sglang 0.1.18__tar.gz → 0.1.19__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. {sglang-0.1.18/sglang.egg-info → sglang-0.1.19}/PKG-INFO +19 -13
  2. {sglang-0.1.18 → sglang-0.1.19}/README.md +17 -11
  3. {sglang-0.1.18 → sglang-0.1.19}/pyproject.toml +2 -2
  4. {sglang-0.1.18 → sglang-0.1.19}/sglang/__init__.py +1 -1
  5. {sglang-0.1.18 → sglang-0.1.19}/sglang/api.py +26 -0
  6. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/runtime_endpoint.py +18 -14
  7. {sglang-0.1.18 → sglang-0.1.19}/sglang/bench_latency.py +34 -16
  8. {sglang-0.1.18 → sglang-0.1.19}/sglang/global_config.py +1 -0
  9. {sglang-0.1.18 → sglang-0.1.19}/sglang/lang/chat_template.py +41 -6
  10. {sglang-0.1.18 → sglang-0.1.19}/sglang/lang/interpreter.py +5 -1
  11. {sglang-0.1.18 → sglang-0.1.19}/sglang/lang/ir.py +61 -25
  12. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/constrained/__init__.py +3 -2
  13. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/hf_transformers_utils.py +7 -3
  14. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/layers/extend_attention.py +2 -1
  15. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/layers/fused_moe.py +181 -167
  16. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/layers/logits_processor.py +55 -19
  17. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/layers/radix_attention.py +24 -27
  18. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/layers/token_attention.py +4 -1
  19. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/infer_batch.py +2 -2
  20. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/manager_single.py +1 -1
  21. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/model_runner.py +27 -15
  22. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/tp_worker.py +31 -14
  23. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/detokenizer_manager.py +4 -2
  24. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/io_struct.py +1 -1
  25. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/tokenizer_manager.py +14 -13
  26. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/model_config.py +6 -0
  27. sglang-0.1.19/sglang/srt/models/gemma2.py +436 -0
  28. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/llama2.py +3 -3
  29. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/llama_classification.py +10 -7
  30. sglang-0.1.19/sglang/srt/models/minicpm.py +373 -0
  31. sglang-0.1.19/sglang/srt/models/qwen2_moe.py +454 -0
  32. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/openai_api_adapter.py +2 -2
  33. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/openai_protocol.py +1 -1
  34. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/server.py +17 -8
  35. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/server_args.py +14 -16
  36. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/utils.py +68 -35
  37. {sglang-0.1.18 → sglang-0.1.19/sglang.egg-info}/PKG-INFO +19 -13
  38. {sglang-0.1.18 → sglang-0.1.19}/sglang.egg-info/SOURCES.txt +3 -0
  39. {sglang-0.1.18 → sglang-0.1.19}/sglang.egg-info/requires.txt +1 -1
  40. {sglang-0.1.18 → sglang-0.1.19}/LICENSE +0 -0
  41. {sglang-0.1.18 → sglang-0.1.19}/setup.cfg +0 -0
  42. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/__init__.py +0 -0
  43. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/anthropic.py +0 -0
  44. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/base_backend.py +0 -0
  45. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/litellm.py +0 -0
  46. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/openai.py +0 -0
  47. {sglang-0.1.18 → sglang-0.1.19}/sglang/backend/vertexai.py +0 -0
  48. {sglang-0.1.18 → sglang-0.1.19}/sglang/lang/__init__.py +0 -0
