sglang 0.2.14.post2__tar.gz → 0.3.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {sglang-0.2.14.post2/sglang.egg-info → sglang-0.3.0}/PKG-INFO +9 -8
- {sglang-0.2.14.post2 → sglang-0.3.0}/README.md +8 -7
- {sglang-0.2.14.post2 → sglang-0.3.0}/pyproject.toml +1 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/api.py +2 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/bench_latency.py +39 -28
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/runtime_endpoint.py +8 -4
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/interpreter.py +3 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/ir.py +5 -0
- sglang-0.3.0/sglang/launch_server_llavavid.py +26 -0
- sglang-0.3.0/sglang/srt/configs/__init__.py +5 -0
- sglang-0.3.0/sglang/srt/configs/exaone.py +195 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/constrained/fsm_cache.py +1 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/conversation.py +24 -2
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/hf_transformers_utils.py +12 -12
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/extend_attention.py +13 -8
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/logits_processor.py +4 -4
- sglang-0.3.0/sglang/srt/layers/sampler.py +178 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/controller_multi.py +5 -5
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/controller_single.py +5 -5
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/io_struct.py +6 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/schedule_batch.py +26 -11
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/tokenizer_manager.py +9 -9
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/tp_worker.py +38 -26
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/model_config.py +3 -3
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/model_executor/cuda_graph_runner.py +26 -9
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/model_executor/forward_batch_info.py +68 -23
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/model_executor/model_runner.py +15 -22
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/chatglm.py +9 -15
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/commandr.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/dbrx.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/deepseek.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/deepseek_v2.py +57 -25
- sglang-0.3.0/sglang/srt/models/exaone.py +368 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/gemma.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/gemma2.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/gpt_bigcode.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/grok.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/internlm2.py +5 -1
- sglang-0.2.14.post2/sglang/srt/models/llama2.py → sglang-0.3.0/sglang/srt/models/llama.py +25 -45
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/llama_classification.py +34 -41
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/llama_embedding.py +7 -6
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/llava.py +8 -11
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/llavavid.py +5 -6
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/minicpm.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/mistral.py +2 -3
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/mixtral.py +6 -2
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/mixtral_quant.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/qwen.py +5 -2
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/qwen2.py +6 -2
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/qwen2_moe.py +5 -14
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/stablelm.py +5 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/openai_api/adapter.py +16 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/openai_api/protocol.py +5 -5
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/sampling_batch_info.py +75 -6
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/server.py +6 -6
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/utils.py +0 -3
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/runners.py +1 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/test_programs.py +68 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/test_utils.py +4 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/utils.py +39 -0
- sglang-0.3.0/sglang/version.py +1 -0
- {sglang-0.2.14.post2 → sglang-0.3.0/sglang.egg-info}/PKG-INFO +9 -8
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang.egg-info/SOURCES.txt +4 -1
- sglang-0.2.14.post2/sglang/launch_server_llavavid.py +0 -26
- sglang-0.2.14.post2/sglang/srt/layers/sampler.py +0 -101
- sglang-0.2.14.post2/sglang/version.py +0 -1
- {sglang-0.2.14.post2 → sglang-0.3.0}/LICENSE +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/setup.cfg +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/__init__.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/bench_serving.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/check_env.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/global_config.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/__init__.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/__init__.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/anthropic.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/base_backend.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/litellm.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/openai.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/backend/vertexai.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/chat_template.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/choices.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/compiler.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/lang/tracer.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/launch_server.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/constrained/__init__.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/constrained/base_tool_cache.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/constrained/jump_forward.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/activation.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/decode_attention.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/fused_moe/__init__.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/fused_moe/fused_moe.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/fused_moe/layer.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/layernorm.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/pooler.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/prefill_attention.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/layers/radix_attention.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/detokenizer_manager.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/managers/policy_scheduler.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/mem_cache/base_prefix_cache.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/mem_cache/chunk_cache.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/mem_cache/flush_cache.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/mem_cache/memory_pool.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/mem_cache/radix_cache.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/mm_utils.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/models/yivl.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/penaltylib/__init__.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/penaltylib/orchestrator.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/sampling/sampling_params.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/srt/server_args.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/run_eval.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/simple_eval_common.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/simple_eval_gpqa.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/simple_eval_humaneval.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/simple_eval_math.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/simple_eval_mgsm.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/simple_eval_mmlu.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/srt/sampling/penaltylib/utils.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/test_activation.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang/test/test_layernorm.py +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang.egg-info/dependency_links.txt +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang.egg-info/requires.txt +0 -0
- {sglang-0.2.14.post2 → sglang-0.3.0}/sglang.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: sglang
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.3.0
|
4
4
|
Summary: SGLang is yet another fast serving framework for large language models and vision language models.
