semantio 0.0.1__tar.gz → 0.0.2__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {semantio-0.0.1 → semantio-0.0.2}/PKG-INFO +5 -3
- {semantio-0.0.1 → semantio-0.0.2}/README.md +3 -1
- {semantio-0.0.1 → semantio-0.0.2}/semantio/agent.py +119 -50
- {semantio-0.0.1 → semantio-0.0.2}/semantio/llm/__init__.py +12 -5
- semantio-0.0.2/semantio/llm/anthropic.py +52 -0
- semantio-0.0.2/semantio/llm/base_llm.py +21 -0
- semantio-0.0.2/semantio/llm/deepseek.py +27 -0
- semantio-0.0.2/semantio/llm/gemini.py +50 -0
- semantio-0.0.2/semantio/llm/groq.py +121 -0
- semantio-0.0.1/semantio/llm/openai.py → semantio-0.0.2/semantio/llm/mistral.py +9 -8
- semantio-0.0.2/semantio/llm/openai.py +136 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio.egg-info/PKG-INFO +5 -3
- {semantio-0.0.1 → semantio-0.0.2}/semantio.egg-info/SOURCES.txt +3 -2
- {semantio-0.0.1 → semantio-0.0.2}/semantio.egg-info/requires.txt +2 -3
- {semantio-0.0.1 → semantio-0.0.2}/setup.py +4 -5
- semantio-0.0.1/semantio/llm/anthropic.py +0 -39
- semantio-0.0.1/semantio/llm/base_llm.py +0 -12
- semantio-0.0.1/semantio/llm/groq.py +0 -39
- semantio-0.0.1/semantio/llm/llama.py +0 -0
- semantio-0.0.1/semantio/tools/web_browser.py +0 -153
- {semantio-0.0.1 → semantio-0.0.2}/LICENSE +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/api/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/api/api_generator.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/api/fastapi_app.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/cli/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/cli/main.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/knowledge_base/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/knowledge_base/document_loader.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/knowledge_base/retriever.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/knowledge_base/vector_store.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/memory.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/rag.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/storage/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/storage/cloud_storage.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/storage/local_storage.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/tools/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/tools/base_tool.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/tools/crypto.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/tools/duckduckgo.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/tools/stocks.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/utils/__init__.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/utils/config.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/utils/date_utils.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/utils/file_utils.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/utils/logger.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio/utils/validation_utils.py +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio.egg-info/dependency_links.txt +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio.egg-info/entry_points.txt +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/semantio.egg-info/top_level.txt +0 -0
- {semantio-0.0.1 → semantio-0.0.2}/setup.cfg +0 -0
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: semantio
|
3
|
-
Version: 0.0.
|
4
|
-
Summary: A powerful SDK for building AI agents
|
3
|
+
Version: 0.0.2
|
4
|
+
Summary: A powerful SDK for building AI agents
|
5
5
|
Home-page: https://github.com/Syenah/semantio
|
6
6
|
Author: Rakesh
|
7
7
|
Author-email: rakeshsahoo689@gmail.com
|
@@ -94,7 +94,9 @@ Semantio/
|
|
94
94
|
│ │ ├── __init__.py
|
95
95
|
│ │ ├── openai.py # OpenAI integration
|
96
96
|
│ │ ├── anthropic.py # Anthropic (Claude) integration
|
97
|
-
│ │ ├──
|
97
|
+
│ │ ├── deepseek.py # Deepseek integration
|
98
|
+
│ │ ├── gemini.py # Gemini integration
|
99
|
+
│ │ ├── mistral.py # Mistral integration
|
98
100
|
│ │ └── base_llm.py # Base class for LLMs
|
99
101
|
│ ├── knowledge_base/ # Knowledge base integration
|
100
102
|
│ │ ├── __init__.py
|
@@ -75,7 +75,9 @@ Semantio/
|
|
75
75
|
│ │ ├── __init__.py
|
76
76
|
│ │ ├── openai.py # OpenAI integration
|
77
77
|
│ │ ├── anthropic.py # Anthropic (Claude) integration
|
78
|
-
│ │ ├──
|
78
|
+
│ │ ├── deepseek.py # Deepseek integration
|
79
|
+
│ │ ├── gemini.py # Gemini integration
|
80
|
+
│ │ ├── mistral.py # Mistral integration
|
79
81
|
│ │ └── base_llm.py # Base class for LLMs
|
80
82
|
│ ├── knowledge_base/ # Knowledge base integration
|
81
83
|
│ │ ├── __init__.py
|
@@ -20,31 +20,35 @@ import os
|
|
20
20
|
# Configure logging
|
21
21
|
logging.basicConfig(level=logging.INFO)
|
22
22
|
logger = logging.getLogger(__name__)
|
23
|
-
|
23
|
+
|
24
|
+
class Assistant(BaseModel):
|
24
25
|
# -*- Agent settings
|
25
|
-
name: Optional[str] = Field(None, description="Name of the
|
26
|
-
description: Optional[str] = Field(None, description="Description of the
|
27
|
-
instructions: Optional[List[str]] = Field(None, description="List of instructions for the
|
26
|
+
name: Optional[str] = Field(None, description="Name of the assistant.")
|
27
|
+
description: Optional[str] = Field(None, description="Description of the assistant's role.")
|
28
|
+
instructions: Optional[List[str]] = Field(None, description="List of instructions for the assistant.")
|
28
29
|
model: Optional[str] = Field(None, description="This one is not in the use.")
|
29
30
|
show_tool_calls: bool = Field(False, description="Whether to show tool calls in the response.")
|
30
31
|
markdown: bool = Field(False, description="Whether to format the response in markdown.")
|
31
|
-
tools: Optional[List[BaseTool]] = Field(None, description="List of tools available to the
|
32
|
-
user_name: Optional[str] = Field("User", description="Name of the user interacting with the
|
33
|
-
emoji: Optional[str] = Field(":robot:", description="Emoji to represent the
|
32
|
+
tools: Optional[List[BaseTool]] = Field(None, description="List of tools available to the assistant.")
|
33
|
+
user_name: Optional[str] = Field("User", description="Name of the user interacting with the assistant.")
|
34
|
+
emoji: Optional[str] = Field(":robot:", description="Emoji to represent the assistant in the CLI.")
|
34
35
|
rag: Optional[RAG] = Field(None, description="RAG instance for context retrieval.")
|
35
36
|
knowledge_base: Optional[Any] = Field(None, description="Knowledge base for domain-specific information.")
|
36
37
|
llm: Optional[str] = Field(None, description="The LLM provider to use (e.g., 'groq', 'openai', 'anthropic').")
|
37
38
|
llm_model: Optional[str] = Field(None, description="The specific model to use for the LLM provider.")
|
38
39
|
llm_instance: Optional[BaseLLM] = Field(None, description="The LLM instance to use.")
|
39
40
|
json_output: bool = Field(False, description="Whether to format the response as JSON.")
|
40
|
-
api: bool = Field(False, description="Whether to generate an API for the
|
41
|
+
api: bool = Field(False, description="Whether to generate an API for the assistant.")
|
41
42
|
api_config: Optional[Dict] = Field(
|
42
43
|
None,
|
43
44
|
description="Configuration for the API (e.g., host, port, authentication).",
|
44
45
|
)
|
45
46
|
api_generator: Optional[Any] = Field(None, description="The API generator instance.")
