build/lib/build/lib/siat/luchy_draw.py +638 -0
  36. build/lib/build/lib/siat/market_china.py +1168 -0
  37. build/lib/build/lib/siat/markowitz.py +2363 -0
  38. build/lib/build/lib/siat/markowitz2.py +3150 -0
  39. build/lib/build/lib/siat/markowitz2_20250704.py +2969 -0
  40. build/lib/build/lib/siat/markowitz2_20250705.py +3158 -0
  41. build/lib/build/lib/siat/markowitz_simple.py +373 -0
  42. build/lib/build/lib/siat/ml_cases.py +2291 -0
  43. build/lib/build/lib/siat/ml_cases_example.py +60 -0
  44. build/lib/build/lib/siat/option_china.py +3069 -0
  45. build/lib/build/lib/siat/option_pricing.py +1925 -0
  46. build/lib/build/lib/siat/other_indexes.py +409 -0
  47. build/lib/build/lib/siat/risk_adjusted_return.py +1576 -0
  48. build/lib/build/lib/siat/risk_adjusted_return2.py +1900 -0
  49. build/lib/build/lib/siat/risk_evaluation.py +2218 -0
  50. build/lib/build/lib/siat/risk_free_rate.py +351 -0
  51. build/lib/build/lib/siat/sector_china.py +4140 -0
  52. build/lib/build/lib/siat/security_price2.py +727 -0
  53. build/lib/build/lib/siat/security_prices.py +3408 -0
  54. build/lib/build/lib/siat/security_trend.py +402 -0
  55. build/lib/build/lib/siat/security_trend2.py +646 -0
  56. build/lib/build/lib/siat/stock.py +4284 -0
  57. build/lib/build/lib/siat/stock_advice_linear.py +934 -0
  58. build/lib/build/lib/siat/stock_base.py +26 -0
  59. build/lib/build/lib/siat/stock_china.py +2095 -0
  60. build/lib/build/lib/siat/stock_prices_kneighbors.py +910 -0
  61. build/lib/build/lib/siat/stock_prices_linear.py +386 -0
  62. build/lib/build/lib/siat/stock_profile.py +707 -0
  63. build/lib/build/lib/siat/stock_technical.py +3305 -0
  64. build/lib/build/lib/siat/stooq.py +74 -0
  65. build/lib/build/lib/siat/transaction.py +347 -0
  66. build/lib/build/lib/siat/translate.py +5183 -0
  67. build/lib/build/lib/siat/valuation.py +1378 -0
  68. build/lib/build/lib/siat/valuation_china.py +2076 -0
  69. build/lib/build/lib/siat/var_model_validation.py +444 -0
  70. build/lib/build/lib/siat/yf_name.py +811 -0
  71. build/lib/siat/__init__.py +75 -0
  72. build/lib/siat/allin.py +137 -0
  73. build/lib/siat/assets_liquidity.py +915 -0
  74. build/lib/siat/beta_adjustment.py +1058 -0
  75. build/lib/siat/beta_adjustment_china.py +548 -0
  76. build/lib/siat/blockchain.py +143 -0
  77. build/lib/siat/bond.py +2900 -0
  78. build/lib/siat/bond_base.py +992 -0
  79. build/lib/siat/bond_china.py +100 -0
  80. build/lib/siat/bond_zh_sina.py +143 -0
  81. build/lib/siat/capm_beta.py +783 -0
  82. build/lib/siat/capm_beta2.py +887 -0
  83. build/lib/siat/common.py +5360 -0
  84. build/lib/siat/compare_cross.py +642 -0
  85. build/lib/siat/copyrights.py +18 -0
  86. build/lib/siat/cryptocurrency.py +667 -0
  87. build/lib/siat/economy.py +1471 -0
  88. build/lib/siat/economy2.py +1853 -0
  89. build/lib/siat/esg.py +536 -0
  90. build/lib/siat/event_study.py +815 -0
  91. build/lib/siat/fama_french.py +1521 -0
  92. build/lib/siat/fin_stmt2_yahoo.py +982 -0
  93. build/lib/siat/financial_base.py +1160 -0
  94. build/lib/siat/financial_statements.py +598 -0
  95. build/lib/siat/financials.py +2339 -0
  96. build/lib/siat/financials2.py +1278 -0
  97. build/lib/siat/financials_china.py +4433 -0