|
5
5
|
License: Apache License
|
6
6
|
Version 2.0, January 2004
|
@@ -312,7 +312,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
|
|
312
312
|
### Method 2: From source
|
313
313
|
```
|
314
314
|
# Use the last release branch
|
315
|
-
git clone -b v0.
|
315
|
+
git clone -b v0.3.0 https://github.com/sgl-project/sglang.git
|
316
316
|
cd sglang
|
317
317
|
|
318
318
|
pip install --upgrade pip
|
@@ -461,7 +461,7 @@ It supports streaming, vision, and most features of the Chat/Completions/Models/
|
|
461
461
|
```
|
462
462
|
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
|
463
463
|
```
|
464
|
-
- Add `--dp 2` to enable multi-GPU data parallelism. It can also be used together with tensor parallelism.
|
464
|
+
- Add `--dp 2` to enable multi-GPU data parallelism. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
|
465
465
|
```
|
466
466
|
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
|
467
467
|
```
|
@@ -489,13 +489,13 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
489
489
|
### Supported Models
|
490
490
|
|
491
491
|
**Generative Models**
|
492
|
-
|
493
492
|
- Llama / Llama 2 / Llama 3 / Llama 3.1
|
494
493
|
- Mistral / Mixtral / Mistral NeMo
|
495
494
|
- Gemma / Gemma 2
|
496
495
|
- Qwen / Qwen 2 / Qwen 2 MoE
|
497
496
|
- DeepSeek / DeepSeek 2
|
498
497
|
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
|
498
|
+
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
|
499
499
|
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
|
500
500
|
- Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
|
501
501
|
- LLaVA 1.5 / 1.6 / NeXT
|
@@ -509,6 +509,7 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
509
509
|
- Grok
|
510
510
|
- ChatGLM
|
511
511
|
- InternLM 2
|
512
|
+
- Exaone 3
|
512
513
|
|
513
514
|
**Embedding Models**
|
514
515
|
|
@@ -636,7 +637,7 @@ print(state["answer_1"])
|
|
636
637
|
#### More Examples
|
637
638
|
|
638
639
|
Anthropic and VertexAI (Gemini) models are also supported.
|
639
|
-
You can find more examples at [examples/quick_start](examples/quick_start).
|
640
|
+
You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
|
640
641
|
|
641
642
|
### Language Feature
|
642
643
|
To begin with, import sglang.
|
@@ -649,7 +650,7 @@ You can implement your prompt flow in a function decorated by `sgl.function`.
|
|
649
650
|
You can then invoke the function with `run` or `run_batch`.
|
650
651
|
The system will manage the state, chat template, parallelism and batching for you.
|
651
652
|
|
652
|
-
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)
|
653
|
+
The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
|
653
654
|
|
654
655
|
#### Control Flow
|
655
656
|
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.
|
@@ -698,7 +699,7 @@ def image_qa(s, image_file, question):
|
|
698
699
|
s += sgl.assistant(sgl.gen("answer", max_tokens=256)
|
699
700
|
```
|
700
701
|
|
701
|
-
See also [srt_example_llava.py](examples/quick_start/
|
702
|
+
See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
|
702
703
|
|
703
704
|
#### Constrained Decoding
|
704
705
|
Use `regex` to specify a regular expression as a decoding constraint.
|
@@ -742,7 +743,7 @@ def character_gen(s, name):
|
|
742
743
|
s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
|
743
744
|
```
|
744
745
|
|
745
|
-
See also [json_decode.py](examples/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
|
746
|
+
See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
|
746
747
|
|
747
748
|
#### Batching
|
748
749
|
Use `run_batch` to run a batch of requests with continuous batching.
|
@@ -56,7 +56,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
|
|
56
56
|
### Method 2: From source
|
57
57
|
```
|
58
58
|
# Use the last release branch
|
59
|
-
git clone -b v0.
|
59
|
+
git clone -b v0.3.0 https://github.com/sgl-project/sglang.git
|
60
60
|
cd sglang
|
61
61
|
|
62
62
|
pip install --upgrade pip
|
@@ -205,7 +205,7 @@ It supports streaming, vision, and most features of the Chat/Completions/Models/
|
|
205
205
|
```
|
206
206
|
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
|
207
207
|
```
|
208
|
-
- Add `--dp 2` to enable multi-GPU data parallelism. It can also be used together with tensor parallelism.