  49. {sglang-0.1.18 → sglang-0.1.19}/sglang/lang/compiler.py +0 -0
  50. {sglang-0.1.18 → sglang-0.1.19}/sglang/lang/tracer.py +0 -0
  51. {sglang-0.1.18 → sglang-0.1.19}/sglang/launch_server.py +0 -0
  52. {sglang-0.1.18 → sglang-0.1.19}/sglang/launch_server_llavavid.py +0 -0
  53. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/constrained/base_cache.py +0 -0
  54. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/constrained/fsm_cache.py +0 -0
  55. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/constrained/jump_forward.py +0 -0
  56. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/conversation.py +0 -0
  57. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/flush_cache.py +0 -0
  58. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/layers/context_flashattention_nopad.py +0 -0
  59. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/dp_worker.py +0 -0
  60. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/manager_multi.py +0 -0
  61. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/radix_cache.py +0 -0
  62. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/managers/controller/schedule_heuristic.py +0 -0
  63. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/memory_pool.py +0 -0
  64. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/mm_utils.py +0 -0
  65. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/chatglm.py +0 -0
  66. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/commandr.py +0 -0
  67. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/dbrx.py +0 -0
  68. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/gemma.py +0 -0
  69. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/grok.py +0 -0
  70. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/llava.py +0 -0
  71. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/llavavid.py +0 -0
  72. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/mistral.py +0 -0
  73. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/mixtral.py +0 -0
  74. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/mixtral_quant.py +0 -0
  75. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/qwen.py +0 -0
  76. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/qwen2.py +0 -0
  77. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/stablelm.py +0 -0
  78. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/models/yivl.py +0 -0
  79. {sglang-0.1.18 → sglang-0.1.19}/sglang/srt/sampling_params.py +0 -0
  80. {sglang-0.1.18 → sglang-0.1.19}/sglang/test/test_conversation.py +0 -0
  81. {sglang-0.1.18 → sglang-0.1.19}/sglang/test/test_openai_protocol.py +0 -0
  82. {sglang-0.1.18 → sglang-0.1.19}/sglang/test/test_programs.py +0 -0
  83. {sglang-0.1.18 → sglang-0.1.19}/sglang/test/test_utils.py +0 -0
  84. {sglang-0.1.18 → sglang-0.1.19}/sglang/utils.py +0 -0
  85. {sglang-0.1.18 → sglang-0.1.19}/sglang.egg-info/dependency_links.txt +0 -0
  86. {sglang-0.1.18 → sglang-0.1.19}/sglang.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sglang
3
- Version: 0.1.18
3
+ Version: 0.1.19
4
4
  Summary: A structured generation langauge for LLMs.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -229,7 +229,7 @@ Requires-Dist: torch; extra == "srt"
229
229
  Requires-Dist: uvicorn; extra == "srt"
230
230
  Requires-Dist: uvloop; extra == "srt"
231
231
  Requires-Dist: zmq; extra == "srt"
232
- Requires-Dist: vllm==0.5.0; extra == "srt"
232
+ Requires-Dist: vllm==0.5.1; extra == "srt"
233
233
  Requires-Dist: outlines>=0.0.44; extra == "srt"
234
234
  Provides-Extra: openai
235
235
  Requires-Dist: openai>=1.0; extra == "openai"
@@ -257,7 +257,7 @@ It makes your interaction with LLMs faster and more controllable by co-designing
257
257
 