  98. build/lib/siat/financials_china2.py +2212 -0
  99. build/lib/siat/fund.py +629 -0
  100. build/lib/siat/fund_china.py +3307 -0
  101. build/lib/siat/future_china.py +551 -0
  102. build/lib/siat/google_authenticator.py +47 -0
  103. build/lib/siat/grafix.py +3636 -0
  104. build/lib/siat/holding_risk.py +867 -0
  105. build/lib/siat/luchy_draw.py +638 -0
  106. build/lib/siat/market_china.py +1168 -0
  107. build/lib/siat/markowitz.py +2363 -0
  108. build/lib/siat/markowitz2.py +3150 -0
  109. build/lib/siat/markowitz2_20250704.py +2969 -0
  110. build/lib/siat/markowitz2_20250705.py +3158 -0
  111. build/lib/siat/markowitz_simple.py +373 -0
  112. build/lib/siat/ml_cases.py +2291 -0
  113. build/lib/siat/ml_cases_example.py +60 -0
  114. build/lib/siat/option_china.py +3069 -0
  115. build/lib/siat/option_pricing.py +1925 -0
  116. build/lib/siat/other_indexes.py +409 -0
  117. build/lib/siat/risk_adjusted_return.py +1576 -0
  118. build/lib/siat/risk_adjusted_return2.py +1900 -0
  119. build/lib/siat/risk_evaluation.py +2218 -0
  120. build/lib/siat/risk_free_rate.py +351 -0
  121. build/lib/siat/sector_china.py +4140 -0
  122. build/lib/siat/security_price2.py +727 -0
  123. build/lib/siat/security_prices.py +3408 -0
  124. build/lib/siat/security_trend.py +402 -0
  125. build/lib/siat/security_trend2.py +646 -0
  126. build/lib/siat/stock.py +4284 -0
  127. build/lib/siat/stock_advice_linear.py +934 -0
  128. build/lib/siat/stock_base.py +26 -0
  129. build/lib/siat/stock_china.py +2095 -0
  130. build/lib/siat/stock_prices_kneighbors.py +910 -0
  131. build/lib/siat/stock_prices_linear.py +386 -0
  132. build/lib/siat/stock_profile.py +707 -0
  133. build/lib/siat/stock_technical.py +3305 -0
  134. build/lib/siat/stooq.py +74 -0
  135. build/lib/siat/transaction.py +347 -0
  136. build/lib/siat/translate.py +5183 -0
  137. build/lib/siat/valuation.py +1378 -0
  138. build/lib/siat/valuation_china.py +2076 -0
  139. build/lib/siat/var_model_validation.py +444 -0
  140. build/lib/siat/yf_name.py +811 -0
  141. siat/__init__.py +0 -0
  142. siat/allin.py +0 -0
  143. siat/assets_liquidity.py +0 -0
  144. siat/beta_adjustment.py +0 -0
  145. siat/beta_adjustment_china.py +0 -0
  146. siat/blockchain.py +0 -0
  147. siat/bond.py +0 -0
  148. siat/bond_base.py +0 -0
  149. siat/bond_china.py +0 -0
  150. siat/bond_zh_sina.py +0 -0
  151. siat/capm_beta.py +0 -0
  152. siat/capm_beta2.py +0 -0
  153. siat/common.py +136 -3
  154. siat/compare_cross.py +0 -0
  155. siat/copyrights.py +0 -0
  156. siat/cryptocurrency.py +0 -0
  157. siat/economy.py +0 -0
  158. siat/economy2.py +0 -0
  159. siat/esg.py +0 -0
  160. siat/event_study.py +0 -0
  161. siat/exchange_bond_china.pickle +0 -0
  162. siat/fama_french.py +0 -0
  163. siat/fin_stmt2_yahoo.py +0 -0
  164. siat/financial_base.py +0 -0
  165. siat/financial_statements.py +0 -0
  166. siat/financials.py +0 -0
  167. siat/financials2.py +0 -0
  168. siat/financials_china.py +0 -0
  169. siat/financials_china2.py +0 -0
  170. siat/fund.py +0 -0
  171. siat/fund_china.pickle +0 -0
  172. siat/fund_china.py +0 -0
  173. siat/future_china.py +0 -0
  174. siat/google_authenticator.py +0 -0
  175. siat/grafix.py +1 -1
