semantic-link-labs 0.8.0__tar.gz → 0.8.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (190) hide show
  1. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/PKG-INFO +39 -7
  2. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/README.md +37 -6
  3. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/docs/requirements.txt +3 -1
  4. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/docs/source/conf.py +1 -1
  5. semantic_link_labs-0.8.1/notebooks/Tabular Object Model.ipynb +1 -0
  6. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/pyproject.toml +3 -2
  7. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/semantic_link_labs.egg-info/PKG-INFO +39 -7
  8. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/semantic_link_labs.egg-info/SOURCES.txt +11 -0
  9. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/semantic_link_labs.egg-info/requires.txt +1 -0
  10. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/__init__.py +70 -51
  11. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_ai.py +0 -2
  12. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_capacity_migration.py +1 -2
  13. semantic_link_labs-0.8.1/src/sempy_labs/_data_pipelines.py +118 -0
  14. semantic_link_labs-0.8.1/src/sempy_labs/_documentation.py +144 -0
  15. semantic_link_labs-0.8.1/src/sempy_labs/_eventhouses.py +118 -0
  16. semantic_link_labs-0.8.1/src/sempy_labs/_eventstreams.py +118 -0
  17. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_generate_semantic_model.py +3 -3
  18. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_git.py +3 -3
  19. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_helper_functions.py +116 -26
  20. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_icons.py +21 -0
  21. semantic_link_labs-0.8.1/src/sempy_labs/_kql_databases.py +134 -0
  22. semantic_link_labs-0.8.1/src/sempy_labs/_kql_querysets.py +124 -0
  23. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_list_functions.py +12 -425
  24. semantic_link_labs-0.8.1/src/sempy_labs/_mirrored_warehouses.py +50 -0
  25. semantic_link_labs-0.8.1/src/sempy_labs/_ml_experiments.py +122 -0
  26. semantic_link_labs-0.8.1/src/sempy_labs/_ml_models.py +120 -0
  27. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_model_auto_build.py +0 -4
  28. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_model_bpa.py +9 -11
  29. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_model_bpa_bulk.py +8 -7
  30. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_model_dependencies.py +26 -18
  31. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_notebooks.py +5 -16
  32. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_query_scale_out.py +2 -2
  33. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_refresh_semantic_model.py +7 -19
  34. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_spark.py +10 -10
  35. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_vertipaq.py +16 -18
  36. semantic_link_labs-0.8.1/src/sempy_labs/_warehouses.py +132 -0
  37. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_workspaces.py +0 -3
  38. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/admin/_basic_functions.py +92 -10
  39. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/admin/_domains.py +1 -1
  40. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_directlake_schema_sync.py +1 -1
  41. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_dl_helper.py +32 -16
  42. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_guardrails.py +7 -7
  43. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_update_directlake_partition_entity.py +1 -1
  44. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_warm_cache.py +1 -1
  45. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/lakehouse/_get_lakehouse_tables.py +3 -3
  46. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/lakehouse/_lakehouse.py +3 -2
  47. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_migrate_calctables_to_lakehouse.py +5 -0
  48. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_generate_report.py +1 -1
  49. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_report_bpa.py +13 -3
  50. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_reportwrapper.py +14 -16
  51. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/tom/_model.py +261 -24
  52. semantic_link_labs-0.8.1/tests/test_friendly_case.py +11 -0
  53. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/tests/test_shortcuts.py +1 -1
  54. semantic_link_labs-0.8.0/notebooks/Tabular Object Model.ipynb +0 -1
  55. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  56. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  57. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.github/ISSUE_TEMPLATE/issue--question---advice-needed.md +0 -0
  58. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.github/workflows/build.yaml +0 -0
  59. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.github/workflows/codeql.yaml +0 -0
  60. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.gitignore +0 -0
  61. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.readthedocs.yaml +0 -0
  62. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/.vscode/settings.json +0 -0
  63. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/CODE_OF_CONDUCT.md +0 -0
  64. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/LICENSE +0 -0
  65. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/SECURITY.md +0 -0
  66. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/SUPPORT.md +0 -0
  67. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/docs/Makefile +0 -0
  68. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/docs/make.bat +0 -0
  69. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/docs/source/index.rst +0 -0
  70. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/docs/source/modules.rst +0 -0
  71. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/environment.yml +0 -0
  72. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Best Practice Analyzer Report.ipynb +0 -0
  73. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Capacity Migration.ipynb +0 -0
  74. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Migration to Direct Lake.ipynb +0 -0
  75. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Model Optimization.ipynb +0 -0
  76. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Query Scale Out.ipynb +0 -0
  77. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Report Analysis.ipynb +0 -0
  78. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/SQL.ipynb +0 -0
  79. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/notebooks/Semantic Model Refresh.ipynb +0 -0
  80. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/setup.cfg +0 -0
  81. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/semantic_link_labs.egg-info/dependency_links.txt +0 -0
  82. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/semantic_link_labs.egg-info/top_level.txt +0 -0
  83. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_am-ET.po +0 -0
  84. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ar-AE.po +0 -0
  85. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_bg-BG.po +0 -0
  86. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ca-ES.po +0 -0
  87. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po +0 -0
  88. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_da-DK.po +0 -0
  89. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_de-DE.po +0 -0
  90. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_el-GR.po +0 -0
  91. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_es-ES.po +0 -0
  92. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_fa-IR.po +0 -0
  93. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_fi-FI.po +0 -0
  94. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_fr-FR.po +0 -0
  95. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ga-IE.po +0 -0
  96. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_he-IL.po +0 -0
  97. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_hi-IN.po +0 -0
  98. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_hu-HU.po +0 -0
  99. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_id-ID.po +0 -0