|
46
47
|
expected_output: Optional[Union[str, Dict]] = Field(None, description="The expected format or structure of the output.")
|
47
|
-
semantic_model: Optional[Any] = Field(None, description="SentenceTransformer model for semantic matching.")
|
48
|
+
semantic_model: Optional[Any] = Field(None, description="SentenceTransformer model for semantic matching.")
|
49
|
+
team: Optional[List['Assistant']] = Field(None, description="List of assistants in the team.")
|
50
|
+
auto_tool: bool = Field(False, description="Whether to automatically detect and call tools.")
|
51
|
+
|
48
52
|
# Allow arbitrary types
|
49
53
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
50
54
|
|
@@ -52,8 +56,9 @@ class Agent(BaseModel):
|
|
52
56
|
super().__init__(**kwargs)
|
53
57
|
# Initialize the model and tools here if needed
|
54
58
|
self._initialize_model()
|
55
|
-
# Automatically discover and register tools
|
56
|
-
self.tools
|
59
|
+
# Automatically discover and register tools if not provided
|
60
|
+
if self.tools is None:
|
61
|
+
self.tools = self._discover_tools()
|
57
62
|
# Pass the LLM instance to each tool
|
58
63
|
for tool in self.tools:
|
59
64
|
tool.llm = self.llm_instance
|
@@ -66,6 +71,41 @@ class Agent(BaseModel):
|
|
66
71
|
if self.api:
|
67
72
|
self._generate_api()
|
68
73
|
|
74
|
+
|
75
|
+
def _generate_response_from_image(self,message: str, image: Union[str, Image], markdown: bool = False, **kwargs) -> str:
|
76
|
+
"""
|
77
|
+
Send the image to the LLM for analysis if the LLM supports vision.
|
78
|
+
Supports both local images (PIL.Image) and image URLs.
|
79
|
+
"""
|
80
|
+
try:
|
81
|
+
# Check if the LLM supports vision
|
82
|
+
if not self.llm_instance or not self.llm_instance.supports_vision:
|
83
|
+
raise ValueError("Vision is not supported for the current model.")
|
84
|
+
prompt = self._build_prompt(message, context=None)
|
85
|
+
# Handle image URL
|
86
|
+
if isinstance(image, str) and image.startswith("http"):
|
87
|
+
# Directly pass the URL to the LLM
|
88
|
+
return self.llm_instance.generate_from_image_url(prompt,image, **kwargs)
|
89
|
+
|
90
|
+
# Handle local image (PIL.Image)
|
91
|
+
elif isinstance(image, Image):
|
92
|
+
# Convert the image to bytes
|
93
|
+
if image.mode == "RGBA":
|
94
|
+
image = image.convert("RGB") # Convert RGBA to RGB
|
95
|
+
image_bytes = io.BytesIO()
|
96
|
+
image.save(image_bytes, format="JPEG") # Save as PNG (or any supported format)
|
97
|
+
image_bytes = image_bytes.getvalue()
|
98
|
+
|
99
|
+
# Generate response using base64-encoded image bytes
|
100
|
+
return self.llm_instance.generate_from_image(prompt,image_bytes, **kwargs)
|
101
|
+
|
102
|
+
else:
|
103
|
+
raise ValueError("Unsupported image type. Provide either a URL or a PIL.Image.")
|
104
|
+
|
105
|
+
except Exception as e:
|
106
|
+
logger.error(f"Failed to generate response from image: {e}")
|
107
|
+
return f"An error occurred while processing the image: {e}"
|
108
|
+
|
69
109
|
def _discover_tools(self) -> List[BaseTool]:
|
70
110
|
"""
|
71
111
|
Automatically discover and register tools from the 'tools' directory.
|
@@ -122,12 +162,24 @@ class Agent(BaseModel):
|
|
122
162
|
},
|
123
163
|
"openai": {
|
124
164
|
"class": "OpenAILlm",
|
125
|
-
"default_model": "gpt-
|
165
|
+
"default_model": "gpt-4o",
|
126
166
|
},
|
127
167
|
"anthropic": {
|
128
168
|
"class": "AnthropicLlm",
|
129
169
|
"default_model": "claude-2.1",
|
130
170
|
},
|
171
|
+
"deepseek": {
|
172
|
+
"class": "DeepSeekLLM",
|
173
|
+
"default_model": "deepseek-chat",
|
174
|
+
},
|
175
|
+
"gemini": {
|
176
|
+
"class": "GeminiLLM",
|
177
|
+
"default_model": "gemini-1.5-flash",
|
178
|
+
},
|
179
|
+
"mistral": {
|
180
|
+
"class": "MistralLLM",
|
181
|
+
"default_model": "mistral-large-latest",
|
182
|
+
},
|
131
183
|
}
|
132
184
|
|
133
185
|
# Normalize the LLM provider name (case-insensitive)
|
@@ -156,23 +208,16 @@ class Agent(BaseModel):
|
|
156
208
|
retriever = Retriever(vector_store)
|
157
209
|
return RAG(retriever)
|
158
210
|
|
159
|
-
def load_image_from_url(self, image_url: str) -> Image:
|
160
|
-
"""Load an image from a URL and return it as a PIL Image."""
|
161
|
-
response = requests.get(image_url)
|
162
|
-
image_bytes = response.content
|
163
|
-
return Image.open(io.BytesIO(image_bytes))
|
164
|
-
|
165
211
|
def print_response(
|
166
212
|
self,
|
167
213
|
message: Optional[Union[str, Image, List, Dict]] = None,
|
168
214
|
stream: bool = False,
|
169
215
|
markdown: bool = False,
|
216
|
+
tools: Optional[List[BaseTool]] = None,
|
217
|
+
team: Optional[List['Assistant']] = None,
|
170
218
|
**kwargs,
|
171
219
|
) -> Union[str, Dict]: # Add return type hint
|
172
|
-
"""Print the
|
173
|
-
if isinstance(message, Image):
|
174
|
-
# Handle image input
|
175
|
-
message = self._process_image(message)
|
220
|
+
"""Print the assistant's response to the console and return it."""
|
176
221
|
|
177
222
|
if stream:
|
178
223
|
# Handle streaming response
|
@@ -182,26 +227,21 @@ class Agent(BaseModel):
|
|
182
227
|
response += chunk
|
183
228
|
return response
|
184
229
|
else:
|
185
|
-
|
186
|
-
response = self._generate_response(message, markdown=markdown, **kwargs)
|
230
|
+
# Generate and return the response
|
231
|
+
response = self._generate_response(message, markdown=markdown, tools=tools, team=team, **kwargs)
|
187
232
|
print(response) # Print the response to the console
|
188
233
|
return response
|
189
234
|
|
190
|
-
def _process_image(self, image: Image) -> str:
|
191
|
-
"""Process the image and return a string representation."""
|
192
|
-
# Convert the image to text or extract relevant information
|
193
|
-
# For now, we'll just return a placeholder string
|
194
|
-
return "Image processed. Extracted text: [Placeholder]"
|
195
235
|
|
196
236
|
def _stream_response(self, message: str, markdown: bool = False, **kwargs) -> Iterator[str]:
|
197
|
-
"""Stream the
|
237
|
+
"""Stream the assistant's response."""