  176. siat/holding_risk.py +0 -0
  177. siat/luchy_draw.py +0 -0
  178. siat/market_china.py +1 -1
  179. siat/markowitz.py +0 -0
  180. siat/markowitz2.py +240 -39
  181. siat/markowitz2_20250704.py +2969 -0
  182. siat/markowitz2_20250705.py +3158 -0
  183. siat/markowitz_simple.py +0 -0
  184. siat/ml_cases.py +0 -0
  185. siat/ml_cases_example.py +0 -0
  186. siat/option_china.py +0 -0
  187. siat/option_pricing.py +0 -0
  188. siat/other_indexes.py +0 -0
  189. siat/risk_adjusted_return.py +0 -0
  190. siat/risk_adjusted_return2.py +0 -0
  191. siat/risk_evaluation.py +0 -0
  192. siat/risk_free_rate.py +0 -0
  193. siat/sector_china.py +0 -0
  194. siat/security_price2.py +0 -0
  195. siat/security_prices.py +3 -1
  196. siat/security_trend.py +0 -0
  197. siat/security_trend2.py +1 -1
  198. siat/stock.py +4 -2
  199. siat/stock_advice_linear.py +0 -0
  200. siat/stock_base.py +0 -0
  201. siat/stock_china.py +0 -0
  202. siat/stock_info.pickle +0 -0
  203. siat/stock_prices_kneighbors.py +0 -0
  204. siat/stock_prices_linear.py +0 -0
  205. siat/stock_profile.py +0 -0
  206. siat/stock_technical.py +0 -0
  207. siat/stooq.py +0 -0
  208. siat/transaction.py +0 -0
  209. siat/translate.py +11 -11
  210. siat/valuation.py +0 -0
  211. siat/valuation_china.py +0 -0
  212. siat/var_model_validation.py +0 -0
  213. siat/yf_name.py +0 -0
  214. {siat-3.10.131.dist-info → siat-3.10.132.dist-info}/METADATA +235 -227
  215. siat-3.10.132.dist-info/RECORD +218 -0
  216. {siat-3.10.131.dist-info → siat-3.10.132.dist-info}/WHEEL +1 -1
  217. {siat-3.10.131.dist-info → siat-3.10.132.dist-info/licenses}/LICENSE +0 -0
  218. siat-3.10.132.dist-info/top_level.txt +4 -0
  219. siat-3.10.131.dist-info/RECORD +0 -76
  220. siat-3.10.131.dist-info/top_level.txt +0 -1
@@ -0,0 +1,351 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ 版权:王德宏,北京外国语大学国际商学院
4
+ 功能:
5
+ 1、基于股票或股票组合计算无风险收益率
6
+ 2、绘制无风险收益率的变化趋势图:日,周,月
7
+ 3、与实际的无风险收益率比较
8
+ 版本:1.0,2021-2-6
9
+ """
10
+
11
+ #==============================================================================
12
+ #关闭所有警告
13
+ import warnings; warnings.filterwarnings('ignore')
14
+ import siat.common as com
15
+ from siat.translate import *
16
+ #==============================================================================
17
+ #==============================================================================
18
+ #==============================================================================
19
+ def compare_rf(rf1,col1,rf2,col2,fromdate,todate,power=0,zeroline=True,twinx=False):
20
+ """
21
+ 功能:比较两个无风险收益率的时间序列,并绘制趋势线
22
+ """
23
+ #检查日期期间的合理性
24
+ result,start,end=com.check_period(fromdate,todate)
25
+ if not result:
26
+ print(" Error(compare_rf): invalide date period from",fromdate,"to",todate)
27
+ return None
28
+
29
+ #检查并筛选两个无风险收益率的时间序列
30
+ if rf1 is None:
31
+ print(" Error(compare_rf): 1st risk-free-rate series is empty")
32
+ return None
33
+ if rf2 is None:
34
+ print(" Error(compare_rf): 2nd risk-free-rate series is empty")
35
+ return None
36
+ df1a=rf1[rf1.index >= start]
37
+ df1b=df1a[df1a.index <= end]
38
+ df1b[col1+'%']=df1b[col1]*100.0
39
+
40
+ df2a=rf2[rf2.index >= start]
41
+ df2b=df2a[df2a.index <= end]
42