  100. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_is-IS.po +0 -0
  101. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_it-IT.po +0 -0
  102. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ja-JP.po +0 -0
  103. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ko-KR.po +0 -0
  104. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_mt-MT.po +0 -0
  105. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_nl-NL.po +0 -0
  106. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_pl-PL.po +0 -0
  107. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_pt-BR.po +0 -0
  108. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_pt-PT.po +0 -0
  109. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ro-RO.po +0 -0
  110. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ru-RU.po +0 -0
  111. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_sk-SK.po +0 -0
  112. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_sl-SL.po +0 -0
  113. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_sv-SE.po +0 -0
  114. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_ta-IN.po +0 -0
  115. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_te-IN.po +0 -0
  116. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_th-TH.po +0 -0
  117. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_tr-TR.po +0 -0
  118. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_uk-UA.po +0 -0
  119. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_zh-CN.po +0 -0
  120. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po +0 -0
  121. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_capacities.py +0 -0
  122. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_clear_cache.py +0 -0
  123. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_connections.py +0 -0
  124. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_dataflows.py +0 -0
  125. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_dax.py +0 -0
  126. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_deployment_pipelines.py +0 -0
  127. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_environments.py +0 -0
  128. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_model_bpa_rules.py +0 -0
  129. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_one_lake_integration.py +0 -0
  130. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_sql.py +0 -0
  131. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_translations.py +0 -0
  132. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/_workspace_identity.py +0 -0
  133. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/admin/__init__.py +0 -0
  134. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/__init__.py +0 -0
  135. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_directlake_schema_compare.py +0 -0
  136. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_generate_shared_expression.py +0 -0
  137. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_get_directlake_lakehouse.py +0 -0
  138. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_get_shared_expression.py +0 -0
  139. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_list_directlake_model_calc_tables.py +0 -0
  140. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_show_unsupported_directlake_objects.py +0 -0
  141. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +0 -0
  142. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/lakehouse/__init__.py +0 -0
  143. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/lakehouse/_get_lakehouse_columns.py +0 -0
  144. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/lakehouse/_shortcuts.py +0 -0
  145. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/__init__.py +0 -0
  146. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_create_pqt_file.py +0 -0
  147. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_migrate_calctables_to_semantic_model.py +0 -0
  148. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +0 -0
  149. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +0 -0
  150. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_migration_validation.py +0 -0
  151. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/migration/_refresh_calc_tables.py +0 -0
  152. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_BPAReportTemplate.json +0 -0
  153. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/__init__.py +0 -0
  154. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json +0 -0
  155. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/.platform +0 -0
  156. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/StaticResources/SharedResources/BaseThemes/CY24SU06.json +0 -0
  157. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/page.json +0 -0
  158. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/1b08bce3bebabb0a27a8/visual.json +0 -0
  159. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/2f22ddb70c301693c165/visual.json +0 -0
  160. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/3b1182230aa6c600b43a/visual.json +0 -0
  161. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/58577ba6380c69891500/visual.json +0 -0
  162. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/a2a8fa5028b3b776c96c/visual.json +0 -0
  163. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/adfd47ef30652707b987/visual.json +0 -0
  164. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/b6a80ee459e716e170b1/visual.json +0 -0
  165. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/ce3130a721c020cc3d81/visual.json +0 -0
  166. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/page.json +0 -0
  167. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/visuals/66e60dfb526437cd78d1/visual.json +0 -0
  168. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/page.json +0 -0
  169. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/07deb8bce824e1be37d7/visual.json +0 -0
  170. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0b1c68838818b32ad03b/visual.json +0 -0
  171. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0c171de9d2683d10b930/visual.json +0 -0
  172. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0efa01be0510e40a645e/visual.json +0 -0
  173. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/6bf2f0eb830ab53cc668/visual.json +0 -0
  174. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/88d8141cb8500b60030c/visual.json +0 -0
  175. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/a753273590beed656a03/visual.json +0 -0
  176. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/b8fdc82cddd61ac447bc/visual.json +0 -0
  177. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json +0 -0
  178. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json +0 -0
  179. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/pages/pages.json +0 -0
  180. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/report.json +0 -0
  181. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition/version.json +0 -0
  182. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_bpareporttemplate/definition.pbir +0 -0
  183. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_report_bpa_rules.py +0 -0
  184. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_report_functions.py +0 -0
  185. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_report_helper.py +0 -0
  186. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_report_list_functions.py +0 -0
  187. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/report/_report_rebind.py +0 -0
  188. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/src/sempy_labs/tom/__init__.py +0 -0
  189. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/tests/__init__.py +0 -0
  190. {semantic_link_labs-0.8.0 → semantic_link_labs-0.8.1}/tests/test_tom.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: semantic-link-labs
3
- Version: 0.8.0
3
+ Version: 0.8.1
4
4
  Summary: Semantic Link Labs for Microsoft Fabric
5
5
  Author: Microsoft Corporation
6
6
  License: MIT License
@@ -21,13 +21,14 @@ Requires-Dist: powerbiclient
21
21
  Requires-Dist: polib
22
22
  Requires-Dist: azure.mgmt.resource
23
23
  Requires-Dist: jsonpath_ng
24
+ Requires-Dist: deltalake
24
25
  Provides-Extra: test
25
26
  Requires-Dist: pytest>=8.2.1; extra == "test"
26
27
 