|
208
|
+
- Add `--dp 2` to enable multi-GPU data parallelism. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
|
209
209
|
```
|
210
210
|
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
|
211
211
|
```
|
@@ -233,13 +233,13 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
233
233
|
### Supported Models
|
234
234
|
|
235
235
|
**Generative Models**
|
236
|
-
|
237
236
|
- Llama / Llama 2 / Llama 3 / Llama 3.1
|
238
237
|
- Mistral / Mixtral / Mistral NeMo
|
239
238
|
- Gemma / Gemma 2
|
240
239
|
- Qwen / Qwen 2 / Qwen 2 MoE
|
241
240
|
- DeepSeek / DeepSeek 2
|
242
241
|
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
|
242
|
+
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
|
243
243
|
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
|
244
244
|
- Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
|
245
245
|
- LLaVA 1.5 / 1.6 / NeXT
|
@@ -253,6 +253,7 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
253
253
|
- Grok
|
254
254
|
- ChatGLM
|
255
255
|
- InternLM 2
|
256
|
+
- Exaone 3
|
256
257
|
|
257
258
|
**Embedding Models**
|
258
259
|
|
@@ -380,7 +381,7 @@ print(state["answer_1"])
|
|
380
381
|
#### More Examples
|
381
382
|
|
382
383
|
Anthropic and VertexAI (Gemini) models are also supported.
|
383
|
-
You can find more examples at [examples/quick_start](examples/quick_start).
|
384
|
+
You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
|
384
385
|
|
385
386
|
### Language Feature
|
386
387
|
To begin with, import sglang.
|
@@ -393,7 +394,7 @@ You can implement your prompt flow in a function decorated by `sgl.function`.
|
|
393
394
|
You can then invoke the function with `run` or `run_batch`.
|
394
395
|
The system will manage the state, chat template, parallelism and batching for you.
|
395
396
|
|
396
|
-
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)
|
397
|
+
The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
|
397
398
|
|
398
399
|
#### Control Flow
|
399
400
|
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.
|
@@ -442,7 +443,7 @@ def image_qa(s, image_file, question):
|
|
442
443
|
s += sgl.assistant(sgl.gen("answer", max_tokens=256)
|
443
444
|
```
|
444
445
|
|
445
|
-
See also [srt_example_llava.py](examples/quick_start/
|
446
|
+
See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
|
446
447
|
|
447
448
|
#### Constrained Decoding
|
448
449
|
Use `regex` to specify a regular expression as a decoding constraint.
|
@@ -486,7 +487,7 @@ def character_gen(s, name):
|
|
486
487
|
s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
|
487
488
|
```
|
488
489
|
|
489
|
-
See also [json_decode.py](examples/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
|
490
|
+
See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
|
490
491
|
|
491
492
|
#### Batching
|
492
493
|
Use `run_batch` to run a batch of requests with continuous batching.
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "sglang"
|
7
|
-
version = "0.
|
7
|
+
version = "0.3.0"
|
8
8
|
description = "SGLang is yet another fast serving framework for large language models and vision language models."