+ df2b[col2+'%']=df2b[col2]*100.0
43
+
44
+ #绘制对比图
45
+ import siat.grafix as g
46
+ ticker1=g.ticker_name(df1b['ticker'][0])
47
+ colname1=col1+'%'
48
+ label1=col1+'%'
49
+ ticker2=g.ticker_name(df2b['ticker'][0])
50
+ colname2=col2+'%'
51
+ label2=col2+'%'
52
+ ylabeltxt='无风险收益率%'
53
+ titletxt="基于CAPM计算的无风险收益率变化趋势"
54
+
55
+ import datetime; today = datetime.date.today()
56
+ rf1note=df1b['footnote'][0]
57
+ rf2note=df2b['footnote'][0]
58
+ footnote="无风险收益率1:"+str(rf1note)+ \
59
+ "\n无风险收益率2:"+str(rf2note)+ \
60
+ "\n数据来源:雅虎财经, "+str(today)
61
+
62
+ g.plot_line2(df1b,ticker1,colname1,label1, \
63
+ df2b,ticker2,colname2,label2, \
64
+ ylabeltxt,titletxt,footnote, \
65
+ power=power,zeroline=zeroline,twinx=twinx)
66
+
67
+ return
68
+
69
+ if __name__=='__main__':
70
+ df1=get_rf_capm('AAPL','^GSPC','2018-1-1','2020-12-31',window=40)
71
+ df2=get_rf_capm('MSFT','^GSPC','2018-1-1','2020-12-31',window=40)
72
+ compare_rf(df1,'Rf',df2,'Rf','2019-1-1','2019-12-31')
73
+ compare_rf(df1,'Rf',df2,'Rf','2019-1-1','2019-12-31',twinx=True)
74
+
75
+ df1['Rf_20']=df1['Rf'].rolling(window=20).mean()
76
+ compare_rf(df1,'Rf',df1,'Rf_20','2019-1-1','2019-12-31')
77
+
78
+ #==============================================================================
79
+
80
+ def calc_rolling_cumret(dfc,col,period='Weekly'):
81
+ """
82
+ 传入日收益率col的数据表dfc
83
+ 传出不同期间的累计收益率序列cumret
84
+ """
85
+ df=dfc.copy()
86
+ #检查period类型
87
+ periodlist = ["Weekly","Biweekly","Monthly","Quarterly","Semiannual","Annual"]
88
+ if not (period in periodlist):
89
+ print(" Error(calc_rolling_cumret): only supports:",periodlist)
90
+ return None
91
+
92
+ #换算期间对应的实际交易天数
93
+ perioddays=[5,10,20,60,120,240]
94
+ rollingnum=perioddays[periodlist.index(period)]
95
+
96
+ import numpy as np
97
+ df['logdret']=np.log(df[col]+1)
98
+ df['cumret']=np.exp(df['logdret'].rolling(rollingnum).sum())-1.0
99
+
100
+ return df['cumret']
101
+
102
+ #==============================================================================
103
+
104
+ if __name__ =="__main__":
105
+ col='Rf'
106
+ limits=[0.01,0.01]
107
+
108
+ def winsor(df,col,limits=[0.01,0.01]):
109
+ """
110
+ 功能:对于数据表df1中的列col进行下1%(参数1)和上1%(参数2)的处理
111
+ """
112
+ import numpy as np
113
+ from scipy.stats.mstats import winsorize
114
+
115
+ a = np.array(df[col])
116
+ aw=winsorize(a,limits=limits)
117
+
118
+ return aw.data
119
+ #==============================================================================
120
+ if __name__=='__main__':
121
+ ticker='399001.SZ'
122
+ mktidx='000300.SS'
123
+ fromdate='2020-1-1'
124
+ todate='2020-12-31'
125
+ window=240
126
+
127
+ def get_rf_capm(ticker,mktidx,fromdate,todate,window=240,sharelist=[]):
128
+ """
129
+ 功能:计算无风险收益率的时间序列
130
+ ticker:股票或股票组合
131
+ mktidx:股票市场指数
132
+ fromdate:开始时间
133
+ todate:截止时间
134
+ window:每次回归的样本个数
135
+ sharelist:第一个参数为投资组合的持股比例,默认为等权重;为单个股票时无用
136
+ """
137
+ #检查日期期间的合理性
138
+ result,start,end=com.check_period(fromdate,todate)
139
+ if not result:
140
+ print(" Error(get_rf_capm): invalide date period from",fromdate,"to",todate)
141
+ return None
142
+
143
+ #提前开始日期,留出回归窗口
144
+ start1=com.date_adjust(start,adjust=-window*2)
145
+
146
+ #获得股票或股票组合的历史收益率
147
+ import siat.security_prices as sp
148