258
258
  The core features include:
259
259
  - **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
260
- - **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
260
+ - **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone inference engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
261
261
 
262
262
  ## News
263
263
  - [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
@@ -288,15 +288,21 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
288
288
  git clone https://github.com/sgl-project/sglang.git
289
289
  cd sglang
290
290
 
291
- pip install --upgrade pip
292
291
  pip install -e "python[all]"
293
292
 
294
293
  # Install FlashInfer CUDA kernels
295
294
  pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
296
295
  ```
297
296
 
298
- ### Notes
299
- - If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html).
297
+ ### Method 3: Using docker
298
+ The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
299
+
300
+ ### Common Notes
301
+ - If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html) by
302
+ ```
303
+ pip uninstall -y triton triton-nightly
304
+ pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly
305
+ ```
300
306
  - If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
301
307
  - If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
302
308
 
@@ -518,8 +524,8 @@ for out in state.text_iter():
518
524
  ```
519
525
 
520
526
  ### Tips and Implementation Details
521
- - The `choices` argument in `sgl.gen` is implemented by computing the normalized log probabilities of all choices and selecting the one with the highest probability.
522
- - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex.
527
+ - The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
528
+ - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
523
529
 
524
530
  ## Backend: SGLang Runtime (SRT)
525
531
  The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
@@ -576,7 +582,6 @@ response = client.chat.completions.create(
576
582
  print(response)
577
583
  ```
578
584
 
579
-
580
585
  By default, the server uses the chat template specified in the model tokenizer from Hugging Face. It should just work for most official models such as Llama-2/Llama-3.
581
586
 
582
587
  If needed, you can also override the chat template when launching the server:
@@ -605,7 +610,7 @@ python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port
605
610
  ```
606
611
 
607
612
  ### Additional Arguments
608
- - Add `--tp 2` to enable tensor parallelism.
613
+ - Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
609
614
  ```
610
615
  python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
611
616
  ```
@@ -623,9 +628,8 @@ python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port
623
628
  - Llama
624
629
  - Mistral
625
630
  - Mixtral
626
- - Qwen / Qwen 2
627
- - Gemma
628
- - Please add a new flag `--attention-reduce-in-fp32` to avoid some precision errors.
631
+ - Qwen / Qwen 2 / Qwen 2 MoE
632
+ - Gemma / Gemma 2
629
633
  - `python -m sglang.launch_server --model-path google/gemma-7b-it --port 30000 --attention-reduce-in-fp32`
630
634
  - LLaVA
631
635
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
@@ -638,6 +642,8 @@ python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port
638
642
  - StableLM
639
643
  - Command-R
640
644
  - DBRX
645
+ - Grok
646
+ - ChatGLM
641
647
  - AWQ/GPTQ/Marlin quantization
642
648
 
643
649
  Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
@@ -11,7 +11,7 @@ It makes your interaction with LLMs faster and more controllable by co-designing
11
11
 
12
12
  The core features include:
13
13
  - **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
14
- - **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
14
+ - **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone inference engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
15
15
 
16
16
  ## News
17
17
  - [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
@@ -42,15 +42,21 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
42
42
  git clone https://github.com/sgl-project/sglang.git
43
43
  cd sglang
44
44
 
45
- pip install --upgrade pip
46
45
  pip install -e "python[all]"
47
46
 
48
47
  # Install FlashInfer CUDA kernels
49
48
  pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
50
49
  ```
51
50
 
52
- ### Notes
53
- - If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html).
51
+ ### Method 3: Using docker
52
+ The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
53
+
54
+ ### Common Notes
55
+ - If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html) by
56
+ ```
57
+ pip uninstall -y triton triton-nightly
58
+ pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly
59
+ ```
54
60
  - If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
55
61
  - If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
56
62
 
@@ -272,8 +278,8 @@ for out in state.text_iter():
272
278
  ```
273
279
 
274
280
  ### Tips and Implementation Details
275
- - The `choices` argument in `sgl.gen` is implemented by computing the normalized log probabilities of all choices and selecting the one with the highest probability.
276
- - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex.
281
+ - The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
282
+ - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
277
283
 
278
284
  ## Backend: SGLang Runtime (SRT)
279
285
  The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
@@ -330,7 +336,6 @@ response = client.chat.completions.create(
330
336
  print(response)
331
337
  ```
332
338
 
333
-
334
339
  By default, the server uses the chat template specified in the model tokenizer from Hugging Face. It should just work for most official models such as Llama-2/Llama-3.
335
340
 
336
341
  If needed, you can also override the chat template when launching the server:
@@ -359,7 +364,7 @@ python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port
359
364
  ```
360
365
 