|
9
9
|
readme = "README.md"
|
10
10
|
requires-python = ">=3.8"
|
@@ -78,6 +78,7 @@ def gen(
|
|
78
78
|
choices: Optional[List[str]] = None,
|
79
79
|
choices_method: Optional[ChoicesSamplingMethod] = None,
|
80
80
|
regex: Optional[str] = None,
|
81
|
+
json_schema: Optional[str] = None,
|
81
82
|
):
|
82
83
|
"""Call the model to generate. See the meaning of the arguments in docs/en/sampling_params.md"""
|
83
84
|
|
@@ -114,6 +115,7 @@ def gen(
|
|
114
115
|
return_text_in_logprobs,
|
115
116
|
dtype,
|
116
117
|
regex,
|
118
|
+
json_schema,
|
117
119
|
)
|
118
120
|
|
119
121
|
|
@@ -11,26 +11,34 @@ python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
11
11
|
## plot the results in series of lines:
|
12
12
|
python -m sglang.bench_latency --result-filename out.jsonl --graph-sql="select run_name, batch_size, prefill_throughput from results"
|
13
13
|
|
14
|
-
|
15
14
|
# Usage (correctness test):
|
16
15
|
python -m sglang.bench_latency --model-path TinyLlama/TinyLlama-1.1B-Chat-v0.4 --correct
|
17
16
|
|
18
17
|
## Reference output (of the correctness test above, can be gpu dependent):
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
18
|
+
input_ids=[[1, 450, 7483, 310, 3444, 338], [1, 450, 7483, 310, 278, 3303, 13187, 290, 338], [1, 20628, 338, 263, 6575, 1460, 2462, 322, 306, 763]]
|
19
|
+
|
20
|
+
prefill logits (first half): tensor([[-10.0312, -9.5000, 0.8931, ..., -4.9414, -3.2422, -3.3633],
|
21
|
+
[-10.0312, -9.5000, 0.8931, ..., -4.9414, -3.2422, -3.3633],
|
22
|
+
[ -9.1875, -10.2500, 2.7129, ..., -4.3359, -4.0664, -4.1328]],
|
23
|
+
device='cuda:0')
|
24
|
+
|
25
|
+
prefill logits (final): tensor([[-8.3125, -7.1172, 3.3457, ..., -4.9570, -4.1328, -3.4141],
|
26
|
+
[-8.9141, -9.0156, 4.1445, ..., -4.9922, -4.4961, -4.0781],
|
27
|
+
[-9.6328, -9.0547, 4.0195, ..., -5.3047, -4.7148, -4.4570]],
|
28
|
+
device='cuda:0')
|
29
|
+
|
30
|
+
========== Prompt 0 ==========
|
31
|
+
<s> The capital of France is Paris.
|
28
32
|
The capital of the United States is Washington, D.C.
|
29
33
|
|
30
|
-
|
34
|
+
|
35
|
+
========== Prompt 1 ==========
|
36
|
+
<s> The capital of the United Kindom is London.
|
31
37
|
The capital of the United Kingdom is London.
|
32
38
|
The capital of the
|
33
|
-
|
39
|
+
|
40
|
+
========== Prompt 2 ==========
|
41
|
+
<s> Today is a sunny day and I like to go for a walk in the park.
|
34
42
|
I'm going to the park
|
35
43
|
"""
|
36
44
|
|
@@ -200,16 +208,16 @@ def extend(reqs, model_runner):
|
|
200
208
|
tree_cache=None,
|
201
209
|
)
|
202
210
|
batch.prepare_for_extend(model_runner.model_config.vocab_size)
|
203
|
-
|
204
|
-
next_token_ids =
|
205
|
-
return next_token_ids,
|
211
|
+
sample_output, logits_output = model_runner.forward(batch, ForwardMode.EXTEND)
|
212
|
+
next_token_ids = sample_output.batch_next_token_ids.tolist()
|
213
|
+
return next_token_ids, logits_output.next_token_logits, batch
|
206
214
|
|
207
215
|
|
208
216
|
def decode(input_token_ids, batch, model_runner):
|
209
|
-
batch.prepare_for_decode(input_token_ids
|
210
|
-
|
211
|
-
next_token_ids =
|
212
|
-
return next_token_ids,
|
217
|
+
batch.prepare_for_decode(input_token_ids)
|
218
|
+
sample_output, logits_output = model_runner.forward(batch, ForwardMode.DECODE)
|
219
|
+
next_token_ids = sample_output.batch_next_token_ids.tolist()
|
220
|
+
return next_token_ids, logits_output.next_token_logits
|
213
221
|
|
214
222
|
|
215
223
|
@torch.inference_mode()
|
@@ -225,12 +233,12 @@ def correctness_test(
|
|
225
233
|
|
226
234
|
# Prepare inputs
|
227
235
|
input_ids, reqs = prepare_inputs_for_correctness_test(bench_args, tokenizer)
|
228
|
-
rank_print(f"{input_ids=}")
|
236
|
+
rank_print(f"\n{input_ids=}\n")
|
229
237
|
|
230
238
|
if bench_args.cut_len > 0:
|
231
239
|
# Prefill
|
232
240
|
next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
|
233
|
-
rank_print("prefill logits (first half)
|
241
|
+
rank_print(f"prefill logits (first half): {next_token_logits} \n")