27
28
  # Semantic Link Labs
28
29
 
29
30
  [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
30
- [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.0&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.1&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
32
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
32
33
  [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
33
34
 
@@ -35,9 +36,31 @@ Requires-Dist: pytest>=8.2.1; extra == "test"
35
36
  [Read the documentation on ReadTheDocs!](https://semantic-link-labs.readthedocs.io/en/stable/)
36
37
  ---
37
38
 
38
- This is a python library intended to be used in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library was originally intended to solely contain functions used for [migrating semantic models to Direct Lake mode](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration). However, it quickly became apparent that functions within such a library could support many other useful activities in the realm of semantic models, reports, lakehouses and really anything Fabric-related. As such, this library contains a variety of functions ranging from running [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.import_vertipaq_analyzer) or the [Best Practice Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa) against a semantic model to seeing if any [lakehouse tables hit Direct Lake guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables) or accessing the [Tabular Object Model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html) and more!
39
-
40
- Instructions for migrating import/DirectQuery semantic models to Direct Lake mode can be found [here](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration).
39
+ Semantic Link Labs is a Python library designed for use in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library extends the capabilities of [Semantic Link](https://learn.microsoft.com/fabric/data-science/semantic-link-overview) offering additional functionalities to seamlessly integrate and work alongside it. The goal of Semantic Link Labs is to simplify technical processes, empowering people to focus on higher level activities and allowing tasks that are better suited for machines to be efficiently handled without human intervention.
40
+
41
+ ## Featured Scenarios
42
+ * Semantic Models
43
+ * [Migrating an import/DirectQuery semantic model to Direct Lake](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration)
44
+ * [Model Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa)
45
+ * [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.vertipaq_analyzer)
46
+ * [Tabular Object Model](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Tabular%20Object%20Model.ipynb) [(TOM)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html)
47
+ * [Translate a semantic model's metadata](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.translate_semantic_model)
48
+ * [Check Direct Lake Guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables)
49
+ * [Refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb), [clear cache](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.clear_cache), [backup](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.backup_semantic_model), [restore](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.restore_semantic_model), [copy backup files](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.copy_semantic_model_backup_file), [move/deploy across workspaces](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.deploy_semantic_model)
50
+ * [Run DAX queries which impersonate a user](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.evaluate_dax_impersonation)
51
+ * Reports
52
+ * [Report Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.run_report_bpa)
53
+ * [View report metadata](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Report%20Analysis.ipynb)
54
+ * [View semantic model objects most frequently used in Power BI reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_semantic_model_object_report_usage)
55
+ * [View broken reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_report_semantic_model_objects)
56
+ * [Rebind reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.report_rebind)
57
+ * Capacities
58
+ * [Migrating a Power BI Premium capacity (P sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
59
+ * APIs
60
+ * Wrapper functions for [Power BI](https://learn.microsoft.com/rest/api/power-bi/), [Fabric](https://learn.microsoft.com/rest/api/fabric/articles/using-fabric-apis), and [Azure](https://learn.microsoft.com/rest/api/azure/?view=rest-power-bi-embedded-2021-01-01) APIs
61
+
62
+
63
+ ### Check out the [helper notebooks](https://github.com/microsoft/semantic-link-labs/tree/main/notebooks) for getting started!
41
64
 
42
65
  If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
43
66
 
@@ -81,7 +104,8 @@ An even better way to ensure the semantic-link-labs library is available in your
81
104
  2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
82
105
 
83
106
  ## Version History
84
- * [0.8.0](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.0) (September 24, 2024)
107
+ * [0.8.1](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.1) (October 2, 2024)
108
+ * [0.8.0](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.0) (September 25, 2024)
85
109
  * [0.7.4](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.4) (September 16, 2024)
86
110
  * [0.7.3](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.3) (September 11, 2024)
87
111
  * [0.7.2](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.2) (August 30, 2024)
@@ -128,7 +152,7 @@ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) o
128
152
  5. Back in the notebook, the next step will create your new Direct Lake semantic model with the name of your choice, taking all the relevant properties from the orignal semantic model and refreshing/framing your new semantic model.
129
153
 
130
154
  > [!NOTE]
131
- > As of version 0.2.1, calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table).
155
+ > Calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table). [Auto date/time tables](https://learn.microsoft.com/power-bi/guidance/auto-date-time) are not migrated. Auto date/time must be disabled in Power BI Desktop and proper date table(s) must be created prior to migration.
132
156
 
133
157
  6. Finally, you can easily rebind your all reports which use the import/DQ semantic model to the new Direct Lake semantic model in one click.
134
158
 
@@ -141,6 +165,14 @@ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) o
141
165
  * Non-supported objects are not transferred (i.e. calculated columns, relationships using columns with unsupported data types etc.).
142
166
  * Reports used by your original semantic model will be rebinded to your new semantic model.
143
167
 
168
+ ### Limitations
169
+ * Calculated columns are not migrated.
170
+ * Auto date/time tables are not migrated.
171
+ * References to calculated columns in Field Parameters are removed.
172
+ * References to calculated columns in measure expressions or other DAX expressions will break.
173
+ * Calculated tables are migrated as possible. The success of this migration depends on the interdependencies and complexity of the calculated table. This part of the migration is a workaround as technically calculated tables are not supported in Direct Lake.
174
+ * See [here](https://learn.microsoft.com/fabric/get-started/direct-lake-overview#considerations-and-limitations) for the rest of the limitations of Direct Lake.
175
+
144
176
  ## Contributing
145
177
 
146
178
  This project welcomes contributions and suggestions. Most contributions require you to agree to a
@@ -1,7 +1,7 @@
1
1
  # Semantic Link Labs
2
2
 
3
3
  [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
4
- [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.0&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
4
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.1&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
5
5
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
6
6
  [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
7
7
 
@@ -9,9 +9,31 @@
9
9
  [Read the documentation on ReadTheDocs!](https://semantic-link-labs.readthedocs.io/en/stable/)
10
10
  ---
11
11
 
12
- This is a python library intended to be used in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library was originally intended to solely contain functions used for [migrating semantic models to Direct Lake mode](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration). However, it quickly became apparent that functions within such a library could support many other useful activities in the realm of semantic models, reports, lakehouses and really anything Fabric-related. As such, this library contains a variety of functions ranging from running [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.import_vertipaq_analyzer) or the [Best Practice Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa) against a semantic model to seeing if any [lakehouse tables hit Direct Lake guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables) or accessing the [Tabular Object Model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html) and more!
13
-
14
- Instructions for migrating import/DirectQuery semantic models to Direct Lake mode can be found [here](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration).
12
+ Semantic Link Labs is a Python library designed for use in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library extends the capabilities of [Semantic Link](https://learn.microsoft.com/fabric/data-science/semantic-link-overview) offering additional functionalities to seamlessly integrate and work alongside it. The goal of Semantic Link Labs is to simplify technical processes, empowering people to focus on higher level activities and allowing tasks that are better suited for machines to be efficiently handled without human intervention.
13
+
14
+ ## Featured Scenarios
15
+ * Semantic Models
16
+ * [Migrating an import/DirectQuery semantic model to Direct Lake](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration)
17
+ * [Model Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa)
18
+ * [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.vertipaq_analyzer)
19
+ * [Tabular Object Model](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Tabular%20Object%20Model.ipynb) [(TOM)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html)
20
+ * [Translate a semantic model's metadata](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.translate_semantic_model)
21
+ * [Check Direct Lake Guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables)
22
+ * [Refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb), [clear cache](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.clear_cache), [backup](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.backup_semantic_model), [restore](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.restore_semantic_model), [copy backup files](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.copy_semantic_model_backup_file), [move/deploy across workspaces](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.deploy_semantic_model)
23
+ * [Run DAX queries which impersonate a user](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.evaluate_dax_impersonation)
24
+ * Reports
25
+ * [Report Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.run_report_bpa)
26
+ * [View report metadata](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Report%20Analysis.ipynb)
27
+ * [View semantic model objects most frequently used in Power BI reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_semantic_model_object_report_usage)
28
+ * [View broken reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_report_semantic_model_objects)
29
+ * [Rebind reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.report_rebind)
30
+ * Capacities
31
+ * [Migrating a Power BI Premium capacity (P sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
32
+ * APIs
33
+ * Wrapper functions for [Power BI](https://learn.microsoft.com/rest/api/power-bi/), [Fabric](https://learn.microsoft.com/rest/api/fabric/articles/using-fabric-apis), and [Azure](https://learn.microsoft.com/rest/api/azure/?view=rest-power-bi-embedded-2021-01-01) APIs
34
+
35
+
36
+ ### Check out the [helper notebooks](https://github.com/microsoft/semantic-link-labs/tree/main/notebooks) for getting started!
15
37
 
16
38
  If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
17
39
 
@@ -55,7 +77,8 @@ An even better way to ensure the semantic-link-labs library is available in your
55
77
  2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
56
78
 
57
79
  ## Version History
58
- * [0.8.0](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.0) (September 24, 2024)
80
+ * [0.8.1](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.1) (October 2, 2024)
81
+ * [0.8.0](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.0) (September 25, 2024)
59
82
  * [0.7.4](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.4) (September 16, 2024)
60
83
  * [0.7.3](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.3) (September 11, 2024)
61
84
  * [0.7.2](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.2) (August 30, 2024)
@@ -102,7 +125,7 @@ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) o
102
125
  5. Back in the notebook, the next step will create your new Direct Lake semantic model with the name of your choice, taking all the relevant properties from the orignal semantic model and refreshing/framing your new semantic model.
103
126
 
104
127
  > [!NOTE]
105
- > As of version 0.2.1, calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table).
128
+ > Calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table). [Auto date/time tables](https://learn.microsoft.com/power-bi/guidance/auto-date-time) are not migrated. Auto date/time must be disabled in Power BI Desktop and proper date table(s) must be created prior to migration.
106
129
 
107
130
  6. Finally, you can easily rebind your all reports which use the import/DQ semantic model to the new Direct Lake semantic model in one click.
108
131
 
@@ -115,6 +138,14 @@ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) o
115
138
  * Non-supported objects are not transferred (i.e. calculated columns, relationships using columns with unsupported data types etc.).
116
139
  * Reports used by your original semantic model will be rebinded to your new semantic model.
117
140
 
141
+ ### Limitations
142
+ * Calculated columns are not migrated.
143
+ * Auto date/time tables are not migrated.
144
+ * References to calculated columns in Field Parameters are removed.
145
+ * References to calculated columns in measure expressions or other DAX expressions will break.
146
+ * Calculated tables are migrated as possible. The success of this migration depends on the interdependencies and complexity of the calculated table. This part of the migration is a workaround as technically calculated tables are not supported in Direct Lake.
147
+ * See [here](https://learn.microsoft.com/fabric/get-started/direct-lake-overview#considerations-and-limitations) for the rest of the limitations of Direct Lake.
148
+
118
149
  ## Contributing
119
150
 
120
151
  This project welcomes contributions and suggestions. Most contributions require you to agree to a
@@ -10,5 +10,7 @@ azure-storage-blob>=12.9.0
10
10
  anytree
11
11
  IPython
12
12
  polib
13
+ powerbiclient
13
14
  azure.mgmt.resource
14
- jsonpath_ng
15
+ jsonpath_ng
16
+ deltalake
@@ -13,7 +13,7 @@ sys.path.insert(0, os.path.abspath('../../src/'))
13
13
  project = 'semantic-link-labs'
14
14
  copyright = '2024, Microsoft and community'
15
15
  author = 'Microsoft and community'
16
- release = '0.8.0'
16
+ release = '0.8.1'
17
17
 
18
18
  # -- General configuration ---------------------------------------------------
19
19
  # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
@@ -0,0 +1 @@
1
+ {"cells":[{"cell_type":"markdown","id":"5c27dfd1-4fe0-4a97-92e6-ddf78889aa93","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Install the latest .whl package\n","\n","Check [here](https://pypi.org/project/semantic-link-labs/) to see the latest version."]},{"cell_type":"code","execution_count":null,"id":"d5cae9db-cef9-48a8-a351-9c5fcc99645c","metadata":{"jupyter":{"outputs_hidden":true,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%pip install semantic-link-labs"]},{"cell_type":"markdown","id":"5a3fe6e8-b8aa-4447-812b-7931831e07fe","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Connect to the [Tabular Object Model](https://learn.microsoft.com/analysis-services/tom/introduction-to-the-tabular-object-model-tom-in-analysis-services-amo?view=asallproducts-allversions) ([TOM](https://learn.microsoft.com/dotnet/api/microsoft.analysisservices.tabular.model?view=analysisservices-dotnet))\n","Setting the 'readonly' property to False enables read/write mode. This allows changes to be made to the semantic model."]},{"cell_type":"code","execution_count":null,"id":"cde43b47-4ecc-46ae-9125-9674819c7eab","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["import sempy_labs as labs\n","from sempy_labs.tom import connect_semantic_model\n","\n","dataset = '' # Enter dataset name\n","workspace = None # Enter workspace name\n","\n","with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," print(t.Name)"]},{"cell_type":"markdown","id":"fc6b277e","metadata":{},"source":["### Make changes to a semantic model using custom functions\n","Note that the custom functions have additional optional parameters (which may not be used in the examples below) for adding properties to model objects. Check the [documentation](https://semantic-link-labs.readthedocs.io/en/0.5.0/sempy_labs.tom.html) to see all available parameters for each function."]},{"cell_type":"markdown","id":"6d46d878","metadata":{},"source":["#### Rename objects in the semantic model"]},{"cell_type":"code","execution_count":null,"id":"1284825a","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," t.Name = t.Name.replace('_',' ')\n"]},{"cell_type":"code","execution_count":null,"id":"d3b60303","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for c in tom.all_columns():\n"," c.Name = c.Name.replace('_',' ')"]},{"cell_type":"markdown","id":"402a477c","metadata":{},"source":["#### Add measure(s) to the semantic model"]},{"cell_type":"code","execution_count":null,"id":"bdaaaa5c","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_measure(table_name='Internet Sales', measure_name='Sales Amount', expression=\"SUM('Internet Sales'[SalesAmount])\")\n"," tom.add_measure(table_name='Internet Sales', measure_name='Order Quantity', expression=\"SUM('Internet Sales'[OrderQty])\") "]},{"cell_type":"code","execution_count":null,"id":"a53a544b","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," if t.Name == 'Internet Sales':\n"," tom.add_measure(table_name=t.Name, measure_name='Sales Amount', expression=\"SUM('Internet Sales'[SalesAmount])\")\n"," tom.add_measure(table_name=t.Name, measure_name='Order Quantity', expression=\"SUM('Internet Sales'[OrderQty])\")"]},{"cell_type":"markdown","id":"1cb1632f","metadata":{},"source":["#### Add column(s) to the semantic model"]},{"cell_type":"code","execution_count":null,"id":"81a22749","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_data_column(table_name='Product', column_name='Size Range', source_column='SizeRange', data_type='Int64')\n"," tom.add_data_column(table_name= 'Segment', column_name='Summary Segment', source_column='SummarySegment', data_type='String')\n","\n"," tom.add_calculated_column(table_name='Internet Sales', column_name='GrossMargin', expression=\"'Internet Sales'[SalesAmount] - 'Internet Sales'[ProductCost]\", data_type='Decimal')"]},{"cell_type":"code","execution_count":null,"id":"053b6516","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," if t.Name == 'Product':\n"," tom.add_data_column(table_name=t.Name, column_name='Size Range', source_column='SizeRange', data_type='Int64')\n"," elif t.Name == 'Segment':\n"," tom.add_data_column(table_name = t.Name, column_name='Summary Segment', source_column='SummarySegment', data_type='String')\n"," elif t.Name == 'Internet Sales':\n"," tom.add_calculated_column(table_name=t.Name, column_name='GrossMargin', expression=\"'Internet Sales'[SalesAmount] - 'Internet Sales'[ProductCost]\", data_type='Decimal')"]},{"cell_type":"markdown","id":"f53dcca7","metadata":{},"source":["#### Add hierarchies to the semantic model"]},{"cell_type":"code","execution_count":null,"id":"a9309e23","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_hierarchy(table_name='Geography', hierarchy_name='Geo Hierarchy', levels=['Continent', 'Country', 'State', 'City'])"]},{"cell_type":"code","execution_count":null,"id":"a04281ce","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," if t.Name == 'Geography':\n"," tom.add_hierarchy(table_name=t.Name, hierarchy_name='Geo Hierarchy', levels=['Continent', 'Country', 'State', 'City'])"]},{"cell_type":"markdown","id":"47c06a4f","metadata":{},"source":["#### Add relationship(s) to the semantic model"]},{"cell_type":"code","execution_count":null,"id":"e8cd7bbf","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_relationship(\n"," from_table='Internet Sales', from_column='ProductKey',\n"," to_table='Product', to_column ='ProductKey', \n"," from_cardinality='Many', to_cardinality='One')"]},{"cell_type":"markdown","id":"3cc7f11e","metadata":{},"source":["#### Add a table with an M partition to a semantic model"]},{"cell_type":"code","execution_count":null,"id":"0f5dd66a","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," table_name='Sales'\n"," tom.add_table(name=table_name)\n"," tom.add_m_partition(table_name=table_name, partition_name=table_name, expression='let....')"]},{"cell_type":"markdown","id":"ea389123","metadata":{},"source":["#### Add a table with an entity partition to a Direct Lake semantic model "]},{"cell_type":"code","execution_count":null,"id":"f75387d1","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," table_name = 'Sales'\n"," tom.add_table(name=table_name)\n"," tom.add_entity_partition(table_name=table_name, entity_name=table_name)"]},{"cell_type":"markdown","id":"e74d0f54","metadata":{},"source":["#### Add a calculated table (and columns) to a semantic model"]},{"cell_type":"code","execution_count":null,"id":"934f7315","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," table_name = 'Sales'\n"," tom.add_calculated_table(name=table_name, expression=\"DISTINCT('Product'[Color])\")\n"," tom.add_calculated_table_column(table_name=table_name, column_name='Color', source_column=\"'Product[Color]\", data_type='String')"]},{"cell_type":"markdown","id":"0e7088b7","metadata":{},"source":["#### Add role(s) to the semantic model"]},{"cell_type":"code","execution_count":null,"id":"ad60ebb9","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_role(role_name='Reader')"]},{"cell_type":"markdown","id":"c541f81a","metadata":{},"source":["#### Set row level security (RLS) to the semantic model\n","This adds row level security (or updates it if it already exists)"]},{"cell_type":"code","execution_count":null,"id":"98603a08","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.set_rls(\n"," role_name='Reader', \n"," table_name='Product',\n"," filter_expression=\"'Dim Product'[Color] = \\\"Blue\\\"\"\n"," )"]},{"cell_type":"code","execution_count":null,"id":"effea009","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for r in tom.model.Roles:\n"," if r.Name == 'Reader':\n"," tom.set_rls(role_name=r.Name, table_name='Product', filter_expression=\"'Dim Product'[Color] = \\\"Blue\\\"\")"]},{"cell_type":"markdown","id":"7fa7a03c","metadata":{},"source":["#### Set object level security (OLS) to the semantic model\n","This adds row level security (or updates it if it already exists)"]},{"cell_type":"code","execution_count":null,"id":"dd0def9d","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.set_ols(role_name='Reader', table_name='Product', column_name='Size', permission='None')"]},{"cell_type":"code","execution_count":null,"id":"7a389dc7","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for r in tom.model.Roles:\n"," if r.Name == 'Reader':\n"," for t in tom.model.Tables:\n"," if t.Name == 'Product':\n"," tom.set_ols(role_name=r.Name, table_name=t.Name, column_name='Size', permission='None')"]},{"cell_type":"markdown","id":"d0f7ccd1","metadata":{},"source":["#### Add calculation groups and calculation items to the semantic model"]},{"cell_type":"code","execution_count":null,"id":"97f4708b","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_calculation_group(name='MyCalcGroup')"]},{"cell_type":"code","execution_count":null,"id":"fef68832","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_calculation_item(table_name='MyCalcGroup', calculation_item_name='YTD', expression=\"CALCULATE(SELECTEDMEASURE(), DATESYTD('Calendar'[CalendarDate]))\")\n"," tom.add_calculation_item(table_name='MyCalcGroup', calculation_item_name='MTD', expression=\"CALCULATE(SELECTEDMEASURE(), DATESMTD('Calendar'[CalendarDate]))\")"]},{"cell_type":"code","execution_count":null,"id":"c7653dcc","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," if t.Name == 'MyCalcGroup':\n"," tom.add_calculation_item(table_name=t.Name, calculation_item_name='YTD', expression=\"CALCULATE(SELECTEDMEASURE(), DATESYTD('Calendar'[CalendarDate]))\")\n"," tom.add_calculation_item(table_name=t.Name, calculation_item_name='MTD', expression=\"CALCULATE(SELECTEDMEASURE(), DATESMTD('Calendar'[CalendarDate]))\")"]},{"cell_type":"markdown","id":"c6450c74","metadata":{},"source":["#### Add translations to a semantic model"]},{"cell_type":"code","execution_count":null,"id":"2b616b90","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_translation(language='it-IT')"]},{"cell_type":"code","execution_count":null,"id":"dc24c200","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.set_translation(object = tom.model.Tables['Product'], language='it-IT', property='Name', value='Produtto')"]},{"cell_type":"markdown","id":"3048cc95","metadata":{},"source":["#### Add a [Field Parameter](https://learn.microsoft.com/power-bi/create-reports/power-bi-field-parameters) to a semantic model"]},{"cell_type":"code","execution_count":null,"id":"0a94af94","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.add_field_parameter(table_name='Parameter', objects=\"'Product'[Color], [Sales Amount], 'Geography'[Country]\")"]},{"cell_type":"markdown","id":"95aac09a","metadata":{},"source":["#### Remove an object(s) from a semantic model"]},{"cell_type":"code","execution_count":null,"id":"1e2572a8","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," if t.Name == 'Product':\n"," tom.remove_object(object=t.Columns['Size'])\n"," tom.remove_object(object=t.Hierarchies['Product Hierarchy'])"]},{"cell_type":"code","execution_count":null,"id":"bc453177","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.remove_object(object=tom.model.Tables['Product'].Columns['Size'])\n"," tom.remove_object(object=tom.model.Tables['Product'].Hierarchies['Product Hierarchy'])"]},{"cell_type":"markdown","id":"e0d0cb9e","metadata":{},"source":["### Custom functions to loop through non-top-level objects in a semantic model"]},{"cell_type":"code","execution_count":null,"id":"cbe3b1a3","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for c in tom.all_columns():\n"," print(c.Name)"]},{"cell_type":"code","execution_count":null,"id":"3f643e66","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for m in tom.all_measures():\n"," print(m.Name)"]},{"cell_type":"code","execution_count":null,"id":"ed1cde0f","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for p in tom.all_partitions():\n"," print(p.Name)"]},{"cell_type":"code","execution_count":null,"id":"f48014ae","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for h in tom.all_hierarchies():\n"," print(h.Name)"]},{"cell_type":"code","execution_count":null,"id":"9f5e7b72","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for ci in tom.all_calculation_items():\n"," print(ci.Name)"]},{"cell_type":"code","execution_count":null,"id":"3cd9ebc1","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for l in tom.all_levels():\n"," print(l.Name)"]},{"cell_type":"code","execution_count":null,"id":"12c58bad","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," for rls in tom.all_rls():\n"," print(rls.Name)"]},{"cell_type":"markdown","id":"1a294bd2","metadata":{},"source":["### See Vertipaq Analyzer stats"]},{"cell_type":"code","execution_count":null,"id":"469660e9","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=False, workspace=workspace) as tom:\n"," tom.set_vertipaq_annotations()\n","\n"," for t in tom.model.Tables:\n"," rc = tom.row_count(object = t)\n"," print(f\"{t.Name} : {str(rc)}\")\n"," for c in t.Columns:\n"," col_size = tom.total_size(object=c)\n"," print(labs.format_dax_object_name(t.Name, c.Name) + ' : ' + str(col_size))"]},{"cell_type":"markdown","id":"1ab26dfd","metadata":{},"source":["### 'UsedIn' functions"]},{"cell_type":"code","execution_count":null,"id":"412bf287","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for c in tom.all_columns():\n"," full_name = labs.format_dax_object_name(c.Parent.Name, c.Name)\n"," for h in tom.used_in_hierarchies(column = c):\n"," print(f\"{full_name} : {h.Name}\")"]},{"cell_type":"code","execution_count":null,"id":"76556900","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for c in tom.all_columns():\n"," full_name = labs.format_dax_object_name(c.Parent.Name, c.Name)\n"," for r in tom.used_in_relationships(object = c):\n"," rel_name = labs.create_relationship_name(r.FromTable.Name, r.FromColumn.Name, r.ToTable.Name, r.ToColumn.Name)\n"," print(f\"{full_name} : {rel_name}\")"]},{"cell_type":"code","execution_count":null,"id":"4d9ec24e","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," for t in tom.model.Tables:\n"," for r in tom.used_in_relationships(object = t):\n"," rel_name = labs.create_relationship_name(r.FromTable.Name, r.FromColumn.Name, r.ToTable.Name, r.ToColumn.Name)\n"," print(f\"{t.Name} : {rel_name}\")"]},{"cell_type":"code","execution_count":null,"id":"82251336","metadata":{},"outputs":[],"source":["with connect_semantic_model(dataset=dataset, readonly=True, workspace=workspace) as tom:\n"," dep = labs.get_model_calc_dependencies(dataset = dataset, workspace=workspace)\n"," for o in tom.used_in_rls(object = tom.model.Tables['Product'].Columns['Color'], dependencies=dep):\n"," print(o.Name)"]}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python"},"nteract":{"version":"nteract-front-end@1.0.0"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5}
@@ -7,7 +7,7 @@ name="semantic-link-labs"
7
7
  authors = [
8
8
  { name = "Microsoft Corporation" },
9
9
  ]
10
- version="0.8.0"
10
+ version="0.8.1"
11
11
  description="Semantic Link Labs for Microsoft Fabric"
12
12
  readme="README.md"
13
13
  requires-python=">=3.10,<3.12"
@@ -29,6 +29,7 @@ dependencies = [
29
29
  "polib",
30
30
  "azure.mgmt.resource",
31
31
  "jsonpath_ng",
32
+ "deltalake",
32
33
  ]
33
34
 
34
35
  [tool.setuptools.packages.find]
@@ -46,7 +47,7 @@ test = [
46
47
  Repository = "https://github.com/microsoft/semantic-link-labs.git"
47
48
 
48
49
  [[tool.mypy.overrides]]
49
- module = "sempy.*,Microsoft.*,System.*,anytree.*,powerbiclient.*,synapse.ml.services.*,polib.*,azure.mgmt.resource.*,jsonpath_ng.*"
50
+ module = "sempy.*,Microsoft.*,System.*,anytree.*,powerbiclient.*,synapse.ml.services.*,polib.*,azure.mgmt.resource.*,jsonpath_ng.*,deltalake.*"
50
51
  ignore_missing_imports = true
51
52
 
52
53
  [tool.flake8]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: semantic-link-labs
3
- Version: 0.8.0
3
+ Version: 0.8.1
4
4
  Summary: Semantic Link Labs for Microsoft Fabric
5
5
  Author: Microsoft Corporation
6
6
  License: MIT License
@@ -21,13 +21,14 @@ Requires-Dist: powerbiclient
21
21
  Requires-Dist: polib
22
22
  Requires-Dist: azure.mgmt.resource
23
23
  Requires-Dist: jsonpath_ng
24
+ Requires-Dist: deltalake
24
25
  Provides-Extra: test
25
26
  Requires-Dist: pytest>=8.2.1; extra == "test"
26
27
 
27
28
  # Semantic Link Labs
28
29
 
29
30
  [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
30
- [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.0&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.1&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
32
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
32
33
  [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
33
34
 
@@ -35,9 +36,31 @@ Requires-Dist: pytest>=8.2.1; extra == "test"
35
36
  [Read the documentation on ReadTheDocs!](https://semantic-link-labs.readthedocs.io/en/stable/)
36
37
  ---
37
38
 
38
- This is a python library intended to be used in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library was originally intended to solely contain functions used for [migrating semantic models to Direct Lake mode](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration). However, it quickly became apparent that functions within such a library could support many other useful activities in the realm of semantic models, reports, lakehouses and really anything Fabric-related. As such, this library contains a variety of functions ranging from running [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.import_vertipaq_analyzer) or the [Best Practice Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa) against a semantic model to seeing if any [lakehouse tables hit Direct Lake guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables) or accessing the [Tabular Object Model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html) and more!
39
-
40
- Instructions for migrating import/DirectQuery semantic models to Direct Lake mode can be found [here](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration).
39
+ Semantic Link Labs is a Python library designed for use in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library extends the capabilities of [Semantic Link](https://learn.microsoft.com/fabric/data-science/semantic-link-overview) offering additional functionalities to seamlessly integrate and work alongside it. The goal of Semantic Link Labs is to simplify technical processes, empowering people to focus on higher level activities and allowing tasks that are better suited for machines to be efficiently handled without human intervention.
40
+
41
+ ## Featured Scenarios
42
+ * Semantic Models
43
+ * [Migrating an import/DirectQuery semantic model to Direct Lake](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration)
44
+ * [Model Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa)
45
+ * [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.vertipaq_analyzer)
46
+ * [Tabular Object Model](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Tabular%20Object%20Model.ipynb) [(TOM)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html)
47
+ * [Translate a semantic model's metadata](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.translate_semantic_model)
48
+ * [Check Direct Lake Guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables)
49
+ * [Refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb), [clear cache](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.clear_cache), [backup](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.backup_semantic_model), [restore](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.restore_semantic_model), [copy backup files](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.copy_semantic_model_backup_file), [move/deploy across workspaces](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.deploy_semantic_model)
50
+ * [Run DAX queries which impersonate a user](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.evaluate_dax_impersonation)
51
+ * Reports
52
+ * [Report Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.run_report_bpa)
53
+ * [View report metadata](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Report%20Analysis.ipynb)
54
+ * [View semantic model objects most frequently used in Power BI reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_semantic_model_object_report_usage)
55
+ * [View broken reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_report_semantic_model_objects)
56
+ * [Rebind reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.report_rebind)
57
+ * Capacities
58
+ * [Migrating a Power BI Premium capacity (P sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
59
+ * APIs
60
+ * Wrapper functions for [Power BI](https://learn.microsoft.com/rest/api/power-bi/), [Fabric](https://learn.microsoft.com/rest/api/fabric/articles/using-fabric-apis), and [Azure](https://learn.microsoft.com/rest/api/azure/?view=rest-power-bi-embedded-2021-01-01) APIs
61
+
62
+
63
+ ### Check out the [helper notebooks](https://github.com/microsoft/semantic-link-labs/tree/main/notebooks) for getting started!
41
64
 
42
65
  If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
43
66
 
@@ -81,7 +104,8 @@ An even better way to ensure the semantic-link-labs library is available in your
81
104
  2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
82
105
 
83
106
  ## Version History
84
- * [0.8.0](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.0) (September 24, 2024)
107
+ * [0.8.1](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.1) (October 2, 2024)
108
+ * [0.8.0](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.0) (September 25, 2024)
85
109
  * [0.7.4](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.4) (September 16, 2024)
86
110
  * [0.7.3](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.3) (September 11, 2024)
87
111
  * [0.7.2](https://github.com/microsoft/semantic-link-labs/releases/tag/0.7.2) (August 30, 2024)
@@ -128,7 +152,7 @@ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) o
128
152
  5. Back in the notebook, the next step will create your new Direct Lake semantic model with the name of your choice, taking all the relevant properties from the orignal semantic model and refreshing/framing your new semantic model.
129
153
 
130
154
  > [!NOTE]
131
- > As of version 0.2.1, calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table).
155
+ > Calculated tables are also migrated to Direct Lake (as data tables with their DAX expression stored as model annotations in the new semantic model). Additionally, Field Parameters are migrated as they were in the original semantic model (as a calculated table). [Auto date/time tables](https://learn.microsoft.com/power-bi/guidance/auto-date-time) are not migrated. Auto date/time must be disabled in Power BI Desktop and proper date table(s) must be created prior to migration.
132
156
 
133
157
  6. Finally, you can easily rebind your all reports which use the import/DQ semantic model to the new Direct Lake semantic model in one click.
134
158
 
@@ -141,6 +165,14 @@ Check out my [blog post](https://www.elegantbi.com/post/direct-lake-migration) o
141
165
  * Non-supported objects are not transferred (i.e. calculated columns, relationships using columns with unsupported data types etc.).
142
166
  * Reports used by your original semantic model will be rebinded to your new semantic model.
143
167
 
168
+ ### Limitations
169
+ * Calculated columns are not migrated.
170
+ * Auto date/time tables are not migrated.
171
+ * References to calculated columns in Field Parameters are removed.
172
+ * References to calculated columns in measure expressions or other DAX expressions will break.
173
+ * Calculated tables are migrated as possible. The success of this migration depends on the interdependencies and complexity of the calculated table. This part of the migration is a workaround as technically calculated tables are not supported in Direct Lake.
174
+ * See [here](https://learn.microsoft.com/fabric/get-started/direct-lake-overview#considerations-and-limitations) for the rest of the limitations of Direct Lake.
175
+
144
176
  ## Contributing
145
177
 
146
178
  This project welcomes contributions and suggestions. Most contributions require you to agree to a
@@ -39,15 +39,24 @@ src/sempy_labs/_capacities.py
39
39
  src/sempy_labs/_capacity_migration.py
40
40
  src/sempy_labs/_clear_cache.py
41
41
  src/sempy_labs/_connections.py
42
+ src/sempy_labs/_data_pipelines.py
42
43
  src/sempy_labs/_dataflows.py
43
44
  src/sempy_labs/_dax.py
44
45
  src/sempy_labs/_deployment_pipelines.py
46
+ src/sempy_labs/_documentation.py
45
47
  src/sempy_labs/_environments.py
48
+ src/sempy_labs/_eventhouses.py
49
+ src/sempy_labs/_eventstreams.py
46
50
  src/sempy_labs/_generate_semantic_model.py
47
51
  src/sempy_labs/_git.py
48
52
  src/sempy_labs/_helper_functions.py
49
53
  src/sempy_labs/_icons.py
54
+ src/sempy_labs/_kql_databases.py
55
+ src/sempy_labs/_kql_querysets.py
50
56
  src/sempy_labs/_list_functions.py
57
+ src/sempy_labs/_mirrored_warehouses.py
58
+ src/sempy_labs/_ml_experiments.py
59
+ src/sempy_labs/_ml_models.py
51
60
  src/sempy_labs/_model_auto_build.py
52
61
  src/sempy_labs/_model_bpa.py
53
62
  src/sempy_labs/_model_bpa_bulk.py
@@ -61,6 +70,7 @@ src/sempy_labs/_spark.py
61
70
  src/sempy_labs/_sql.py
62
71
  src/sempy_labs/_translations.py
63
72
  src/sempy_labs/_vertipaq.py
73
+ src/sempy_labs/_warehouses.py
64
74
  src/sempy_labs/_workspace_identity.py
65
75
  src/sempy_labs/_workspaces.py
66
76
  src/sempy_labs/_bpa_translation/_model/_translations_am-ET.po
@@ -172,5 +182,6 @@ src/sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/v
172
182
  src/sempy_labs/tom/__init__.py
173
183
  src/sempy_labs/tom/_model.py
174
184
  tests/__init__.py
185
+ tests/test_friendly_case.py
175
186
  tests/test_shortcuts.py
176
187
  tests/test_tom.py
@@ -4,6 +4,7 @@ powerbiclient
4
4
  polib
5
5
  azure.mgmt.resource
6
6
  jsonpath_ng
7
+ deltalake
7
8
 
8
9
  [test]
9
10
  pytest>=8.2.1