361
366
  ### Additional Arguments
362
- - Add `--tp 2` to enable tensor parallelism.
367
+ - Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
363
368
  ```
364
369
  python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
365
370
  ```
@@ -377,9 +382,8 @@ python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port
377
382
  - Llama
378
383
  - Mistral
379
384
  - Mixtral
380
- - Qwen / Qwen 2
381
- - Gemma
382
- - Please add a new flag `--attention-reduce-in-fp32` to avoid some precision errors.
385
+ - Qwen / Qwen 2 / Qwen 2 MoE
386
+ - Gemma / Gemma 2
383
387
  - `python -m sglang.launch_server --model-path google/gemma-7b-it --port 30000 --attention-reduce-in-fp32`
384
388
  - LLaVA
385
389
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
@@ -392,6 +396,8 @@ python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port
392
396
  - StableLM
393
397
  - Command-R
394
398
  - DBRX
399
+ - Grok
400
+ - ChatGLM
395
401
  - AWQ/GPTQ/Marlin quantization
396
402
 
397
403
  Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "sglang"
7
- version = "0.1.18"
7
+ version = "0.1.19"
8
8
  description = "A structured generation langauge for LLMs."
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.8"
@@ -21,7 +21,7 @@ dependencies = [
21
21
 
22
22
  [project.optional-dependencies]
23
23
  srt = ["aiohttp", "fastapi", "hf_transfer", "huggingface_hub", "interegular", "packaging", "pillow",
24
- "psutil", "pydantic", "rpyc", "torch", "uvicorn", "uvloop", "zmq", "vllm==0.5.0", "outlines>=0.0.44"]
24
+ "psutil", "pydantic", "rpyc", "torch", "uvicorn", "uvloop", "zmq", "vllm==0.5.1", "outlines>=0.0.44"]
25
25
  openai = ["openai>=1.0", "tiktoken"]
26
26
  anthropic = ["anthropic>=0.20.0"]
27
27
  litellm = ["litellm>=1.0.0"]
@@ -1,4 +1,4 @@
1
- __version__ = "0.1.18"
1
+ __version__ = "0.1.19"
2
2
 
3
3
  # SGL API Components
4
4
  from sglang.api import (
@@ -67,10 +67,16 @@ def gen(
67
67
  frequency_penalty: Optional[float] = None,
68
68
  presence_penalty: Optional[float] = None,
69
69
  ignore_eos: Optional[bool] = None,
70
+ return_logprob: Optional[bool] = None,
71
+ logprob_start_len: Optional[int] = None,
72
+ top_logprobs_num: Optional[int] = None,
73
+ return_text_in_logprobs: Optional[bool] = None,
70
74
  dtype: Optional[type] = None,
71
75
  choices: Optional[List[str]] = None,
72
76
  regex: Optional[str] = None,
73
77
  ):
78
+ """Call the model to generate. See the meaning of the arguments in docs/sampling_params.md"""
79
+
74
80
  if choices:
75
81
  return SglSelect(name, choices, 0.0 if temperature is None else temperature)
76
82
 
@@ -91,6 +97,10 @@ def gen(
91
97
  frequency_penalty,
92
98
  presence_penalty,
93
99
  ignore_eos,
100
+ return_logprob,
101
+ logprob_start_len,
102
+ top_logprobs_num,
103
+ return_text_in_logprobs,
94
104
  dtype,
95
105
  regex,
96
106
  )
@@ -106,6 +116,10 @@ def gen_int(
106
116
  frequency_penalty: Optional[float] = None,
107
117
  presence_penalty: Optional[float] = None,
108
118
  ignore_eos: Optional[bool] = None,
119
+ return_logprob: Optional[bool] = None,
120
+ logprob_start_len: Optional[int] = None,
121
+ top_logprobs_num: Optional[int] = None,
122
+ return_text_in_logprobs: Optional[bool] = None,
109
123
  ):
110
124
  return SglGen(
111
125
  name,
@@ -117,6 +131,10 @@ def gen_int(
117
131
  frequency_penalty,
118
132
  presence_penalty,
119
133
  ignore_eos,
134
+ return_logprob,
135
+ logprob_start_len,
136
+ top_logprobs_num,
137
+ return_text_in_logprobs,
120
138
  int,
121
139
  None,
122
140
  )
@@ -132,6 +150,10 @@ def gen_string(
132
150
  frequency_penalty: Optional[float] = None,
133
151
  presence_penalty: Optional[float] = None,
134
152
  ignore_eos: Optional[bool] = None,
153
+ return_logprob: Optional[bool] = None,
154
+ logprob_start_len: Optional[int] = None,
155
+ top_logprobs_num: Optional[int] = None,
156
+ return_text_in_logprobs: Optional[bool] = None,
135
157
  ):
136
158
  return SglGen(
137
159
  name,
@@ -143,6 +165,10 @@ def gen_string(
143
165
  frequency_penalty,
144
166
  presence_penalty,
145
167
  ignore_eos,
168
+ return_logprob,
169
+ logprob_start_len,
170
+ top_logprobs_num,
171
+ return_text_in_logprobs,
146
172
  str,
147
173
  None,
148
174
  )
@@ -1,18 +1,18 @@
1
1
  import json
2
- from typing import Callable, List, Optional, Union
2
+ from typing import List, Optional
3
3
 