|
234
242
|
|
235
243
|
# Prepare extend inputs
|
236
244
|
reqs = prepare_extend_inputs_for_correctness_test(
|
@@ -239,7 +247,7 @@ def correctness_test(
|
|
239
247
|
|
240
248
|
# Extend
|
241
249
|
next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
|
242
|
-
rank_print("prefill logits (final)
|
250
|
+
rank_print(f"prefill logits (final): {next_token_logits} \n")
|
243
251
|
|
244
252
|
# Decode
|
245
253
|
output_ids = [input_ids[i] + [next_token_ids[i]] for i in range(len(input_ids))]
|
@@ -250,7 +258,8 @@ def correctness_test(
|
|
250
258
|
|
251
259
|
# Print
|
252
260
|
for i in range(len(reqs)):
|
253
|
-
rank_print(
|
261
|
+
rank_print(f"========== Prompt {i} ==========")
|
262
|
+
rank_print(tokenizer.decode(output_ids[i]), "\n")
|
254
263
|
|
255
264
|
|
256
265
|
@torch.inference_mode()
|
@@ -292,6 +301,7 @@ def latency_test_run_once(
|
|
292
301
|
measurement_results["prefill_throughput"] = throughput
|
293
302
|
|
294
303
|
# Decode
|
304
|
+
decode_latencies = []
|
295
305
|
for i in range(output_len):
|
296
306
|
torch.cuda.synchronize()
|
297
307
|
tic = time.time()
|
@@ -300,17 +310,18 @@ def latency_test_run_once(
|
|
300
310
|
latency = time.time() - tic
|
301
311
|
tot_latency += latency
|
302
312
|
throughput = batch_size / latency
|
313
|
+
decode_latencies.append(latency)
|
303
314
|
if i < 5:
|
304
315
|
rank_print(
|
305
316
|
f"Decode. latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s"
|
306
317
|
)
|
307
|
-
|
308
|
-
|
318
|
+
med_decode_latency = np.median(decode_latencies)
|
319
|
+
med_decode_throughput = batch_size / med_decode_latency
|
309
320
|
rank_print(
|
310
|
-
f"Decode.
|
321
|
+
f"Decode. median latency: {med_decode_latency:6.5f} s, median throughput: {med_decode_throughput:9.2f} token/s"
|
311
322
|
)
|
312
|
-
measurement_results["
|
313
|
-
measurement_results["
|
323
|
+
measurement_results["median_decode_latency"] = med_decode_latency
|
324
|
+
measurement_results["median_decode_throughput"] = med_decode_throughput
|
314
325
|
|
315
326
|
throughput = (input_len + output_len) * batch_size / tot_latency
|
316
327
|
rank_print(
|
@@ -4,7 +4,7 @@ from typing import List, Optional
|
|
4
4
|
|
5
5
|
from sglang.global_config import global_config
|
6
6
|
from sglang.lang.backend.base_backend import BaseBackend
|
7
|
-
from sglang.lang.chat_template import get_chat_template_by_model_path
|
7
|
+
from sglang.lang.chat_template import get_chat_template, get_chat_template_by_model_path
|
8
8
|
from sglang.lang.choices import ChoicesDecision, ChoicesSamplingMethod
|
9
9
|
from sglang.lang.interpreter import StreamExecutor
|
10
10
|
from sglang.lang.ir import (
|
@@ -23,6 +23,7 @@ class RuntimeEndpoint(BaseBackend):
|
|
23
23
|
base_url: str,
|
24
24
|
api_key: Optional[str] = None,
|
25
25
|
verify: Optional[str] = None,
|
26
|
+
chat_template_name: Optional[str] = None,
|
26
27
|
):
|
27
28
|
super().__init__()
|
28
29
|
self.support_concate_and_append = True
|
@@ -39,9 +40,12 @@ class RuntimeEndpoint(BaseBackend):
|
|
39
40
|
self._assert_success(res)
|
40
41
|
self.model_info = res.json()
|
41
42
|
|
42
|
-
|
43
|
-
self.
|
44
|
-
|
43
|
+
if chat_template_name:
|
44
|
+
self.chat_template = get_chat_template(chat_template_name)
|
45
|
+
else:
|
46
|
+
self.chat_template = get_chat_template_by_model_path(
|
47
|
+
self.model_info["model_path"]
|
48
|
+
)
|
45
49
|
|
46
50
|
def get_model_name(self):
|
47
51
|
return self.model_info["model_path"]
|
@@ -673,6 +673,7 @@ class StreamExecutor:
|
|
673
673
|
"return_text_in_logprobs",
|
674
674
|
"dtype",
|
675
675
|
"regex",
|
676
|
+
"json_schema",
|
676
677
|
]:
|
677
678
|
value = getattr(sampling_params, item, None)
|
678
679
|
if value is not None:
|
@@ -854,6 +855,8 @@ class ProgramState:
|
|
854
855
|
return self.stream_executor.get_meta_info(name)
|
855
856
|
|
856
857
|
def __iadd__(self, other):
|
858
|
+
if other is None:
|
859
|
+
raise ValueError("Tried to append None to state.")
|
857
860
|
self.stream_executor.submit(other)
|
858
861
|
return self
|
859
862
|
|
@@ -30,6 +30,7 @@ class SglSamplingParams:
|
|
30
30
|
logprob_start_len: Optional[int] = (None,)
|
31
31
|
top_logprobs_num: Optional[int] = (None,)
|
32
32
|
return_text_in_logprobs: Optional[bool] = (None,)
|
33
|
+
json_schema: Optional[str] = None
|
33
34
|
|
34
35
|
# for constrained generation, not included in to_xxx_kwargs
|
35
36
|
dtype: Optional[str] = None
|
@@ -51,6 +52,7 @@ class SglSamplingParams:
|
|
51
52
|
self.logprob_start_len,
|
52
53
|
self.top_logprobs_num,
|
53
54
|
self.return_text_in_logprobs,
|
55
|
+
self.json_schema,
|
54
56
|
)
|
55
57
|
|
56
58
|
def to_openai_kwargs(self):
|
@@ -121,6 +123,7 @@ class SglSamplingParams:
|
|
121
123
|
"presence_penalty": self.presence_penalty,
|
122
124
|
"ignore_eos": self.ignore_eos,
|
123
125
|
"regex": self.regex,
|
126
|
+
"json_schema": self.json_schema,
|
124
127
|
}
|
125
128
|
|
126
129
|
|
@@ -425,6 +428,7 @@ class SglGen(SglExpr):
|
|
425
428
|
return_text_in_logprobs: Optional[bool] = None,
|
426
429
|
dtype: Optional[type] = None,
|
427
430
|
regex: Optional[str] = None,
|
431
|
+
json_schema: Optional[str] = None,
|
428
432
|
):
|
429
433
|
"""Call the model to generate. See the meaning of the arguments in docs/en/sampling_params.md"""
|
430
434
|
super().__init__()
|
@@ -446,6 +450,7 @@ class SglGen(SglExpr):
|
|
446
450
|
return_text_in_logprobs=return_text_in_logprobs,
|
447
451
|
dtype=dtype,
|
448
452
|
regex=regex,
|
453
|
+
json_schema=json_schema,
|
449
454
|
)
|
450
455
|
|
451
456
|
def __repr__(self):
|
@@ -0,0 +1,26 @@
|
|
1
|
+
"""Launch the inference server for Llava-video model."""
|
2
|
+
|
3
|
+
import argparse
|
4
|
+
|
5
|
+
from sglang.srt.server import ServerArgs, launch_server
|
6
|
+
|
7
|
+
if __name__ == "__main__":
|
8
|
+
parser = argparse.ArgumentParser()
|
9
|
+
ServerArgs.add_cli_args(parser)
|
10
|
+
args = parser.parse_args()
|
11
|
+
server_args = ServerArgs.from_cli_args(args)
|
12
|
+
|
13
|
+
model_override_args = {}
|
14
|
+
model_override_args["mm_spatial_pool_stride"] = 2
|
15
|
+
model_override_args["architectures"] = ["LlavaVidForCausalLM"]
|
16
|
+
model_override_args["num_frames"] = 16
|
17
|
+
model_override_args["model_type"] = "llavavid"
|
18
|
+
if model_override_args["num_frames"] == 32:
|
19
|
+
model_override_args["rope_scaling"] = {"factor": 2.0, "type": "linear"}
|
20
|
+
model_override_args["max_sequence_length"] = 4096 * 2
|
21
|
+
model_override_args["tokenizer_model_max_length"] = 4096 * 2
|
22
|
+
model_override_args["model_max_length"] = 4096 * 2
|
23
|
+
if "34b" in args.model_path.lower():
|
24
|
+
model_override_args["image_token_index"] = 64002
|
25
|
+
|
26
|
+
launch_server(server_args, model_override_args, None)
|
@@ -0,0 +1,195 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2024 The LG AI Research EXAONE Lab. All rights reserved.
|
3
|
+
# Copyright 2024 The LG CNS AI Engineering Team.
|
4
|
+
# Copyright 2023-2024 SGLang Team.
|
5
|
+
#
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7
|
+
# you may not use this file except in compliance with the License.
|
8
|
+
# You may obtain a copy of the License at
|
9
|
+
#
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11
|
+
#
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15
|
+
# See the License for the specific language governing permissions and
|
16
|
+
# limitations under the License.
|
17
|
+
""" EXAONE model configuration """
|
18
|
+
from typing import Any, Dict
|
19
|
+
|
20
|
+
from transformers.configuration_utils import PretrainedConfig
|
21
|
+
from transformers.utils import logging
|
22
|
+
|
23
|
+
logger = logging.get_logger(__name__)
|
24
|
+
|
25
|
+
EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP: Dict[str, Any] = {}
|
26
|
+
|
27
|
+
|
28
|
+
# ruff: noqa: E501
|
29
|
+
class ExaoneConfig(PretrainedConfig):
|
30
|
+
r"""
|
31
|
+
This is the configuration class to store the configuration of a :class:`~transformers.ExaoneModel`. It is used to
|
32
|
+
instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
|
33
|
+
configuration with the defaults will yield a similar configuration to that of the Exaone
|
34
|
+
|
35
|
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
36
|
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
37
|
+
|
38
|
+
|
39
|
+
Args:
|
40
|
+
vocab_size (:obj:`int`, `optional`, defaults to 102400):
|
41
|
+
Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
|
42
|
+
:obj:`inputs_ids` passed when calling :class:`~transformers.ExaoneModel`. Vocabulary size of the model.
|
43
|
+
Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
|
44
|
+
:class:`~transformers.EXAONEModel`.
|
45
|
+
max_position_embeddings (:obj:`int`, `optional`, defaults to 2048):
|
46
|
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
47
|
+
just in case (e.g., 512 or 1024 or 2048).
|
48
|
+
hidden_size (:obj:`int`, `optional`, defaults to 2048):
|
49
|
+
Dimensionality of the encoder layers and the pooler layer.
|
50
|
+
num_layers (:obj:`int`, `optional`, defaults to 32):
|
51
|
+
Number of hidden layers in the Transformer encoder.
|
52
|
+
num_attention_heads (:obj:`int`, `optional`, defaults to 32):
|
53
|
+
Number of attention heads for each attention layer in the Transformer decoder.
|
54
|
+
num_key_value_heads (:obj:`int`, `optional`):
|
55
|
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
56
|
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
57
|
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
58
|
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
59
|
+
by meanpooling all the original heads within that group. For more details checkout [this
|
60
|
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
61
|
+
`num_attention_heads`.
|
62
|
+
intermediate_size (:obj:`int`, `optional`, defaults to `hidden_size * 4`):
|
63
|
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
64
|
+
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"silu"`):
|
65
|
+
The non-linear activation function (function or string) in the decoder.
|
66
|
+
rope_theta (:obj:`float`, `optional`, defaults to 10000.0):
|
67
|
+
The base period of the RoPE embeddings.
|
68
|
+
rope_scaling (:obj:`Dict`, `optional`):
|
69
|
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
70
|
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
71
|
+
accordingly.
|
72
|
+
Expected contents:
|
73
|
+
`rope_type` (:obj:`str`):
|
74
|
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
75
|
+
'llama3'], with 'default' being the original RoPE implementation.
|
76
|
+
`factor` (:obj:`float`, `optional`):
|
77
|
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
78
|
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
79
|
+
original maximum pre-trained length.
|
80
|
+
`original_max_position_embeddings` (:obj:`int`, `optional`):
|
81
|
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
82
|
+
pretraining.
|
83
|
+
`attention_factor` (:obj:`float`, `optional`):
|
84
|
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
85
|
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
86
|
+
`factor` field to infer the suggested value.
|
87
|
+
`beta_fast` (:obj:`float`, `optional`):
|
88
|
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
89
|
+
ramp function. If unspecified, it defaults to 32.
|
90
|
+
`beta_slow` (:obj:`float`, `optional`):
|
91
|
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
92
|
+
ramp function. If unspecified, it defaults to 1.
|
93
|
+
`short_factor` (:obj:`List[float]`, `optional`):
|
94
|
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
95
|
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
96
|
+
size divided by the number of attention heads divided by 2
|
97
|
+
`long_factor` (:obj:`List[float]`, `optional`):
|
98
|
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
99
|
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
100
|
+
size divided by the number of attention heads divided by 2
|
101
|
+
`low_freq_factor` (:obj:`float`, `optional`):
|
102
|
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
103
|
+
`high_freq_factor` (:obj:`float`, `optional`):
|
104
|
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
105
|
+
embed_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
106
|
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
107
|
+
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
108
|
+
The dropout ratio for the attention probabilities.
|
109
|
+
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
|
110
|
+
The epsilon used by the layer normalization layers.
|
111
|
+
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
112
|
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
113
|
+
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
114
|
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
115
|
+
relevant if ``configs.is_decoder=True``.
|
116
|
+
bos_token_id (:obj:`int`, `optional`, defaults to 0):
|
117
|
+
Beginning of stream token id.
|
118
|
+
eos_token_id (:obj:`int`, `optional`, defaults to 2):
|
119
|
+
End of stream token id.
|
120
|
+
tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
121
|
+
Whether to tie weight embeddings
|
122
|
+
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
123
|
+
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
124
|
+
|
125
|
+
Example::
|
126
|
+
|
127
|
+
>>> from transformers import EXAONEModel, ExaoneConfig
|
128
|
+
|
129
|
+
>>> # Initializing a EXAONE configuration
|
130
|
+
>>> configuration = ExaoneConfig()
|
131
|
+
|
132
|
+
>>> # Initializing a model from configuration
|
133
|
+
>>> model = EXAONEModel(configuration)
|
134
|
+
|
135
|
+
>>> # Accessing the model configuration
|
136
|
+
>>> configuration = model.configs
|
137
|
+
"""
|
138
|
+
|
139
|
+
model_type = "exaone"
|
140
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
141
|
+
attribute_map = {"num_hidden_layers": "num_layers"}
|
142
|
+
|
143
|
+
def __init__(
|
144
|
+
self,
|
145
|
+
vocab_size=102400,
|
146
|
+
max_position_embeddings=2048,
|
147
|
+
hidden_size=2048,
|
148
|
+
num_layers=32,
|
149
|
+
num_attention_heads=32,
|
150
|
+
num_key_value_heads=None,
|
151
|
+
intermediate_size=None,
|
152
|
+
activation_function="silu",
|
153
|
+
rope_theta=10000.0,
|
154
|
+
rope_scaling=None,
|
155
|
+
embed_dropout=0.0,
|
156
|
+
attention_dropout=0.0,
|
157
|
+
layer_norm_epsilon=1e-5,
|
158
|
+
initializer_range=0.02,
|
159
|
+
use_cache=True,
|
160
|
+
bos_token_id=0,
|
161
|
+
eos_token_id=2,
|
162
|
+
tie_word_embeddings=True,
|
163
|
+
**kwargs
|
164
|
+
):
|
165
|
+
self.vocab_size = vocab_size
|
166
|
+
self.max_position_embeddings = max_position_embeddings
|
167
|
+
self.hidden_size = hidden_size
|
168
|
+
self.num_layers = num_layers
|
169
|
+
self.num_attention_heads = num_attention_heads
|
170
|
+
self.num_hidden_layers = num_layers
|
171
|
+
if num_key_value_heads is None:
|
172
|
+
num_key_value_heads = num_attention_heads
|
173
|
+
self.num_key_value_heads = num_key_value_heads
|
174
|
+
if intermediate_size:
|
175
|
+
self.intermediate_size = intermediate_size
|
176
|
+
else:
|
177
|
+
self.intermediate_size = hidden_size * 4
|
178
|
+
self.activation_function = activation_function
|
179
|
+
self.embed_dropout = embed_dropout
|
180
|
+
self.attention_dropout = attention_dropout
|
181
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
182
|
+
self.initializer_range = initializer_range
|
183
|
+
self.use_cache = use_cache
|
184
|
+
self.rope_theta = rope_theta
|
185
|
+
self.rope_scaling = rope_scaling
|
186
|
+
|
187
|
+
self.bos_token_id = bos_token_id
|
188
|
+
self.eos_token_id = eos_token_id
|
189
|
+
|
190
|
+
super().__init__(
|
191
|
+
bos_token_id=bos_token_id,
|
192
|
+
eos_token_id=eos_token_id,
|
193
|
+
tie_word_embeddings=tie_word_embeddings,
|
194
|
+
**kwargs
|
195
|
+
)
|
@@ -79,7 +79,7 @@ class FSMCache(BaseToolCache):
|
|
79
79
|
|
80
80
|
def init_value(self, value):
|
81
81
|
if self.json_schema_mode:
|
82
|
-
regex = build_regex_from_schema(value)
|
82
|
+
regex = build_regex_from_schema(value, whitespace_pattern=r"[\n\t ]*")
|
83
83
|
return RegexGuide(regex, self.outlines_tokenizer), regex
|
84
84
|
else:
|
85
85
|
return RegexGuide(value, self.outlines_tokenizer)
|