|
198
238
|
# Simulate streaming by yielding chunks of the response
|
199
239
|
response = self._generate_response(message, markdown=markdown, **kwargs)
|
200
240
|
for chunk in response.split():
|
201
241
|
yield chunk + " "
|
202
242
|
|
203
243
|
def register_tool(self, tool: BaseTool):
|
204
|
-
"""Register a tool for the
|
244
|
+
"""Register a tool for the assistant."""
|
205
245
|
if self.tools is None:
|
206
246
|
self.tools = []
|
207
247
|
self.tools.append(tool)
|
@@ -216,7 +256,7 @@ class Agent(BaseModel):
|
|
216
256
|
|
217
257
|
# Create a prompt for the LLM
|
218
258
|
prompt = f"""
|
219
|
-
You are an AI
|
259
|
+
You are an AI assistant that helps users by selecting the most appropriate tool to answer their query. Below is a list of available tools and their functionalities:
|
220
260
|
|
221
261
|
{self._get_tool_descriptions()}
|
222
262
|
|
@@ -250,7 +290,7 @@ class Agent(BaseModel):
|
|
250
290
|
"""
|
251
291
|
# Create a prompt for the LLM to analyze the query and select tools
|
252
292
|
prompt = f"""
|
253
|
-
You are an AI
|
293
|
+
You are an AI assistant that helps analyze user queries and select the most appropriate tools.
|
254
294
|
Below is a list of available tools and their functionalities:
|
255
295
|
|
256
296
|
{self._get_tool_descriptions()}
|
@@ -284,20 +324,43 @@ class Agent(BaseModel):
|
|
284
324
|
return []
|
285
325
|
|
286
326
|
|
287
|
-
def _generate_response(self, message: str, markdown: bool = False, **kwargs) -> str:
|
288
|
-
"""Generate the
|
289
|
-
# Use the
|
290
|
-
|
291
|
-
|
327
|
+
def _generate_response(self, message: str, markdown: bool = False, tools: Optional[List[BaseTool]] = None, team: Optional[List['Assistant']] = None, **kwargs) -> str:
|
328
|
+
"""Generate the assistant's response, including tool execution and context retrieval."""
|
329
|
+
# Use the specified tools or team if provided
|
330
|
+
if tools is not None:
|
331
|
+
self.tools = tools
|
332
|
+
if team is not None:
|
333
|
+
return self._generate_team_response(message, team, markdown=markdown, **kwargs)
|
334
|
+
|
335
|
+
# Initialize tool_outputs as an empty dictionary
|
336
|
+
tool_outputs = {}
|
292
337
|
responses = []
|
293
|
-
tool_outputs = {} # Store outputs of all tools for collaboration
|
294
338
|
|
295
|
-
#
|
339
|
+
# Use the LLM to analyze the query and dynamically select tools when auto_tool is enabled
|
340
|
+
if self.auto_tool:
|
341
|
+
tool_calls = self._analyze_query_and_select_tools(message)
|
342
|
+
else:
|
343
|
+
# Check if tools are provided
|
344
|
+
if self.tools:
|
345
|
+
tool_calls = [
|
346
|
+
{
|
347
|
+
"tool": tool.__class__.__name__,
|
348
|
+
"input": {
|
349
|
+
"query": message, # Use the message as the query
|
350
|
+
"context": None, # No context provided by default
|
351
|
+
}
|
352
|
+
}
|
353
|
+
for tool in self.tools
|
354
|
+
]
|
355
|
+
else:
|
356
|
+
tool_calls = kwargs.get("tool_calls", [])
|
357
|
+
|
358
|
+
# Execute tools if any are detected
|
296
359
|
if tool_calls:
|
297
360
|
for tool_call in tool_calls:
|
298
361
|
tool_name = tool_call["tool"]
|
299
362
|
tool_input = tool_call["input"]
|
300
|
-
|
363
|
+
|
301
364
|
# Find the tool
|
302
365
|
tool = next((t for t in self.tools if t.name.lower() == tool_name.lower()), None)
|
303
366
|
if tool:
|
@@ -333,9 +396,8 @@ class Agent(BaseModel):
|
|
333
396
|
except Exception as e:
|
334
397
|
logger.error(f"Failed to generate LLM response: {e}")
|
335
398
|
responses.append(f"An error occurred while generating the analysis: {e}")
|
336
|
-
|
337
|
-
# If no tools were executed, proceed with the original logic
|
338
399
|
if not tool_calls:
|
400
|
+
# If no tools were executed, proceed with the original logic
|
339
401
|
# Retrieve relevant context using RAG
|
340
402
|
rag_context = self.rag.retrieve(message) if self.rag else None
|
341
403
|
# Retrieve relevant context from the knowledge base (API result)
|
@@ -370,8 +432,15 @@ class Agent(BaseModel):
|
|
370
432
|
if markdown:
|
371
433
|
return f"**Response:**\n\n{response}"
|
372
434
|
return response
|
373
|
-
|
374
|
-
|
435
|
+
# Combine all responses into a single string
|
436
|
+
return "\n\n".join(responses)
|
437
|
+
|
438
|
+
def _generate_team_response(self, message: str, team: List['Assistant'], markdown: bool = False, **kwargs) -> str:
|
439
|
+
"""Generate a response using a team of assistants."""
|
440
|
+
responses = []
|
441
|
+
for assistant in team:
|
442
|
+
response = assistant.print_response(message, markdown=markdown, **kwargs)
|
443
|
+
responses.append(f"**{assistant.name}:**\n\n{response}")
|
375
444
|
return "\n\n".join(responses)
|
376
445
|
|
377
446
|
def _build_prompt(self, message: str, context: Optional[List[Dict]]) -> str:
|
@@ -509,7 +578,7 @@ class Agent(BaseModel):
|
|
509
578
|
exit_on: Optional[List[str]] = None,
|
510
579
|
**kwargs,
|
511
580
|
):
|
512
|
-
"""Run the
|
581
|
+
"""Run the assistant in a CLI app."""
|
513
582
|
from rich.prompt import Prompt
|
514
583
|
|
515
584
|
if message:
|
@@ -524,15 +593,15 @@ class Agent(BaseModel):
|
|
524
593
|
self.print_response(message=message, **kwargs)
|
525
594
|
|
526
595
|
def _generate_api(self):
|
527
|
-
"""Generate an API for the
|
596
|
+
"""Generate an API for the assistant if api=True."""
|
528
597
|
from .api.api_generator import APIGenerator
|
529
598
|
self.api_generator = APIGenerator(self)
|
530
|
-
print(f"API generated for
|
599
|
+
print(f"API generated for assistant '{self.name}'. Use `.run_api()` to start the API server.")
|
531
600
|
|
532
601
|
def run_api(self):
|
533
|
-
"""Run the API server for the
|
602
|
+
"""Run the API server for the assistant."""
|
534
603
|
if not hasattr(self, 'api_generator'):
|
535
|
-
raise ValueError("API is not enabled for this
|
604
|
+
raise ValueError("API is not enabled for this assistant. Set `api=True` when initializing the assistant.")