4
4
  import numpy as np
5
- import requests
6
5
 
7
6
  from sglang.backend.base_backend import BaseBackend
8
7
  from sglang.global_config import global_config
9
8
  from sglang.lang.chat_template import get_chat_template_by_model_path
10
9
  from sglang.lang.interpreter import StreamExecutor
11
- from sglang.lang.ir import SglArgument, SglSamplingParams
12
- from sglang.utils import encode_image_base64, find_printable_text, http_request
10
+ from sglang.lang.ir import SglSamplingParams
11
+ from sglang.utils import http_request
13
12
 
14
13
 
15
14
  class RuntimeEndpoint(BaseBackend):
15
+
16
16
  def __init__(
17
17
  self,
18
18
  base_url: str,
@@ -38,8 +38,7 @@ class RuntimeEndpoint(BaseBackend):
38
38
  self.model_info = res.json()
39
39
 
40
40
  self.chat_template = get_chat_template_by_model_path(
41
- self.model_info["model_path"]
42
- )
41
+ self.model_info["model_path"])
43
42
 
44
43
  def get_model_name(self):
45
44
  return self.model_info["model_path"]
@@ -125,6 +124,11 @@ class RuntimeEndpoint(BaseBackend):
125
124
  else:
126
125
  raise RuntimeError(f"Invalid dtype: {sampling_params.dtype}")
127
126
 
127
+ for item in ["return_logprob", "logprob_start_len", "top_logprobs_num", "return_text_in_logprobs"]:
128
+ value = getattr(sampling_params, item, None)
129
+ if value is not None:
130
+ data[item] = value
131
+
128
132
  self._add_images(s, data)
129
133
 
130
134
  res = http_request(
@@ -167,6 +171,11 @@ class RuntimeEndpoint(BaseBackend):
167
171
  else:
168
172
  raise RuntimeError(f"Invalid dtype: {sampling_params.dtype}")
169
173
 
174
+ for item in ["return_logprob", "logprob_start_len", "top_logprobs_num", "return_text_in_logprobs"]:
175
+ value = getattr(sampling_params, item, None)
176
+ if value is not None:
177
+ data[item] = value
178
+
170
179
  data["stream"] = True
171
180
  self._add_images(s, data)
172
181
 
@@ -181,21 +190,16 @@ class RuntimeEndpoint(BaseBackend):
181
190
  self._assert_success(res)
182
191
  pos = 0
183
192
 
184
- incomplete_text = ""
185
193
  for chunk in res.iter_lines(decode_unicode=False):
186
194
  chunk = chunk.decode("utf-8")
187
195
  if chunk and chunk.startswith("data:"):
188
196
  if chunk == "data: [DONE]":
189
197
  break
190
198
  data = json.loads(chunk[5:].strip("\n"))
191
- text = find_printable_text(data["text"][pos:])
199
+ chunk_text = data["text"][pos:]
192
200
  meta_info = data["meta_info"]
193
- pos += len(text)
194
- incomplete_text = data["text"][pos:]
195
- yield text, meta_info
196
-
197
- if len(incomplete_text) > 0:
198
- yield incomplete_text, meta_info
201
+ pos += len(chunk_text)
202
+ yield chunk_text, meta_info
199
203
 