+ #单个股票情形
149
+ if isinstance(ticker,str):
150
+ spdf=sp.get_prices(ticker,start1,end)
151
+ #股票组合情形
152
+ if isinstance(ticker,list):
153
+ if sharelist == []:
154
+ num=len(ticker)
155
+ sharelist=[1]*num
156
+ spdf=sp.get_prices_portfolio(ticker,sharelist,start1,end)
157
+ if spdf is None:
158
+ print(" Error(get_rf_capm): info not found or unavailable for",ticker)
159
+ return None
160
+
161
+ spdf['Stock_dailyRet']=spdf['Close'].pct_change()
162
+
163
+ #获取市场指数的历史收益率
164
+ rmdf=sp.get_prices(mktidx,start1,end)
165
+ if rmdf is None:
166
+ print(" Error(get_rf_capm): info not found or unavailable for",mktidx)
167
+ return None
168
+ rmdf['Market_dailyRet']=rmdf['Close'].pct_change()
169
+
170
+ #合并股票(组合)与市场指数的收益率为一个数据集
171
+ import pandas as pd
172
+ df=pd.merge(rmdf['Market_dailyRet'],spdf['Stock_dailyRet'],how='inner',left_index=True,right_index=True)
173
+ df['Date']=df.index.strftime("%Y-%m-%d")
174
+
175
+ datelist_ts=list(df.index)
176
+ datelist=list(df['Date'])
177
+ fromdate=start.strftime("%Y-%m-%d")
178
+ #start_pos=lookup_datelist(datelist,fromdate,direction='more')
179
+ todate=end.strftime("%Y-%m-%d")
180
+ #end_pos=lookup_datelist(datelist,todate,direction='less')
181
+
182
+ #用于滚动的日期期间
183
+ datelist_rolling=[]
184
+ for d in datelist:
185
+ if (d >= fromdate) and (d <= todate):
186
+ datelist_rolling=datelist_rolling+[d]
187
+
188
+ #滚动回归
189
+ if sharelist == []:
190
+ #footnote=[ticker,mktidx,fromdate,todate,window]
191
+ footnote=[ticker,mktidx,window]
192
+ else:
193
+ #footnote=[ticker,mktidx,fromdate,todate,window,sharelist]
194
+ footnote=[ticker,mktidx,window,sharelist]
195
+ betas=pd.DataFrame(columns=('date','Beta','alpha','R-sqr','p-value','sig','Rf','ticker','footnote'))
196
+ from scipy import stats
197
+ import numpy as np
198
+
199
+ for d in datelist_rolling:
200
+ pos2=lookup_datelist(datelist,d)
201
+ pos1=pos2 - window
202
+ sdate2=datelist_ts[pos2]
203
+ sdate1=datelist_ts[pos1]
204
+
205
+ sampledf=df[df.index >= sdate1].copy()
206
+ sampledf=sampledf[sampledf.index < sdate2]
207
+
208
+ (beta,alpha,r_value,p_value,std_err)= \
209
+ stats.linregress(sampledf['Market_dailyRet'],sampledf['Stock_dailyRet'])
210
+ sig=sig_stars(p_value)
211
+ try:
212
+ rf=alpha/(1-beta)
213
+ except:
214
+ rf=np.nan
215
+
216
+ row=pd.Series({'date':sdate2,'Beta':beta,'alpha':alpha, \
217
+ 'R-sqr':r_value**2,'p-value':p_value,'sig':sig,'Rf':rf,'ticker':ticker,'footnote':footnote})
218
+ try:
219
+ betas=betas.append(row,ignore_index=True)
220
+ except:
221
+ betas=betas._append(row,ignore_index=True)
222
+
223
+ betas.set_index('date',inplace=True)
224
+
225
+ return betas
226
+
227
+ if __name__=='__main__':
228
+ df1=get_rf_capm('399001.SZ','000001.SS','2020-1-1','2020-12-31',window=240)
229
+ df1['Rf'].plot()
230
+
231
+ df2=get_rf_capm('000001.SS','399001.SZ','2020-1-1','2020-12-31',window=240)
232
+ df2['Rf'].plot()
233
+
234
+ df3=get_rf_capm('000001.SS','000300.SS','2020-1-1','2020-12-31',window=240)
235
+ df3['Rf'].plot()
236
+
237
+ df4=get_rf_capm('AAPL','^GSPC','2020-1-1','2020-12-31',window=240)
238
+ df4['Rf'].plot()
239
+
240
+ df5=get_rf_capm('^DJI','^GSPC','2020-1-1','2020-12-31',window=240)
241
+ df5['Rf'].plot()
242
+ #==============================================================================
243
+ if __name__=='__main__':
244
+ datelist=['2019-12-30','2019-12-31','2020-01-02','2020-01-03','2020-01-06']
245
+ adate='2020-01-01'
246
+ adate='2020-01-04'
247
+ direction='less'
248
+ direction='more'
249
+
250
+ def lookup_datelist(datelist,adate,direction='less'):
251
+ """
252
+ 功能:在日期列表datelist查找与日期adate最接近日期的位置
253
+ direction='more':若无匹配的日期,则往日期增加的方向查找最接近日期的位置
254
+ direction='less':若无匹配的日期,则往日期减少的方向查找最接近日期的位置
255
+ """
256
+ i=0
257
+ found=False
258
+ while not found:
259
+ try:
260
+ pos=datelist.index(adate)
261
+ except:
262
+ if direction == 'more':
263
+ i=i+1
264
+ else:
265
+ i=i-1
266
+ adate=com.date_adjust(adate,adjust=i)
267
+ else:
268
+ found=True
269
+
270
+ return pos
271
+
272
+ #==============================================================================
273
+ if __name__=='__main__':
274
+ p_value=0.07
275
+ p_value=0.02
276
+ p_value=0.0009
277
+ criteria='accounting'
278
+ criteria='financial'
279
+
280
+ def sig_stars(p_value,criteria='accounting'):
281
+ """
282
+ 功能:基于p_value给出星号的个数
283
+ p_value:显著性水平
284
+ criteria='accounting':默认的显著性基准,<0.1为一颗星;若为'financial',<0.05为一颗星
285
+ """
286
+ sig=''
287
+ if criteria == 'accounting':
288
+ if p_value < 0.1: sig='*'*1
289
+ if p_value < 0.05: sig='*'*2
290
+ if p_value < 0.01: sig='*'*3
291
+ else:
292
+ if p_value < 0.05: sig='*'*1
293
+ if p_value < 0.01: sig='*'*2
294
+ if p_value < 0.001: sig='*'*3
295
+
296
+ return sig
297
+
298
+ if __name__=='__main__':
299
+ sig_stars(0.1)
300
+ sig_stars(0.07)
301
+ sig_stars(0.04)
302
+ sig_stars(0.009)
303
+
304
+ #==============================================================================
305
+ def calc_capm_rf(rmdf,rdf):
306
+ """
307
+ 功能:CAPM回归
308
+ 返回:截距项,贝塔系数,无风险收益率
309
+ """
310
+ #OLS回归
311
+ from scipy import stats
312
+ (beta,alpha,r_value,p_value,std_err)=stats.linregress(rmdf,rdf)
313
+
314
+ rf=alpha/(1-beta)
315
+
316
+ return [beta,alpha,r_value,p_value,std_err,rf]
317
+
318
+ #==============================================================================
319
+ #==============================================================================
320
+ #==============================================================================
321
+ #==============================================================================
322
+ if __name__=='__main__':
323
+ start='2018-1-1'
324
+ end='2020-12-31'
325
+ scope='US'
326
+ freq='daily'
327
+
328
+ def get_rf_kfdl(start,end,scope='US',freq='daily'):
329
+ """
330
+ 功能:从Kenneth R. French's Data Library获得无风险收益率
331
+ start/end:日期期间
332
+ scope:国家/地区,支持美国/北美/欧洲/日本/不含日本的亚太/不含美国的全球。全球
333
+ freq:支持日/月/年收益率,其中美国还支持周数据
334
+ 返回:无风险收益率,市场收益率
335
+ """
336
+ import siat.fama_french as ff
337
+ factor='FF3'
338
+ df=ff.get_ff_factors(start,end,scope,factor,freq)
339
+
340
+ df['Market_dailyRet']=df['Mkt-RF']+df['RF']
341
+ df['Rf']=df['RF']
342
+ df['ticker']=scope
343
+ footnote=[scope,freq]
344
+ df['footnote']=df['ticker'].apply(lambda x:footnote)
345
+
346
+ df1=df[['Market_dailyRet','Rf','ticker','footnote']]
347
+
348
+ return df1
349
+
350
+
351
+ #==============================================================================