|
536
605
|
|
537
606
|
# Get API configuration
|
538
607
|
host = self.api_config.get("host", "0.0.0.0") if self.api_config else "0.0.0.0"
|
@@ -1,17 +1,24 @@
|
|
1
1
|
from .openai import OpenAILlm
|
2
|
-
from .anthropic import
|
3
|
-
# from .llama import LlamaLlm
|
2
|
+
from .anthropic import AnthropicLLM
|
4
3
|
from .groq import GroqLlm
|
4
|
+
from .mistral import MistralLLM
|
5
|
+
from .deepseek import DeepSeekLLM
|
6
|
+
from .gemini import GeminiLLM
|
5
7
|
|
6
8
|
def get_llm(provider: str, **kwargs):
|
7
9
|
provider = provider.lower() # Convert provider name to lowercase
|
8
10
|
if provider == "openai":
|
9
11
|
return OpenAILlm(**kwargs)
|
10
12
|
elif provider == "anthropic":
|
11
|
-
return
|
12
|
-
# elif provider == "llama":
|
13
|
-
# return LlamaLlm(**kwargs)
|
13
|
+
return AnthropicLLM(**kwargs)
|
14
14
|
elif provider == "groq":
|
15
15
|
return GroqLlm(**kwargs)
|
16
|
+
elif provider == "mistral":
|
17
|
+
return MistralLLM(**kwargs)
|
18
|
+
elif provider == "deepseek":
|
19
|
+
return DeepSeekLLM(**kwargs)
|
20
|
+
elif provider == "gemini":
|
21
|
+
return GeminiLLM(**kwargs)
|
22
|
+
|
16
23
|
else:
|
17
24
|
raise ValueError(f"Unsupported LLM provider: {provider}")
|
@@ -0,0 +1,52 @@
|
|
1
|
+
import os
|
2
|
+
from typing import List, Dict, Optional
|
3
|
+
from .base_llm import BaseLLM
|
4
|
+
import anthropic
|
5
|
+
|
6
|
+
class AnthropicLLM(BaseLLM):
|
7
|
+
def __init__(self, model: str = "claude-3-5-sonnet-20241022", api_key: Optional[str] = None):
|
8
|
+
"""
|
9
|
+
Initialize the Anthropic LLM class.
|
10
|
+
|
11
|
+
Args:
|
12
|
+
model (str): The name of the model (e.g., claude-3-5-sonnet-20241022).
|
13
|
+
api_key (Optional[str]): The Anthropic API key. If not provided, it fetches from the environment.
|
14
|
+
"""
|
15
|
+
self.model = model
|
16
|
+
self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
|
17
|
+
if not self.api_key:
|
18
|
+
raise ValueError("Anthropic API key is required. Set ANTHROPIC_API_KEY environment variable or pass it explicitly.")
|
19
|
+
self.client = anthropic.Anthropic(api_key=self.api_key)
|
20
|
+
|
21
|
+
def generate(self, prompt: str, context: Optional[List[Dict]] = None, memory: Optional[List[Dict]] = None) -> str:
|
22
|
+
"""
|
23
|
+
Generate text using Anthropic's Claude model.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
prompt (str): The user prompt.
|
27
|
+
context (Optional[List[Dict]]): Context to include in the conversation.
|
28
|
+
memory (Optional[List[Dict]]): Memory from previous interactions.
|
29
|
+
|
30
|
+
Returns:
|
31
|
+
str: The generated response from the model.
|
32
|
+
"""
|
33
|
+
try:
|
34
|
+
# Prepare messages for the Anthropic API
|
35
|
+
messages = []
|
36
|
+
if memory:
|
37
|
+
messages.extend(memory)
|
38
|
+
if context:
|
39
|
+
messages.append({"role": "system", "content": "Context: " + str(context)})
|
40
|
+
messages.append({"role": "user", "content": prompt})
|
41
|
+
|
42
|
+
# Call the Anthropic API
|
43
|
+
response = self.client.messages.create(
|
44
|
+
model=self.model,
|
45
|
+
max_tokens=1024,
|
46
|
+
messages=messages,
|
47
|
+
)
|
48
|
+
|
49
|
+
# Extract and return the response
|
50
|
+
return response.content
|
51
|
+
except Exception as e:
|
52
|
+
raise ValueError(f"Error while generating response with Anthropic Claude: {e}")
|
@@ -0,0 +1,21 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
2
|
+
from typing import List, Dict, Optional
|
3
|
+
|
4
|
+
class BaseLLM(ABC):
|
5
|
+
@abstractmethod
|
6
|
+
def generate(
|
7
|
+
self,
|
8
|
+
prompt: str,
|
9
|
+
context: Optional[List[Dict]] = None,
|
10
|
+
memory: Optional[List[Dict]] = None,
|
11
|
+
) -> str:
|
12
|
+
pass
|
13
|
+
|
14
|
+
@property
|
15
|
+
def supports_vision(self) -> bool:
|
16
|
+
"""Return True if the LLM supports vision tasks."""
|
17
|
+
return False
|
18
|
+
|
19
|
+
def generate_from_image(self, image_bytes: bytes, **kwargs) -> str:
|
20
|
+
"""Process an image if vision is supported. Default implementation raises an error."""
|
21
|
+
raise NotImplementedError("This LLM does not support vision tasks.")
|
@@ -0,0 +1,27 @@
|
|
1
|
+
from typing import List, Dict, Optional
|
2
|
+
from .base_llm import BaseLLM
|
3
|
+
from openai import OpenAI
|
4
|
+
import os
|
5
|
+
|
6
|
+
class DeepSeekLLM(BaseLLM):
|
7
|
+
def __init__(self, model: str = "deepseek-chat", api_key: Optional[str] = None):
|
8
|
+
self.model = model
|
9
|
+
self.api_key = api_key or os.getenv("DEEPSEEK_API_KEY")
|
10
|
+
if not self.api_key:
|
11
|
+
raise ValueError("DeepSeek API key is required. Set DEEPSEEK_API_KEY environment variable or pass it explicitly.")
|
12
|
+
self.client = OpenAI(api_key=self.api_key, base_url="https://api.deepseek.com")
|
13
|
+
|
14
|
+
def generate(self, prompt: str, context: Optional[List[Dict]] = None, memory: Optional[List[Dict]] = None) -> str:
|
15
|
+
messages = []
|
16
|
+
if memory:
|
17
|
+
messages.extend(memory)
|
18
|
+
if context:
|
19
|
+
messages.append({"role": "system", "content": "Context: " + str(context)})
|
20
|
+
messages.append({"role": "user", "content": prompt})
|
21
|
+
|
22
|
+
response = self.client.chat.completions.create(
|
23
|
+
model=self.model,
|
24
|
+
messages=messages,
|
25
|
+
)
|
26
|
+
|
27
|
+
return response.choices[0].message.content
|
@@ -0,0 +1,50 @@
|
|
1
|
+
import os
|
2
|
+
from typing import List, Dict, Optional
|
3
|
+
from .base_llm import BaseLLM
|
4
|
+
from google import genai
|
5
|
+
|
6
|
+
class GeminiLLM(BaseLLM):
|
7
|
+
def __init__(self, model: str = "gemini-1.5-flash", api_key: Optional[str] = None):
|
8
|
+
"""
|
9
|
+
Initialize the Gemini LLM class.
|
10
|
+
|
11
|
+
Args:
|
12
|
+
model (str): The name of the Gemini model (e.g., 'gemini-1.5-flash').
|
13
|
+
api_key (Optional[str]): The Gemini API key. If not provided, it fetches from the environment.
|
14
|
+
"""
|
15
|
+
self.model = model
|
16
|
+
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
17
|
+
if not self.api_key:
|
18
|
+
raise ValueError("Gemini API key is required. Set GEMINI_API_KEY environment variable or pass it explicitly.")
|
19
|
+
|
20
|
+
# Initialize the client using the API key
|
21
|
+
self.client = genai.Client(api_key=self.api_key)
|
22
|
+
|
23
|
+
def generate(self, prompt: str, context: Optional[List[Dict]] = None, memory: Optional[List[Dict]] = None) -> str:
|
24
|
+
"""
|
25
|
+
Generate text using Google's Gemini model.
|
26
|
+
|
27
|
+
Args:
|
28
|
+
prompt (str): The user prompt.
|
29
|
+
context (Optional[List[Dict]]): Context to include in the conversation.
|
30
|
+
memory (Optional[List[Dict]]): Memory from previous interactions.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
str: The generated response from the model.
|
34
|
+
"""
|
35
|
+
try:
|
36
|
+
# Prepare the chat history (optional context and memory)
|
37
|
+
history = memory if memory else []
|
38
|
+
if context:
|
39
|
+
history.append({"role": "system", "content": str(context)})
|
40
|
+
|
41
|
+
# Generate the content using the specified Gemini model
|
42
|
+
response = self.client.models.generate_content(
|
43
|
+
model=self.model,
|
44
|
+
contents=prompt
|
45
|
+
)
|
46
|
+
|
47
|
+
# Return the response text
|
48
|
+
return response.text
|
49
|
+
except Exception as e:
|
50
|
+
raise ValueError(f"Error while generating response with Gemini: {e}")
|
@@ -0,0 +1,121 @@
|
|
1
|
+
import base64
|
2
|
+
from typing import Optional, List, Dict
|
3
|
+
from .base_llm import BaseLLM
|
4
|
+
import groq
|
5
|
+
import os
|
6
|
+
|
7
|
+
class GroqLlm(BaseLLM):
|
8
|
+
def __init__(
|
9
|
+
self,
|
10
|
+
model: str = "mixtral-8x7b-32768", # Default Groq model
|
11
|
+
api_key: Optional[str] = None,
|
12
|
+
):
|
13
|
+
self.model = model
|
14
|
+
self.api_key = api_key or os.getenv("GROQ_API_KEY")
|
15
|
+
if not self.api_key:
|
16
|
+
raise ValueError("Groq API key is required. Set GROQ_API_KEY environment variable or pass it explicitly.")
|
17
|
+
self.client = groq.Client(api_key=self.api_key)
|
18
|
+
|
19
|
+
@property
|
20
|
+
def supports_vision(self) -> bool:
|
21
|
+
"""
|
22
|
+
Check if the model supports vision tasks.
|
23
|
+
"""
|
24
|
+
# List of Groq models that support vision
|
25
|
+
vision_models = [
|
26
|
+
"llama-3.2-11b-vision-preview",
|
27
|
+
"llama-3.2-90b-vision-preview"
|
28
|
+
]
|
29
|
+
return self.model in vision_models
|
30
|
+
|
31
|
+
def generate(self, prompt: str, context: Optional[List[Dict]] = None, memory: Optional[List[Dict]] = None) -> str:
|
32
|
+
"""
|
33
|
+
Generate a response to a text-based prompt.
|
34
|
+
"""
|
35
|
+
# Prepare messages for the Groq API
|
36
|
+
messages = []
|
37
|
+
if memory:
|
38
|
+
messages.extend(memory)
|
39
|
+
if context:
|
40
|
+
messages.append({"role": "system", "content": "Context: " + str(context)})
|
41
|
+
messages.append({"role": "user", "content": prompt})
|
42
|
+
|
43
|
+
# Call Groq API
|
44
|
+
response = self.client.chat.completions.create(
|
45
|
+
model=self.model,
|
46
|
+
messages=messages,
|
47
|
+
)
|
48
|
+
|
49
|
+
# Extract and return the response
|
50
|
+
return response.choices[0].message.content
|
51
|
+
|
52
|
+
def generate_from_image(self, prompt: str, image_bytes: bytes, **kwargs) -> str:
|
53
|
+
"""
|
54
|
+
Process an image and generate a response if the model supports vision.
|
55
|
+
"""
|
56
|
+
if not self.supports_vision:
|
57
|
+
raise ValueError(f"Model '{self.model}' does not support vision tasks.")
|
58
|
+
|
59
|
+
try:
|
60
|
+
# Convert the image bytes to base64
|
61
|
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
62
|
+
|
63
|
+
# Construct the message payload
|
64
|
+
messages = [
|
65
|
+
{
|
66
|
+
"role": "user",
|
67
|
+
"content": [
|
68
|
+
{"type": "text", "text": prompt},
|
69
|
+
{
|
70
|
+
"type": "image_url",
|
71
|
+
"image_url": {
|
72
|
+
"url": f"data:image/jpeg;base64,{image_base64}",
|
73
|
+
},
|
74
|
+
},
|
75
|
+
],
|
76
|
+
}
|
77
|
+
]
|
78
|
+
|
79
|
+
# Call the Groq API with the base64-encoded image
|
80
|
+
response = self.client.chat.completions.create(
|
81
|
+
model=self.model,
|
82
|
+
messages=messages,
|
83
|
+
**kwargs,
|
84
|
+
)
|
85
|
+
|
86
|
+
# Extract and return the response text
|
87
|
+
return response.choices[0].message.content
|
88
|
+
except Exception as e:
|
89
|
+
raise ValueError(f"Error while processing image with Groq vision model: {e}")
|
90
|
+
|
91
|
+
|
92
|
+
def generate_from_image_url(self, prompt: str, image_url: str, **kwargs) -> str:
|
93
|
+
"""
|
94
|
+
Process an image URL and generate a response if the model supports vision.
|
95
|
+
"""
|
96
|
+
if not self.supports_vision:
|
97
|
+
raise ValueError(f"Model '{self.model}' does not support vision tasks.")
|
98
|
+
|
99
|
+
try:
|
100
|
+
# Call the Groq API with the image URL
|
101
|
+
response = self.client.chat.completions.create(
|
102
|
+
model=self.model,
|
103
|
+
messages=[
|
104
|
+
{
|
105
|
+
"role": "user",
|
106
|
+
"content": [
|
107
|
+
{"type": "text", "text": prompt},
|
108
|
+
{
|
109
|
+
"type": "image_url",
|
110
|
+
"image_url": {
|
111
|
+
"url": image_url,
|
112
|
+
},
|
113
|
+
},
|
114
|
+
],
|
115
|
+
}
|
116
|
+
],
|
117
|
+
**kwargs,
|
118
|
+
)
|
119
|
+
return response.choices[0].message.content
|
120
|
+
except Exception as e:
|
121
|
+
raise ValueError(f"Error while processing image URL with Groq vision model: {e}")
|
@@ -1,15 +1,15 @@
|
|
1
1
|
from typing import List, Dict, Optional
|
2
2
|
from .base_llm import BaseLLM
|
3
|
-
import
|
3
|
+
from mistralai import Mistral
|
4
4
|
import os
|
5
5
|
|
6
|
-
class
|
7
|
-
def __init__(self, model: str = "
|
6
|
+
class MistralLLM(BaseLLM):
|
7
|
+
def __init__(self, model: str = "mistral-large-latest", api_key: Optional[str] = None):
|
8
8
|
self.model = model
|
9
|
-
self.api_key = api_key or os.getenv("
|
9
|
+
self.api_key = api_key or os.getenv("MISTRAL_API_KEY")
|
10
10
|
if not self.api_key:
|
11
|
-
raise ValueError("
|
12
|
-
|
11
|
+
raise ValueError("Mistral API key is required. Set MISTRAL_API_KEY environment variable or pass it explicitly.")
|
12
|
+
self.client = Mistral(api_key=self.api_key)
|
13
13
|
|
14
14
|
def generate(self, prompt: str, context: Optional[List[Dict]] = None, memory: Optional[List[Dict]] = None) -> str:
|
15
15
|
messages = []
|
@@ -19,8 +19,9 @@ class OpenAILlm(BaseLLM):
|
|
19
19
|
messages.append({"role": "system", "content": "Context: " + str(context)})
|
20
20
|
messages.append({"role": "user", "content": prompt})
|
21
21
|
|
22
|
-
response =
|
22
|
+
response = self.client.chat.complete(
|
23
23
|
model=self.model,
|
24
24
|
messages=messages,
|
25
25
|
)
|
26
|
-
|
26
|
+
|
27
|
+
return response.choices[0].message.content
|
@@ -0,0 +1,136 @@
|
|
1
|
+
from typing import List, Dict, Optional
|
2
|
+
from .base_llm import BaseLLM
|
3
|
+
from openai import OpenAI
|
4
|
+
import os
|
5
|
+
import base64
|
6
|
+
|
7
|
+
class OpenAILlm(BaseLLM):
|
8
|
+
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
|
9
|
+
"""
|
10
|
+
Initialize the OpenAI LLM class.
|
11
|
+
|
12
|
+
Args:
|
13
|
+
model (str): The name of the model (e.g., gpt-4o, gpt-4-vision).
|
14
|
+
api_key (Optional[str]): The OpenAI API key. If not provided, it fetches from the environment.
|
15
|
+
"""
|
16
|
+
self.model = model
|
17
|
+
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
18
|
+
if not self.api_key:
|
19
|
+
raise ValueError("OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass it explicitly.")
|
20
|
+
self.client = OpenAI(api_key=self.api_key)
|
21
|
+
|
22
|
+
def generate(self, prompt: str, context: Optional[List[Dict]] = None, memory: Optional[List[Dict]] = None) -> str:
|
23
|
+
"""
|
24
|
+
Generate text using OpenAI's ChatCompletion API.
|
25
|
+
|
26
|
+
Args:
|
27
|
+
prompt (str): The user prompt.
|
28
|
+
context (Optional[List[Dict]]): Context to include in the conversation.
|
29
|
+
memory (Optional[List[Dict]]): Memory from previous interactions.
|
30
|
+
|
31
|
+
Returns:
|
32
|
+
str: The generated response from the model.
|
33
|
+
"""
|
34
|
+
try:
|
35
|
+
# Prepare messages for the OpenAI API
|
36
|
+
messages = []
|
37
|
+
if memory:
|
38
|
+
messages.extend(memory)
|
39
|
+
if context:
|
40
|
+
messages.append({"role": "system", "content": "Context: " + str(context)})
|
41
|
+
messages.append({"role": "user", "content": prompt})
|
42
|
+
|
43
|
+
# Call the ChatCompletion endpoint
|
44
|
+
response = self.client.chat.completions.create(
|
45
|
+
model=self.model,
|
46
|
+
messages=messages,
|
47
|
+
)
|
48
|
+
|
49
|
+
# Extract and return the response:
|
50
|
+
return response.choices[0].message.content
|
51
|
+
except Exception as e:
|
52
|
+
raise ValueError(f"Error while generating response with OpenAI: {e}")
|
53
|
+
|
54
|
+
@property
|
55
|
+
def supports_vision(self) -> bool:
|
56
|
+
"""
|
57
|
+
Check if the model supports vision tasks.
|
58
|
+
"""
|
59
|
+
# List of GPT models that support vision
|
60
|
+
vision_models =[
|
61
|
+
"gpt-4o", "gpt-4o mini", "o1", "o1 mini"
|
62
|
+
]
|
63
|
+
return self.model in vision_models
|
64
|
+
|
65
|
+
def generate_from_image_url(self, prompt: str, image_url: str, **kwargs) -> str:
|
66
|
+
"""
|
67
|
+
Process an image URL with OpenAI's vision-capable models, using instructions as the prompt.
|
68
|
+
|
69
|
+
Args:
|
70
|
+
image_url (str): The URL of the image.
|
71
|
+
instructions (str): Instructions provided as the prompt for image analysis.
|
72
|
+
kwargs: Additional parameters for the OpenAI API.
|
73
|
+
|
74
|
+
Returns:
|
75
|
+
str: The response generated by the vision-capable model.
|
76
|
+
"""
|
77
|
+
if not self.supports_vision:
|
78
|
+
raise ValueError(f"Model '{self.model}' does not support vision tasks.")
|
79
|
+
|
80
|
+
try:
|
81
|
+
# Use instructions as the prompt in the API call
|
82
|
+
response = self.client.chat.completions.create(
|
83
|
+
model=self.model,
|
84
|
+
messages=[
|
85
|
+
{
|
86
|
+
"role": "user",
|
87
|
+
"content": [
|
88
|
+
{"type": "text", "text": prompt}, # Using instructions as the prompt
|
89
|
+
{"type": "image_url", "image_url": {"url": image_url,},},
|
90
|
+
],
|
91
|
+
}
|
92
|
+
],
|
93
|
+
**kwargs,
|
94
|
+
)
|
95
|
+
return response.choices[0].message.content
|
96
|
+
except Exception as e:
|
97
|
+
raise ValueError(f"Error while processing image URL with OpenAI Vision model: {e}")
|
98
|
+
|
99
|
+
def generate_from_image(self, prompt: str, image_bytes: bytes, **kwargs) -> str:
|
100
|
+
"""
|
101
|
+
Process an image and generate a response if the model supports vision.
|
102
|
+
"""
|
103
|
+
if not self.supports_vision:
|
104
|
+
raise ValueError(f"Model '{self.model}' does not support vision tasks.")
|
105
|
+
|
106
|
+
try:
|
107
|
+
# Convert the image bytes to base64
|
108
|
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
109
|
+
|
110
|
+
# Construct the message payload
|
111
|
+
messages = [
|
112
|
+
{
|
113
|
+
"role": "user",
|
114
|
+
"content": [
|
115
|
+
{"type": "text", "text": prompt},
|
116
|
+
{
|
117
|
+
"type": "image_url",
|
118
|
+
"image_url": {
|
119
|
+
"url": f"data:image/jpeg;base64,{image_base64}",
|
120
|
+
},
|
121
|
+
},
|
122
|
+
],
|
123
|
+
}
|
124
|
+
]
|
125
|
+
|
126
|
+
# Call the Groq API with the base64-encoded image
|
127
|
+
response = self.client.chat.completions.create(
|
128
|
+
model=self.model,
|
129
|
+
messages=messages,
|
130
|
+
**kwargs,
|
131
|
+
)
|
132
|
+
|
133
|
+
# Extract and return the response text
|
134
|
+
return response.choices[0].message.content
|
135
|
+
except Exception as e:
|
136
|
+
raise ValueError(f"Error while processing image with OpenAI vision model: {e}")
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: semantio
|
3
|
-
Version: 0.0.
|
4
|
-
Summary: A powerful SDK for building AI agents
|
3
|
+
Version: 0.0.2
|
4
|
+
Summary: A powerful SDK for building AI agents
|
5
5
|
Home-page: https://github.com/Syenah/semantio
|
6
6
|
Author: Rakesh
|
7
7
|
Author-email: rakeshsahoo689@gmail.com
|
@@ -94,7 +94,9 @@ Semantio/
|
|
94
94
|
│ │ ├── __init__.py
|
95
95
|
│ │ ├── openai.py # OpenAI integration
|
96
96
|
│ │ ├── anthropic.py # Anthropic (Claude) integration
|
97
|
-
│ │ ├──
|
97
|
+
│ │ ├── deepseek.py # Deepseek integration
|
98
|
+
│ │ ├── gemini.py # Gemini integration
|
99
|
+
│ │ ├── mistral.py # Mistral integration
|
98
100
|
│ │ └── base_llm.py # Base class for LLMs
|
99
101
|
│ ├── knowledge_base/ # Knowledge base integration
|
100
102
|
│ │ ├── __init__.py
|
@@ -23,8 +23,10 @@ semantio/knowledge_base/vector_store.py
|
|
23
23
|
semantio/llm/__init__.py
|
24
24
|
semantio/llm/anthropic.py
|
25
25
|
semantio/llm/base_llm.py
|
26
|
+
semantio/llm/deepseek.py
|
27
|
+
semantio/llm/gemini.py
|
26
28
|
semantio/llm/groq.py
|
27
|
-
semantio/llm/
|
29
|
+
semantio/llm/mistral.py
|
28
30
|
semantio/llm/openai.py
|
29
31
|
semantio/storage/__init__.py
|
30
32
|
semantio/storage/cloud_storage.py
|
@@ -34,7 +36,6 @@ semantio/tools/base_tool.py
|
|
34
36
|
semantio/tools/crypto.py
|
35
37
|
semantio/tools/duckduckgo.py
|
36
38
|
semantio/tools/stocks.py
|
37
|
-
semantio/tools/web_browser.py
|
38
39
|
semantio/utils/__init__.py
|
39
40
|
semantio/utils/config.py
|
40
41
|
semantio/utils/date_utils.py
|
@@ -2,8 +2,8 @@ from setuptools import setup, find_packages
|
|
2
2
|
|
3
3
|
setup(
|
4
4
|
name="semantio",
|
5
|
-
version="0.0.
|
6
|
-
description="A powerful SDK for building AI agents
|
5
|
+
version="0.0.2",
|
6
|
+
description="A powerful SDK for building AI agents",
|
7
7
|
long_description=open("README.md").read(),
|
8
8
|
long_description_content_type="text/markdown",
|
9
9
|
author="Rakesh",
|
@@ -14,7 +14,8 @@ setup(
|
|
14
14
|
"openai",
|
15
15
|
"anthropic",
|
16
16
|
"groq",
|
17
|
-
"
|
17
|
+
"google-genai",
|
18
|
+
"mistralai",
|
18
19
|
"faiss-cpu", # For vector storage
|
19
20
|
"pydantic", # For data validation
|
20
21
|
"requests", # For web tools
|
@@ -27,8 +28,6 @@ setup(
|
|
27
28
|
"fuzzywuzzy", # For fuzzy string matching
|
28
29
|
"duckduckgo-search", # For DuckDuckGo search
|
29
30
|
"yfinance", # For stock/crypto prices
|
30
|
-
"forex-python", # For currency conversion
|
31
|
-
"qrcode", # For QR code generation
|
32
31
|
|
33
32
|
],
|
34
33
|
classifiers=[
|
@@ -1,39 +0,0 @@
|
|
1
|
-
from typing import List, Dict, Optional
|
2
|
-
from .base_llm import BaseLLM
|
3
|
-
import anthropic
|
4
|
-
import os
|
5
|
-
|
6
|
-
class AnthropicLlm(BaseLLM):
|
7
|
-
def __init__(
|
8
|
-
self,
|
9
|
-
model: str = "claude-2.1", # Default Anthropic model
|
10
|
-
api_key: Optional[str] = None,
|
11
|
-
):
|
12
|
-
self.model = model
|
13
|
-
self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
|
14
|
-
if not self.api_key:
|
15
|
-
raise ValueError("Anthropic API key is required. Set ANTHROPIC_API_KEY environment variable or pass it explicitly.")
|
16
|
-
self.client = anthropic.Client(api_key=self.api_key)
|
17
|
-
|
18
|
-
def generate(
|
19
|
-
self,
|
20
|
-
prompt: str,
|
21
|
-
context: Optional[List[Dict]] = None,
|
22
|
-
memory: Optional[List[Dict]] = None,
|
23
|
-
) -> str:
|
24
|
-
# Prepare messages for the Anthropic API
|
25
|
-
messages = []
|
26
|
-
if memory:
|
27
|
-
messages.extend(memory)
|
28
|
-
if context:
|
29
|
-
messages.append({"role": "system", "content": "Context: " + str(context)})
|
30
|
-
messages.append({"role": "user", "content": prompt})
|
31
|
-
|
32
|
-
# Call Anthropic API
|
33
|
-
response = self.client.completion(
|
34
|
-
model=self.model,
|
35
|
-
messages=messages,
|
36
|
-
)
|
37
|
-
|
38
|
-
# Extract and return the response
|
39
|
-
return response.choices[0].message.content
|
@@ -1,12 +0,0 @@
|
|
1
|
-
from abc import ABC, abstractmethod
|
2
|
-
from typing import List, Dict, Optional
|
3
|
-
|
4
|
-
class BaseLLM(ABC):
|
5
|
-
@abstractmethod
|
6
|
-
def generate(
|
7
|
-
self,
|
8
|
-
prompt: str,
|
9
|
-
context: Optional[List[Dict]] = None,
|
10
|
-
memory: Optional[List[Dict]] = None,
|
11
|
-
) -> str:
|
12
|
-
pass
|
@@ -1,39 +0,0 @@
|
|
1
|
-
from typing import List, Dict, Optional
|
2
|
-
from .base_llm import BaseLLM
|
3
|
-
import groq
|
4
|
-
import os
|
5
|
-
|
6
|
-
class GroqLlm(BaseLLM):
|
7
|
-
def __init__(
|
8
|
-
self,
|
9
|
-
model: str = "mixtral-8x7b-32768", # Default Groq model
|
10
|
-
api_key: Optional[str] = None,
|
11
|
-
):
|
12
|
-
self.model = model
|
13
|
-
self.api_key = api_key or os.getenv("GROQ_API_KEY")
|
14
|
-
if not self.api_key:
|
15
|
-
raise ValueError("Groq API key is required. Set GROQ_API_KEY environment variable or pass it explicitly.")
|
16
|
-
self.client = groq.Client(api_key=self.api_key)
|
17
|
-
|
18
|
-
def generate(
|
19
|
-
self,
|
20
|
-
prompt: str,
|
21
|
-
context: Optional[List[Dict]] = None,
|
22
|
-
memory: Optional[List[Dict]] = None,
|
23
|
-
) -> str:
|
24
|
-
# Prepare messages for the Groq API
|
25
|
-
messages = []
|
26
|
-
if memory:
|
27
|
-
messages.extend(memory)
|
28
|
-
if context:
|
29
|
-
messages.append({"role": "system", "content": "Context: " + str(context)})
|
30
|
-
messages.append({"role": "user", "content": prompt})
|
31
|
-
|
32
|
-
# Call Groq API
|
33
|
-
response = self.client.chat.completions.create(
|
34
|
-
model=self.model,
|
35
|
-
messages=messages,
|
36
|
-
)
|
37
|
-
|
38
|
-
# Extract and return the response
|
39
|
-
return response.choices[0].message.content
|
File without changes
|
@@ -1,153 +0,0 @@
|
|
1
|
-
from typing import Dict, Any, Optional, List
|
2
|
-
from playwright.async_api import async_playwright
|
3
|
-
import asyncio
|
4
|
-
import logging
|
5
|
-
|
6
|
-
logger = logging.getLogger(__name__)
|
7
|
-
|
8
|
-
class WebBrowserTool:
|
9
|
-
"""
|
10
|
-
A tool for performing browser automation tasks using Playwright.
|
11
|
-
"""
|
12
|
-
|
13
|
-
def __init__(self, headless: bool = True):
|
14
|
-
"""
|
15
|
-
Initialize the WebBrowserTool.
|
16
|
-
|
17
|
-
Args:
|
18
|
-
headless (bool): Whether to run the browser in headless mode (default: True).
|
19
|
-
"""
|
20
|
-
self.headless = headless
|
21
|
-
self.browser = None
|
22
|
-
self.context = None
|
23
|
-
self.page = None
|
24
|
-
|
25
|
-
async def start(self):
|
26
|
-
"""
|
27
|
-
Start the browser and create a new context and page.
|
28
|
-
"""
|
29
|
-
self.playwright = await async_playwright().start()
|
30
|
-
self.browser = await self.playwright.chromium.launch(headless=self.headless)
|
31
|
-
self.context = await self.browser.new_context()
|
32
|
-
self.page = await self.context.new_page()
|
33
|
-
logger.info("Browser started successfully.")
|
34
|
-
|
35
|
-
async def close(self):
|
36
|
-
"""
|
37
|
-
Close the browser and cleanup resources.
|
38
|
-
"""
|
39
|
-
if self.browser:
|
40
|
-
await self.browser.close()
|
41
|
-
await self.playwright.stop()
|
42
|
-
logger.info("Browser closed successfully.")
|
43
|
-
|
44
|
-
async def navigate(self, url: str) -> str:
|
45
|
-
"""
|
46
|
-
Navigate to a specific URL.
|
47
|
-
|
48
|
-
Args:
|
49
|
-
url (str): The URL to navigate to.
|
50
|
-
|
51
|
-
Returns:
|
52
|
-
str: The page title after navigation.
|
53
|
-
"""
|
54
|
-
if not self.page:
|
55
|
-
raise RuntimeError("Browser is not started. Call start() first.")
|
56
|
-
|
57
|
-
await self.page.goto(url)
|
58
|
-
title = await self.page.title()
|
59
|
-
logger.info(f"Navigated to {url}. Page title: {title}")
|
60
|
-
return title
|
61
|
-
|
62
|
-
async def fill_form(self, fields: Dict[str, str]) -> str:
|
63
|
-
"""
|
64
|
-
Fill a form with the provided fields.
|
65
|
-
|
66
|
-
Args:
|
67
|
-
fields (Dict[str, str]): A dictionary of field names and values to fill.
|
68
|
-
|
69
|
-
Returns:
|
70
|
-
str: A success message.
|
71
|
-
"""
|
72
|
-
if not self.page:
|
73
|
-
raise RuntimeError("Browser is not started. Call start() first.")
|
74
|
-
|
75
|
-
for field, value in fields.items():
|
76
|
-
await self.page.fill(f'input[name="{field}"]', value)
|
77
|
-
logger.info(f"Filled field '{field}' with value '{value}'.")
|
78
|
-
|
79
|
-
return "Form filled successfully."
|
80
|
-
|
81
|
-
async def click(self, selector: str) -> str:
|
82
|
-
"""
|
83
|
-
Click an element on the page.
|
84
|
-
|
85
|
-
Args:
|
86
|
-
selector (str): The CSS selector of the element to click.
|
87
|
-
|
88
|
-
Returns:
|
89
|
-
str: A success message.
|
90
|
-
"""
|
91
|
-
if not self.page:
|
92
|
-
raise RuntimeError("Browser is not started. Call start() first.")
|
93
|
-
|
94
|
-
await self.page.click(selector)
|
95
|
-
logger.info(f"Clicked element with selector '{selector}'.")
|
96
|
-
return f"Clicked element: {selector}"
|
97
|
-
|
98
|
-
async def scrape(self, selector: str) -> List[Dict[str, str]]:
|
99
|
-
"""
|
100
|
-
Scrape data from the page.
|
101
|
-
|
102
|
-
Args:
|
103
|
-
selector (str): The CSS selector of the elements to scrape.
|
104
|
-
|
105
|
-
Returns:
|
106
|
-
List[Dict[str, str]]: A list of dictionaries containing the scraped data.
|
107
|
-
"""
|
108
|
-
if not self.page:
|
109
|
-
raise RuntimeError("Browser is not started. Call start() first.")
|
110
|
-
|
111
|
-
elements = await self.page.query_selector_all(selector)
|
112
|
-
scraped_data = []
|
113
|
-
for element in elements:
|
114
|
-
text = await element.inner_text()
|
115
|
-
scraped_data.append({"text": text.strip()})
|
116
|
-
logger.info(f"Scraped text: {text.strip()}")
|
117
|
-
|
118
|
-
return scraped_data
|
119
|
-
|
120
|
-
async def execute_step(self, step: Dict[str, Any]) -> str:
|
121
|
-
"""
|
122
|
-
Execute a browser automation step.
|
123
|
-
|
124
|
-
Args:
|
125
|
-
step (Dict[str, Any]): A dictionary containing the step details.
|
126
|
-
- "action": The action to perform (e.g., "navigate", "fill_form", "click", "scrape").
|
127
|
-
- "details": The details required for the action (e.g., URL, form fields, selector).
|
128
|
-
- "website": The website to perform the action on (optional).
|
129
|
-
|
130
|
-
Returns:
|
131
|
-
str: The result of the step execution.
|
132
|
-
"""
|
133
|
-
action = step.get("action")
|
134
|
-
details = step.get("details")
|
135
|
-
website = step.get("website", "https://www.google.com")
|
136
|
-
|
137
|
-
if not self.page:
|
138
|
-
await self.start()
|
139
|
-
|
140
|
-
try:
|
141
|
-
if action == "navigate":
|
142
|
-
return await self.navigate(details)
|
143
|
-
elif action == "fill_form":
|
144
|
-
return await self.fill_form(details)
|
145
|
-
elif action == "click":
|
146
|
-
return await self.click(details)
|
147
|
-
elif action == "scrape":
|
148
|
-
return str(await self.scrape(details))
|
149
|
-
else:
|
150
|
-
return f"Unknown action: {action}"
|
151
|
-
except Exception as e:
|
152
|
-
logger.error(f"Error executing step: {e}")
|
153
|
-
return f"Error executing step: {e}"
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|