200
204
  def select(
201
205
  self,
@@ -108,7 +108,7 @@ def prepare_inputs(bench_args, tokenizer):
108
108
  for i in range(len(prompts)):
109
109
  assert len(input_ids[i]) > bench_args.cut_len
110
110
 
111
- tmp_input_ids = input_ids[i][:bench_args.cut_len]
111
+ tmp_input_ids = input_ids[i][: bench_args.cut_len]
112
112
  req = Req(rid=i, origin_input_text=prompts[i], origin_input_ids=tmp_input_ids)
113
113
  req.prefix_indices = []
114
114
  req.sampling_params = sampling_params
@@ -121,9 +121,9 @@ def prepare_inputs(bench_args, tokenizer):
121
121
  def prepare_extend_inputs(bench_args, input_ids, reqs, model_runner):
122
122
  for i in range(len(reqs)):
123
123
  req = reqs[i]
124
- req.input_ids += input_ids[i][bench_args.cut_len:]
124
+ req.input_ids += input_ids[i][bench_args.cut_len :]
125
125
  req.prefix_indices = model_runner.req_to_token_pool.req_to_token[
126
- i, :bench_args.cut_len
126
+ i, : bench_args.cut_len
127
127
  ]
128
128
  return reqs
129
129
 
@@ -151,7 +151,8 @@ def extend(reqs, model_runner):
151
151
  reqs=reqs,
152
152
  req_to_token_pool=model_runner.req_to_token_pool,
153
153
  token_to_kv_pool=model_runner.token_to_kv_pool,
154
- tree_cache=None)
154
+ tree_cache=None,
155
+ )
155
156
  batch.prepare_for_extend(model_runner.model_config.vocab_size, None)
156
157
  output = model_runner.forward(batch, ForwardMode.EXTEND)
157
158
  next_token_ids, _ = batch.sample(output.next_token_logits)
@@ -165,6 +166,7 @@ def decode(input_token_ids, batch, model_runner):
165
166
  return next_token_ids, output.next_token_logits
166
167
 
167
168
 
169
+ @torch.inference_mode()
168
170
  def correctness_test(
169
171
  server_args,
170
172
  bench_args,
@@ -178,9 +180,10 @@ def correctness_test(
178
180
  # Prepare inputs
179
181
  input_ids, reqs = prepare_inputs(bench_args, tokenizer)
180
182
 
181
- # Prefill
182
- next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
183
- rank_print("prefill logits (first half)", next_token_logits)
183
+ if bench_args.cut_len > 0:
184
+ # Prefill
185
+ next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
186
+ rank_print("prefill logits (first half)", next_token_logits)
184
187
 
185
188
  # Prepare extend inputs
186
189
  reqs = prepare_extend_inputs(bench_args, input_ids, reqs, model_runner)
@@ -190,7 +193,7 @@ def correctness_test(
190
193
  rank_print("prefill logits (final)", next_token_logits)
191
194
 
192
195
  # Decode
193
- output_ids = [list(req.input_ids) for req in reqs]
196
+ output_ids = [input_ids[i] + [next_token_ids[i]] for i in range(len(input_ids))]
194
197
  for _ in range(bench_args.output_len):
195
198
  next_token_ids, _ = decode(next_token_ids, batch, model_runner)
196
199
  for i in range(len(reqs)):
@@ -210,7 +213,9 @@ def latency_test(
210
213
 
211
214
  # Load the model
212
215
  model_runner, tokenizer = load_model(server_args, tp_rank)
213
- print(f"max_batch_size={model_runner.max_total_num_tokens // (bench_args.input_len + bench_args.output_len)}")
216
+ print(
217
+ f"max_batch_size={model_runner.max_total_num_tokens // (bench_args.input_len + bench_args.output_len)}"
218
+ )
214
219
 
215
220
  # Prepare inputs
216
221
  reqs = prepare_synthetic_inputs(bench_args, tokenizer)
@@ -230,7 +235,9 @@ def latency_test(
230
235
  prefill_latency = time.time() - tic
231
236
  tot_latency += prefill_latency
232
237
  throughput = bench_args.input_len * bench_args.batch_size / prefill_latency
233
- rank_print(f"Prefill. latency: {prefill_latency:6.5f} s, throughput: {throughput:9.2f} token/s")
238
+ rank_print(
239
+ f"Prefill. latency: {prefill_latency:6.5f} s, throughput: {throughput:9.2f} token/s"
240
+ )
234
241
 
235
242
  # Decode
236
243
  for i in range(output_len):
@@ -241,13 +248,24 @@ def latency_test(
241
248
  latency = time.time() - tic
242
249
  tot_latency += latency
243
250
  throughput = bench_args.batch_size / latency
244
- if i < 5: rank_print(f"Decode. latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s")
251
+ if i < 5:
252
+ rank_print(
253
+ f"Decode. latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s"
254
+ )
245
255
  avg_decode_latency = (tot_latency - prefill_latency) / output_len
246
256
  avg_decode_throughput = bench_args.batch_size / avg_decode_latency
247
- rank_print(f"Decode. avg latency: {avg_decode_latency:6.5f} s, avg throughput: {avg_decode_throughput:9.2f} token/s")
248
-
249
- throughput = (bench_args.input_len + bench_args.output_len) * bench_args.batch_size / tot_latency
250
- rank_print(f"Total. latency: {tot_latency:6.3f} s, throughput: {throughput:9.2f} token/s")
257
+ rank_print(
258
+ f"Decode. avg latency: {avg_decode_latency:6.5f} s, avg throughput: {avg_decode_throughput:9.2f} token/s"
259
+ )
260
+
261
+ throughput = (
262
+ (bench_args.input_len + bench_args.output_len)
263
+ * bench_args.batch_size
264
+ / tot_latency
265
+ )
266
+ rank_print(
267
+ f"Total. latency: {tot_latency:6.3f} s, throughput: {throughput:9.2f} token/s"
268
+ )
251
269
 
252
270
  # Warm up
253
271
  run_once(4)
@@ -296,4 +314,4 @@ if __name__ == "__main__":
296
314
  format="%(message)s",
297
315
  )
298
316
 
299
- main(server_args, bench_args)
317
+ main(server_args, bench_args)
@@ -39,4 +39,5 @@ class GlobalConfig:
39
39
  # This can improve the speed for large batch sizes during prefill.
40
40
  self.layer_sync_threshold = 8192
41
41
 
42
+
42
43
  global_config = GlobalConfig()
@@ -84,7 +84,7 @@ register_chat_template(
84
84
  "system": ("SYSTEM:", "\n"),
85
85
  "user": ("USER:", "\n"),
86
86
  "assistant": ("ASSISTANT:", "\n"),
87
- },
87
+ }
88
88
  )
89
89
  )
90
90
 
@@ -116,6 +116,23 @@ register_chat_template(
116
116
  )
117
117
  )
118
118
 
119
+ # There is default system prompt for qwen
120
+ # reference: https://modelscope.cn/models/qwen/Qwen2-72B-Instruct/file/view/master?fileName=tokenizer_config.json&status=1
121
+ # The chat template is: "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
122
+ register_chat_template(
123
+ ChatTemplate(
124
+ name="qwen",
125
+ default_system_prompt="You are a helpful assistant.",
126
+ role_prefix_and_suffix={
127
+ "system": ("<|im_start|>system\n", "<|im_end|>\n"),
128
+ "user": ("<|im_start|>user\n", "<|im_end|>\n"),
129
+ "assistant": ("<|im_start|>assistant\n", "<|im_end|>\n"),
130
+ },
131
+ style=ChatTemplateStyle.PLAIN,
132
+ stop_str=("<|im_end|>",),
133
+ )
134
+ )
135
+
119
136
 
120
137
  register_chat_template(
121
138
  ChatTemplate(
@@ -132,6 +149,7 @@ register_chat_template(
132
149
  )
133
150
  )
134
151
 
152
+ # Reference: https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#prompt-template
135
153
  register_chat_template(
136
154
  ChatTemplate(
137
155
  name="vicuna_v1.1",
@@ -148,6 +166,20 @@ register_chat_template(
148
166
  )
149
167
  )
150
168
 
169
+ # Reference: https://modelscope.cn/models/01ai/Yi-1.5-34B-Chat/file/view/master?fileName=tokenizer_config.json&status=1
170
+ register_chat_template(
171
+ ChatTemplate(
172
+ name="yi-1.5",
173
+ default_system_prompt=None,
174
+ role_prefix_and_suffix={
175
+ "system": ("", ""),
176
+ "user": ("<|im_start|>user\n", "<|im_end|>\n<|im_start|>assistant\n"),
177
+ "assistant": ("", "<|im_end|>\n"),
178
+ },
179
+ style=ChatTemplateStyle.PLAIN,
180
+ stop_str=("<|im_end|>",)
181
+ )
182
+ )
151
183
 
152
184
  register_chat_template(
153
185
  ChatTemplate(
@@ -187,7 +219,7 @@ register_chat_template(
187
219
  # Reference: https://github.com/01-ai/Yi/tree/main/VL#major-difference-with-llava
188
220
  register_chat_template(
189
221
  ChatTemplate(
190
- name="yi",
222
+ name="yi-vl",
191
223
  default_system_prompt=(
192
224
  "This is a chat between an inquisitive human and an AI assistant. Assume the role of the AI assistant. Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers."
193
225
  "这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。"
@@ -289,8 +321,9 @@ def match_chat_ml(model_path: str):
289
321
  model_path = model_path.lower()
290
322
  if "tinyllama" in model_path:
291
323
  return get_chat_template("chatml")
292
- if "qwen" in model_path and "chat" in model_path:
293
- return get_chat_template("chatml")
324
+ # Now the suffix for qwen2 chat model is "instruct"
325
+ if "qwen" in model_path and ("chat" in model_path or "instruct" in model_path):
326
+ return get_chat_template("qwen")
294
327
  if (
295
328
  "llava-v1.6-34b" in model_path
296
329
  or "llava-v1.6-yi-34b" in model_path
@@ -302,8 +335,10 @@ def match_chat_ml(model_path: str):
302
335
  @register_chat_template_matching_function
303
336
  def match_chat_yi(model_path: str):
304
337
  model_path = model_path.lower()
305
- if "yi" in model_path and "llava" not in model_path:
306
- return get_chat_template("yi")
338
+ if "yi-vl" in model_path and "llava" not in model_path:
339
+ return get_chat_template("yi-vl")
340
+ elif "yi-1.5" in model_path and "chat" in model_path:
341
+ return get_chat_template("yi-1.5")
307
342
 
308
343
 
309
344
  @register_chat_template_matching_function
@@ -523,9 +523,9 @@ class StreamExecutor:
523
523
  self, sampling_params=sampling_params
524
524
  )
525
525
 
526
+ self.variables[name] = ""
526
527
  self.stream_var_event[name].set()
527
528
 
528
- self.variables[name] = ""
529
529
  for comp, meta_info in generator:
530
530
  self.text_ += comp
531
531
  self.variables[name] += comp
@@ -668,6 +668,10 @@ class StreamExecutor:
668
668
  "frequency_penalty",
669
669
  "presence_penalty",
670
670
  "ignore_eos",
671
+ "return_logprob",
672
+ "logprob_start_len",
673
+ "top_logprobs_num",
674
+ "return_text_in_logprobs",
671
675
  "dtype",
672
676
  "regex",
673
677
  ]: