sdg-hub 0.5.0__tar.gz → 0.6.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/PKG-INFO +2 -8
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/blocks/transform-blocks.md +2 -2
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/flows/overview.md +348 -1
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/document_pre_processing.ipynb +11 -15
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/knowledge_generation.ipynb +145 -98
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/knowledge_mixing.ipynb +135 -63
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/knowledge_mixing_utils.py +143 -119
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/raft_builder.py +47 -30
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/docparser_v2.py +50 -35
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/document_pre_processing.ipynb +5 -4
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/knowledge_generation_and_mixing.ipynb +26 -11
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/logger_config.py +1 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/knowledge_utils.py +92 -72
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/text_analysis/structured_insights_demo.ipynb +53 -43
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/pyproject.toml +1 -8
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/_version.py +3 -3
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/base.py +60 -58
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/filtering/column_value_filter.py +29 -16
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/llm/__init__.py +0 -2
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/llm/llm_chat_block.py +42 -36
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/llm/llm_parser_block.py +13 -7
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/llm/prompt_builder_block.py +15 -10
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/llm/text_parser_block.py +14 -9
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/duplicate_columns.py +9 -8
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/index_based_mapper.py +29 -15
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/json_structure_block.py +16 -13
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/melt_columns.py +13 -12
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/rename_columns.py +20 -9
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/text_concat.py +20 -21
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/uniform_col_val_setter.py +6 -5
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/flow/base.py +139 -57
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/flow/checkpointer.py +34 -36
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/flow/validation.py +4 -4
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/datautils.py +52 -54
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/flow_metrics.py +9 -6
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub.egg-info/PKG-INFO +2 -8
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub.egg-info/SOURCES.txt +0 -7
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub.egg-info/requires.txt +1 -8
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/filtering/test_columnvaluefilter.py +29 -43
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/llm/test_llm_chat_block.py +38 -40
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/llm/test_llm_parser_block.py +41 -44
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/llm/test_promptbuilderblock.py +26 -26
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/llm/test_textparserblock.py +45 -42
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/test_base_block.py +58 -62
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/test_registry.py +40 -40
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/transform/test_index_based_mapper.py +49 -38
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/transform/test_json_structure_block.py +23 -23
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/transform/test_melt_columns.py +42 -43
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/transform/test_rename_columns.py +16 -17
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/transform/test_text_concat.py +17 -18
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/transform/test_uniform_col_val_setter.py +33 -34
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/conftest.py +12 -9
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_base.py +57 -62
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_checkpointer.py +26 -26
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_dataset_requirements.py +71 -64
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_integration.py +9 -11
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_time_estimation.py +11 -11
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/knowledge_tuning/enhanced_summary_knowledge_tuning/test_functional.py +13 -6
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/utils/test_datautils.py +81 -110
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/utils/test_flow_metrics.py +5 -6
- sdg_hub-0.5.0/examples/annotation/annotation_classification.ipynb +0 -486
- sdg_hub-0.5.0/examples/annotation/news_classification_assessment_prompt.yaml +0 -42
- sdg_hub-0.5.0/examples/annotation/news_classification_flow.yaml +0 -210
- sdg_hub-0.5.0/examples/annotation/news_classification_prompt.yaml +0 -11
- sdg_hub-0.5.0/examples/annotation/revise_news_classification_prompt.yaml +0 -19
- sdg_hub-0.5.0/src/sdg_hub/core/blocks/llm/llm_chat_with_parsing_retry_block.py +0 -771
- sdg_hub-0.5.0/tests/blocks/llm/test_llm_chat_with_parsing_retry_block.py +0 -1330
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/actionlint.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/actions/free-disk-space/action.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/dependabot.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/mergify.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/actionlint.dockerfile +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/actionlint.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/docs.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/integration-test.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/lint.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/matchers/actionlint.json +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/matchers/pylint.json +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/packer.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/pypi.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.github/workflows/test.yml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.gitignore +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.isort.cfg +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.markdownlint-cli2.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.pre-commit-config.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/.pylintrc +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/CLAUDE.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/CONTRIBUTING.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/LICENSE +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/Makefile +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/.nojekyll +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/_coverpage.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/_navbar.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/_sidebar.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/api-reference.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/blocks/custom-blocks.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/blocks/filtering-blocks.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/blocks/llm-blocks.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/blocks/overview.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/concepts.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/development.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/flows/discovery.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/index.html +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/installation.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/docs/quick-start.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/.env.example +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/enhanced_summary_knowledge_tuning/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/.gitignore +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/assets/imgs/instructlab-banner.png +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/docling_v2_config.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/docparser.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/document_collection/ibm-annual-report/ibm-annual-report-2024.json +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/document_collection/ibm-annual-report/ibm-annual-report-2024.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/document_collection/ibm-annual-report/ibm-annual-report-2024.pdf +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/knowledge_tuning/instructlab/document_collection/ibm-annual-report/qna.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/text_analysis/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/examples/text_analysis/extract_stock_tickers.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/scripts/packer/centos.pkr.hcl +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/scripts/packer/setup-centos.sh +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/scripts/ruff.sh +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/setup.cfg +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/filtering/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/llm/error_handler.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/registry.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/blocks/transform/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/flow/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/flow/metadata.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/flow/registry.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/error_handling.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/flow_id_words.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/flow_identifier.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/logger_config.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/path_resolution.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/time_estimator.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/core/utils/yaml_utils.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/detailed_summary.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/detailed_summary/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/doc_direct_qa/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/extractive_summary.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/extractive_summary/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/generate_answers.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/generate_multiple_qa.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/generate_question_list.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/enhanced_multi_summary_qa/key_facts/key_facts_summary.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/atomic_facts.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/detailed_summary.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_faithfulness.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_question.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/evaluate_relevancy.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/extractive_summary.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/instructlab/generate_questions_responses.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/atomic_facts_ja.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/detailed_summary_ja.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/extractive_summary_ja.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/qa_generation/document_grounded_qa/multi_summary_qa/multilingual/japanese/generate_questions_responses_ja.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/structured_insights/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/structured_insights/analyze_sentiment.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/structured_insights/extract_entities.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/structured_insights/extract_keywords.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/structured_insights/flow.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/flows/text_analysis/structured_insights/summarize.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub/py.typed +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub.egg-info/dependency_links.txt +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/src/sdg_hub.egg-info/top_level.txt +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/testdata/test_config.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/testdata/test_prompt_format_config.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/testdata/test_prompt_format_no_system.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/testdata/test_prompt_format_strict.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/testdata/test_prompt_invalid_final_role.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/blocks/testdata/test_prompt_no_user_messages.yaml +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_metadata.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_registry.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/flow/test_validation.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/knowledge_tuning/enhanced_summary_knowledge_tuning/README.md +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/knowledge_tuning/enhanced_summary_knowledge_tuning/__init__.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/knowledge_tuning/enhanced_summary_knowledge_tuning/conftest.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/integration/knowledge_tuning/enhanced_summary_knowledge_tuning/test_data/test_seed_data.jsonl +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/utils/test_error_handling.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tests/utils/test_path_resolution.py +0 -0
- {sdg_hub-0.5.0 → sdg_hub-0.6.0}/tox.ini +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sdg_hub
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.6.0
|
|
4
4
|
Summary: Synthetic Data Generation
|
|
5
5
|
Author-email: Red Hat AI Innovation <abhandwa@redhat.com>
|
|
6
6
|
License: Apache-2.0
|
|
@@ -28,23 +28,17 @@ Requires-Dist: httpx<1.0.0,>=0.25.0
|
|
|
28
28
|
Requires-Dist: jinja2
|
|
29
29
|
Requires-Dist: litellm<1.75.0,>=1.73.0
|
|
30
30
|
Requires-Dist: rich
|
|
31
|
+
Requires-Dist: pandas
|
|
31
32
|
Requires-Dist: pydantic<3.0.0,>=2.0.0
|
|
32
33
|
Requires-Dist: python-dotenv<2.0.0,>=1.0.0
|
|
33
34
|
Requires-Dist: tenacity!=8.4.0,>=8.3.0
|
|
34
35
|
Requires-Dist: tqdm<5.0.0,>=4.66.2
|
|
35
|
-
Provides-Extra: vllm
|
|
36
|
-
Requires-Dist: vllm>=0.9.1; extra == "vllm"
|
|
37
|
-
Requires-Dist: torch>=2.0.0; extra == "vllm"
|
|
38
|
-
Requires-Dist: transformers>=4.37.0; extra == "vllm"
|
|
39
|
-
Requires-Dist: accelerate>=0.21.0; extra == "vllm"
|
|
40
|
-
Requires-Dist: xformers>=0.0.22.post7; extra == "vllm"
|
|
41
36
|
Provides-Extra: examples
|
|
42
37
|
Requires-Dist: tabulate>=0.9.0; extra == "examples"
|
|
43
38
|
Requires-Dist: transformers>=4.37.0; extra == "examples"
|
|
44
39
|
Requires-Dist: langchain-text-splitters; extra == "examples"
|
|
45
40
|
Requires-Dist: docling>=2.3.0; extra == "examples"
|
|
46
41
|
Requires-Dist: scikit-learn; extra == "examples"
|
|
47
|
-
Requires-Dist: pandas; extra == "examples"
|
|
48
42
|
Requires-Dist: polars; extra == "examples"
|
|
49
43
|
Requires-Dist: matplotlib; extra == "examples"
|
|
50
44
|
Requires-Dist: spacy; extra == "examples"
|
|
@@ -19,8 +19,8 @@ Maps values based on their position/index, useful for applying transformations b
|
|
|
19
19
|
### MeltColumnsBlock
|
|
20
20
|
Reshapes data from wide format to long format, converting multiple columns into key-value pairs.
|
|
21
21
|
|
|
22
|
-
###
|
|
23
|
-
|
|
22
|
+
### UniformColumnValueSetter
|
|
23
|
+
Replaces all values in a column with a single statistical aggregate (mode, min, max, mean, or median) computed from the data. Modifies the column in-place, useful for data normalization, creating baseline comparisons, or extracting dominant values.
|
|
24
24
|
|
|
25
25
|
|
|
26
26
|
## 🚀 Next Steps
|
|
@@ -116,7 +116,139 @@ metadata:
|
|
|
116
116
|
max_samples: 10000
|
|
117
117
|
```
|
|
118
118
|
|
|
119
|
-
|
|
119
|
+
### Metadata Fields Reference
|
|
120
|
+
|
|
121
|
+
The metadata section supports the following fields for flow configuration:
|
|
122
|
+
|
|
123
|
+
#### Core Metadata Fields
|
|
124
|
+
|
|
125
|
+
| Field | Type | Required | Default | Description |
|
|
126
|
+
|-------|------|----------|---------|-------------|
|
|
127
|
+
| `name` | `string` | Yes | - | Human-readable name of the flow. Must be at least 1 character. |
|
|
128
|
+
| `id` | `string` | No | Auto-generated | Unique identifier for the flow. Auto-generated from name if not provided. Must be lowercase, contain only alphanumeric characters and hyphens, and not start/end with hyphens. |
|
|
129
|
+
| `description` | `string` | No | `""` | Detailed description of what the flow does and its purpose. |
|
|
130
|
+
| `version` | `string` | No | `"1.0.0"` | Semantic version following the format `MAJOR.MINOR.PATCH` (e.g., "1.0.0", "2.1.3-beta"). |
|
|
131
|
+
| `author` | `string` | No | `""` | Name of the flow author or contributor. |
|
|
132
|
+
| `license` | `string` | No | `"Apache-2.0"` | License identifier for the flow (e.g., "Apache-2.0", "MIT", "GPL-3.0"). |
|
|
133
|
+
| `tags` | `List[string]` | No | `[]` | List of tags for categorization and discovery. Tags are automatically converted to lowercase. |
|
|
134
|
+
| `recommended_models` | `RecommendedModels` | No | `None` | Recommended LLM models for optimal flow performance. See below for structure. |
|
|
135
|
+
| `dataset_requirements` | `DatasetRequirements` | No | `None` | Input dataset requirements and validation rules. See below for structure. |
|
|
136
|
+
|
|
137
|
+
#### RecommendedModels Structure
|
|
138
|
+
|
|
139
|
+
The `recommended_models` field helps users choose appropriate LLM models for the flow:
|
|
140
|
+
|
|
141
|
+
```yaml
|
|
142
|
+
recommended_models:
|
|
143
|
+
default: "meta-llama/Llama-3.3-70B-Instruct"
|
|
144
|
+
compatible:
|
|
145
|
+
- "microsoft/phi-4"
|
|
146
|
+
- "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
147
|
+
experimental:
|
|
148
|
+
- "google/gemini-pro"
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
| Field | Type | Required | Default | Description |
|
|
152
|
+
|-------|------|----------|---------|-------------|
|
|
153
|
+
| `default` | `string` | Yes | - | The default model recommended for this flow. This is the primary model users should use. |
|
|
154
|
+
| `compatible` | `List[string]` | No | `[]` | List of models known to work well with this flow. Alternative options with good performance. |
|
|
155
|
+
| `experimental` | `List[string]` | No | `[]` | List of experimental models that may work but haven't been extensively tested with this flow. |
|
|
156
|
+
|
|
157
|
+
**Model Selection Behavior:**
|
|
158
|
+
|
|
159
|
+
When the framework needs to select a model, it prioritizes in this order:
|
|
160
|
+
1. `default` model if available
|
|
161
|
+
2. First available model from `compatible` list
|
|
162
|
+
3. First available model from `experimental` list
|
|
163
|
+
|
|
164
|
+
#### DatasetRequirements Structure
|
|
165
|
+
|
|
166
|
+
The `dataset_requirements` field validates input datasets and documents expected data format:
|
|
167
|
+
|
|
168
|
+
```yaml
|
|
169
|
+
dataset_requirements:
|
|
170
|
+
required_columns:
|
|
171
|
+
- "document"
|
|
172
|
+
- "context"
|
|
173
|
+
optional_columns:
|
|
174
|
+
- "metadata"
|
|
175
|
+
- "source"
|
|
176
|
+
min_samples: 1
|
|
177
|
+
max_samples: 10000
|
|
178
|
+
column_types:
|
|
179
|
+
document: "string"
|
|
180
|
+
context: "string"
|
|
181
|
+
description: "Documents with context for Q&A generation"
|
|
182
|
+
```
|
|
183
|
+
|
|
184
|
+
| Field | Type | Required | Default | Description |
|
|
185
|
+
|-------|------|----------|---------|-------------|
|
|
186
|
+
| `required_columns` | `List[string]` | No | `[]` | Column names that must be present in the input dataset. Flow validation will fail if these are missing. |
|
|
187
|
+
| `optional_columns` | `List[string]` | No | `[]` | Column names that are optional but can enhance flow performance if provided. |
|
|
188
|
+
| `min_samples` | `integer` | No | `1` | Minimum number of samples required in the input dataset. Must be at least 1. |
|
|
189
|
+
| `max_samples` | `integer` | No | `None` | Maximum number of samples to process. Useful for resource management and preventing excessive processing. |
|
|
190
|
+
| `column_types` | `Dict[string, string]` | No | `{}` | Expected data types for specific columns (e.g., "string", "integer", "float"). Used for documentation purposes. |
|
|
191
|
+
| `description` | `string` | No | `""` | Human-readable description of the dataset requirements and expected format. |
|
|
192
|
+
|
|
193
|
+
**Validation Behavior:**
|
|
194
|
+
|
|
195
|
+
- The flow will validate the input dataset against `required_columns` before execution
|
|
196
|
+
- Missing required columns will cause the flow to fail with a clear error message
|
|
197
|
+
- Sample count validation ensures the dataset meets `min_samples` and respects `max_samples` if set
|
|
198
|
+
- `max_samples` must be greater than or equal to `min_samples` if both are specified
|
|
199
|
+
|
|
200
|
+
#### Complete Metadata Example
|
|
201
|
+
|
|
202
|
+
Here's a comprehensive example using all available metadata fields:
|
|
203
|
+
|
|
204
|
+
```yaml
|
|
205
|
+
metadata:
|
|
206
|
+
name: "Advanced Document Q&A Generation"
|
|
207
|
+
id: "advanced-document-qa-generation"
|
|
208
|
+
description: |
|
|
209
|
+
A sophisticated flow that processes documents to generate high-quality
|
|
210
|
+
question-answer pairs with faithfulness evaluation and quality filtering.
|
|
211
|
+
Designed for educational content and training data generation.
|
|
212
|
+
version: "2.1.0"
|
|
213
|
+
author: "SDG Hub Team"
|
|
214
|
+
license: "Apache-2.0"
|
|
215
|
+
|
|
216
|
+
recommended_models:
|
|
217
|
+
default: "meta-llama/Llama-3.3-70B-Instruct"
|
|
218
|
+
compatible:
|
|
219
|
+
- "microsoft/phi-4"
|
|
220
|
+
- "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
221
|
+
- "meta-llama/Llama-3.1-70B-Instruct"
|
|
222
|
+
experimental:
|
|
223
|
+
- "google/gemini-pro"
|
|
224
|
+
- "anthropic/claude-3-opus"
|
|
225
|
+
|
|
226
|
+
tags:
|
|
227
|
+
- "question-generation"
|
|
228
|
+
- "document-processing"
|
|
229
|
+
- "educational"
|
|
230
|
+
- "qa-pairs"
|
|
231
|
+
|
|
232
|
+
dataset_requirements:
|
|
233
|
+
required_columns:
|
|
234
|
+
- "document"
|
|
235
|
+
- "context"
|
|
236
|
+
optional_columns:
|
|
237
|
+
- "domain"
|
|
238
|
+
- "difficulty_level"
|
|
239
|
+
- "source_url"
|
|
240
|
+
min_samples: 10
|
|
241
|
+
max_samples: 5000
|
|
242
|
+
column_types:
|
|
243
|
+
document: "string"
|
|
244
|
+
context: "string"
|
|
245
|
+
domain: "string"
|
|
246
|
+
difficulty_level: "integer"
|
|
247
|
+
description: |
|
|
248
|
+
Input dataset should contain documents with contextual information.
|
|
249
|
+
Each document should be well-formed text suitable for Q&A generation.
|
|
250
|
+
Optional domain and difficulty_level fields help tailor generation.
|
|
251
|
+
```
|
|
120
252
|
|
|
121
253
|
### Blocks Section
|
|
122
254
|
|
|
@@ -572,6 +704,221 @@ Checkpoint directories contain:
|
|
|
572
704
|
- If all samples are completed, Flow skips processing and returns merged results immediately
|
|
573
705
|
- Clean up checkpoint directories manually when no longer needed
|
|
574
706
|
|
|
707
|
+
## 📊 Flow Metrics and Reporting
|
|
708
|
+
|
|
709
|
+
SDG Hub automatically tracks and reports detailed execution metrics for every flow run, providing visibility into performance, data transformations, and success/failure status. This built-in monitoring system helps you understand bottlenecks, debug issues, and optimize your pipelines.
|
|
710
|
+
|
|
711
|
+
### Automatic Metrics Collection
|
|
712
|
+
|
|
713
|
+
The flow execution system automatically collects comprehensive metrics for each block without any configuration required:
|
|
714
|
+
|
|
715
|
+
**Collected Metrics:**
|
|
716
|
+
- **Block Identification** - Block name and type for clear tracking
|
|
717
|
+
- **Execution Time** - Precise timing for each block's execution
|
|
718
|
+
- **Row Changes** - Input and output row counts to track data filtering
|
|
719
|
+
- **Column Changes** - Added and removed columns to understand data transformations
|
|
720
|
+
- **Status** - Success or failure status for each block
|
|
721
|
+
- **Error Details** - Full error messages and types when blocks fail
|
|
722
|
+
|
|
723
|
+
### Rich Console Output
|
|
724
|
+
|
|
725
|
+
After every flow execution (whether successful or failed), a beautifully formatted summary table is automatically displayed in your terminal using the Rich library:
|
|
726
|
+
|
|
727
|
+
```python
|
|
728
|
+
from sdg_hub.core.flow import Flow
|
|
729
|
+
from datasets import Dataset
|
|
730
|
+
|
|
731
|
+
# Load and configure flow
|
|
732
|
+
flow = Flow.from_yaml("path/to/flow.yaml")
|
|
733
|
+
flow.set_model_config(
|
|
734
|
+
model="hosted_vllm/meta-llama/Llama-3.3-70B-Instruct",
|
|
735
|
+
api_base="http://localhost:8000/v1"
|
|
736
|
+
)
|
|
737
|
+
|
|
738
|
+
# Execute flow - metrics displayed automatically at completion
|
|
739
|
+
result = flow.generate(dataset)
|
|
740
|
+
```
|
|
741
|
+
|
|
742
|
+
**Example Console Output:**
|
|
743
|
+
|
|
744
|
+
```
|
|
745
|
+
┌─────────────────── Advanced Document Q&A Generation - Complete ───────────────────┐
|
|
746
|
+
│ Flow Execution Summary │
|
|
747
|
+
│ ┌──────────────────────┬─────────────────┬──────────┬──────────────┬─────────┬──┐│
|
|
748
|
+
│ │ Block Name │ Type │ Duration │ Rows │ Columns │ ││
|
|
749
|
+
│ ├──────────────────────┼─────────────────┼──────────┼──────────────┼─────────┼──┤│
|
|
750
|
+
│ │ backup_document │ DuplicateCol... │ 0.05s │ 100 → 100 │ +1 │ ✓││
|
|
751
|
+
│ │ build_question_... │ PromptBuilder...│ 0.12s │ 100 → 100 │ +1 │ ✓││
|
|
752
|
+
│ │ generate_question │ LLMChatBlock │ 45.30s │ 100 → 100 │ +1 │ ✓││
|
|
753
|
+
│ │ generate_answer │ LLMChatBlock │ 78.45s │ 100 → 100 │ +1 │ ✓││
|
|
754
|
+
│ │ eval_faithfulness... │ LLMChatBlock │ 52.20s │ 100 → 100 │ +1 │ ✓││
|
|
755
|
+
│ │ extract_eval_con... │ LLMParserBlock │ 0.15s │ 100 → 100 │ +2 │ ✓││
|
|
756
|
+
│ │ parse_evaluation │ TextParserBlock │ 0.22s │ 100 → 100 │ +2 │ ✓││
|
|
757
|
+
│ │ filter_faithful │ ColumnValueF... │ 0.08s │ 100 → 87 │ — │ ✓││
|
|
758
|
+
│ ├──────────────────────┼─────────────────┼──────────┼──────────────┼─────────┼──┤│
|
|
759
|
+
│ │ TOTAL │ 8 blocks │ 176.57s │ 87 final │ 9 final │ ✓││
|
|
760
|
+
│ └──────────────────────┴─────────────────┴──────────┴──────────────┴─────────┴──┘│
|
|
761
|
+
└─────────────────────────────────────────────────────────────────────────────────────┘
|
|
762
|
+
```
|
|
763
|
+
|
|
764
|
+
**Table Columns Explained:**
|
|
765
|
+
|
|
766
|
+
| Column | Description |
|
|
767
|
+
|--------|-------------|
|
|
768
|
+
| **Block Name** | The unique name of the block as defined in the flow YAML |
|
|
769
|
+
| **Type** | The block class name (e.g., LLMChatBlock, PromptBuilderBlock) |
|
|
770
|
+
| **Duration** | Execution time in seconds for that specific block |
|
|
771
|
+
| **Rows** | Row transformation showing `input_count → output_count` |
|
|
772
|
+
| **Columns** | Column changes: `+N` for added, `-N` for removed, `+N/-M` for both |
|
|
773
|
+
| **Status** | `✓` for success, `✗` for failure |
|
|
774
|
+
|
|
775
|
+
**Status Indicators:**
|
|
776
|
+
|
|
777
|
+
The panel border color and title reflect the overall execution status:
|
|
778
|
+
|
|
779
|
+
- **Green border + "Complete"** - All blocks executed successfully
|
|
780
|
+
- **Red border + "Failed"** - Flow execution failed (exception thrown)
|
|
781
|
+
- **Yellow border + "Partial"** - Some blocks completed but others failed
|
|
782
|
+
|
|
783
|
+
### JSON Metrics Export
|
|
784
|
+
|
|
785
|
+
For production workflows, detailed metrics can be automatically saved to JSON files for analysis, monitoring, and debugging:
|
|
786
|
+
|
|
787
|
+
```python
|
|
788
|
+
# Enable JSON metrics export by providing a log directory
|
|
789
|
+
result = flow.generate(
|
|
790
|
+
dataset,
|
|
791
|
+
log_dir="./flow_logs"
|
|
792
|
+
)
|
|
793
|
+
|
|
794
|
+
# Metrics automatically saved to: ./flow_logs/{flow_name}_{timestamp}_metrics.json
|
|
795
|
+
```
|
|
796
|
+
|
|
797
|
+
**JSON Structure:**
|
|
798
|
+
|
|
799
|
+
```json
|
|
800
|
+
{
|
|
801
|
+
"flow_name": "Advanced Document Q&A Generation",
|
|
802
|
+
"flow_version": "2.1.0",
|
|
803
|
+
"execution_timestamp": "20250113_143052",
|
|
804
|
+
"execution_successful": true,
|
|
805
|
+
"total_execution_time": 176.57,
|
|
806
|
+
"total_wall_time": 178.23,
|
|
807
|
+
"total_blocks": 8,
|
|
808
|
+
"successful_blocks": 8,
|
|
809
|
+
"failed_blocks": 0,
|
|
810
|
+
"block_metrics": [
|
|
811
|
+
{
|
|
812
|
+
"block_name": "backup_document",
|
|
813
|
+
"block_type": "DuplicateColumnsBlock",
|
|
814
|
+
"execution_time": 0.05,
|
|
815
|
+
"input_rows": 100,
|
|
816
|
+
"output_rows": 100,
|
|
817
|
+
"added_cols": ["original_document"],
|
|
818
|
+
"removed_cols": [],
|
|
819
|
+
"status": "success"
|
|
820
|
+
},
|
|
821
|
+
{
|
|
822
|
+
"block_name": "generate_question",
|
|
823
|
+
"block_type": "LLMChatBlock",
|
|
824
|
+
"execution_time": 45.30,
|
|
825
|
+
"input_rows": 100,
|
|
826
|
+
"output_rows": 100,
|
|
827
|
+
"added_cols": ["question"],
|
|
828
|
+
"removed_cols": [],
|
|
829
|
+
"status": "success"
|
|
830
|
+
}
|
|
831
|
+
]
|
|
832
|
+
}
|
|
833
|
+
```
|
|
834
|
+
|
|
835
|
+
**JSON Fields Reference:**
|
|
836
|
+
|
|
837
|
+
| Field | Type | Description |
|
|
838
|
+
|-------|------|-------------|
|
|
839
|
+
| `flow_name` | string | Human-readable flow name from metadata |
|
|
840
|
+
| `flow_version` | string | Flow version string |
|
|
841
|
+
| `execution_timestamp` | string | Timestamp when execution started (YYYYMMDD_HHMMSS format) |
|
|
842
|
+
| `execution_successful` | boolean | `true` if all blocks succeeded, `false` if any failed |
|
|
843
|
+
| `total_execution_time` | float | Sum of all block execution times in seconds |
|
|
844
|
+
| `total_wall_time` | float | End-to-end wall clock time including overhead |
|
|
845
|
+
| `total_blocks` | integer | Number of blocks in the flow |
|
|
846
|
+
| `successful_blocks` | integer | Count of blocks that executed successfully |
|
|
847
|
+
| `failed_blocks` | integer | Count of blocks that failed |
|
|
848
|
+
| `block_metrics` | array | Detailed metrics for each block (see below) |
|
|
849
|
+
|
|
850
|
+
**Block Metrics Fields:**
|
|
851
|
+
|
|
852
|
+
| Field | Type | Description |
|
|
853
|
+
|-------|------|-------------|
|
|
854
|
+
| `block_name` | string | Unique block identifier |
|
|
855
|
+
| `block_type` | string | Block class name |
|
|
856
|
+
| `execution_time` | float | Block execution duration in seconds |
|
|
857
|
+
| `input_rows` | integer | Number of rows received by the block |
|
|
858
|
+
| `output_rows` | integer | Number of rows produced by the block |
|
|
859
|
+
| `added_cols` | array | List of column names added by this block |
|
|
860
|
+
| `removed_cols` | array | List of column names removed by this block |
|
|
861
|
+
| `status` | string | `"success"` or `"failed"` |
|
|
862
|
+
| `error` | string | Error message (only present if `status` is `"failed"`) |
|
|
863
|
+
| `error_type` | string | Error class name (only present if `status` is `"failed"`) |
|
|
864
|
+
|
|
865
|
+
### Metrics Aggregation
|
|
866
|
+
|
|
867
|
+
When using checkpointing with `save_freq`, blocks may execute multiple times on different chunks of data. The metrics system automatically aggregates these executions per block:
|
|
868
|
+
|
|
869
|
+
- **Execution times** are summed across all chunks
|
|
870
|
+
- **Row counts** are totaled for input and output
|
|
871
|
+
- **Column changes** are merged (duplicates removed)
|
|
872
|
+
- **Status** reflects the worst case (any failure marks the block as failed)
|
|
873
|
+
|
|
874
|
+
This ensures the metrics summary and JSON export always show a cohesive view of the entire flow execution.
|
|
875
|
+
|
|
876
|
+
### Use Cases
|
|
877
|
+
|
|
878
|
+
**Performance Optimization:**
|
|
879
|
+
```python
|
|
880
|
+
# Identify slow blocks for optimization
|
|
881
|
+
result = flow.generate(dataset, log_dir="./optimization_analysis")
|
|
882
|
+
# Review metrics JSON to find blocks with high execution_time
|
|
883
|
+
```
|
|
884
|
+
|
|
885
|
+
**Data Quality Monitoring:**
|
|
886
|
+
```python
|
|
887
|
+
# Track how filtering affects dataset size
|
|
888
|
+
result = flow.generate(dataset)
|
|
889
|
+
# Check console output for row count changes: "100 → 87" indicates 13 filtered
|
|
890
|
+
```
|
|
891
|
+
|
|
892
|
+
**Production Monitoring:**
|
|
893
|
+
```python
|
|
894
|
+
# Continuous metrics collection for production pipelines
|
|
895
|
+
for batch in data_batches:
|
|
896
|
+
result = flow.generate(
|
|
897
|
+
batch,
|
|
898
|
+
log_dir=f"./production_metrics/{date}",
|
|
899
|
+
checkpoint_dir=f"./checkpoints/{batch_id}"
|
|
900
|
+
)
|
|
901
|
+
# Aggregate metrics JSON files for dashboards and alerting
|
|
902
|
+
```
|
|
903
|
+
|
|
904
|
+
**Debugging Failed Runs:**
|
|
905
|
+
```python
|
|
906
|
+
# Automatic error capture in metrics
|
|
907
|
+
try:
|
|
908
|
+
result = flow.generate(dataset, log_dir="./debug_logs")
|
|
909
|
+
except Exception as e:
|
|
910
|
+
# Metrics JSON contains full error details for failed blocks
|
|
911
|
+
print(f"Check ./debug_logs for detailed failure metrics")
|
|
912
|
+
```
|
|
913
|
+
|
|
914
|
+
### Important Notes
|
|
915
|
+
|
|
916
|
+
- **Always Displayed** - Metrics are shown even if the flow fails, helping debug issues
|
|
917
|
+
- **Zero Configuration** - No setup required, metrics collection is automatic
|
|
918
|
+
- **Minimal Overhead** - Metrics collection adds negligible performance impact
|
|
919
|
+
- **Thread-Safe** - Metrics are properly collected during concurrent block execution
|
|
920
|
+
- **Checkpoint Aware** - Metrics correctly aggregate across checkpointed chunks
|
|
921
|
+
|
|
575
922
|
## 🚀 Next Steps
|
|
576
923
|
|
|
577
924
|
Ready to master the flow system? Explore these detailed guides:
|
|
@@ -34,7 +34,7 @@
|
|
|
34
34
|
"source": [
|
|
35
35
|
"# Step 1: Document Processing Pipeline\n",
|
|
36
36
|
"# Define the directory containing raw documents to be processed\n",
|
|
37
|
-
"data_dir =
|
|
37
|
+
"data_dir = \"document_collection/\"\n",
|
|
38
38
|
"\n",
|
|
39
39
|
"# Run the document parser to convert documents to markdown\n",
|
|
40
40
|
"# - input-dir: Directory containing source documents\n",
|
|
@@ -68,7 +68,7 @@
|
|
|
68
68
|
"import glob\n",
|
|
69
69
|
"\n",
|
|
70
70
|
"# In our example above docling step produces markdown of all the pdf files in the document_collection\n",
|
|
71
|
-
"with open(glob.glob(f
|
|
71
|
+
"with open(glob.glob(f\"{data_dir}/*.md\")[0], \"r\") as f:\n",
|
|
72
72
|
" text = f.read()"
|
|
73
73
|
]
|
|
74
74
|
},
|
|
@@ -81,26 +81,22 @@
|
|
|
81
81
|
"source": [
|
|
82
82
|
"# Step 4: Text Chunking and Dataset Creation\n",
|
|
83
83
|
"\n",
|
|
84
|
-
"from markdown_it import MarkdownIt
|
|
84
|
+
"from markdown_it import MarkdownIt\n",
|
|
85
85
|
"from typing import List\n",
|
|
86
|
-
"import datasets
|
|
86
|
+
"import datasets\n",
|
|
87
87
|
"\n",
|
|
88
88
|
"\n",
|
|
89
|
-
"def chunk_markdown(
|
|
90
|
-
" text: str,\n",
|
|
91
|
-
" max_tokens: int = 200,\n",
|
|
92
|
-
" overlap: int = 50\n",
|
|
93
|
-
") -> List[str]:\n",
|
|
89
|
+
"def chunk_markdown(text: str, max_tokens: int = 200, overlap: int = 50) -> List[str]:\n",
|
|
94
90
|
" \"\"\"\n",
|
|
95
91
|
" Splits Markdown text into chunks at block-level elements\n",
|
|
96
92
|
" (headings, paragraphs, lists, tables, code, blockquotes).\n",
|
|
97
93
|
" Adds overlap (in words) between all consecutive chunks.\n",
|
|
98
|
-
"
|
|
94
|
+
"\n",
|
|
99
95
|
" Args:\n",
|
|
100
96
|
" text: The markdown text to be chunked\n",
|
|
101
97
|
" max_tokens: Maximum number of words per chunk\n",
|
|
102
98
|
" overlap: Number of overlapping words between consecutive chunks\n",
|
|
103
|
-
"
|
|
99
|
+
"\n",
|
|
104
100
|
" Returns:\n",
|
|
105
101
|
" List of text chunks with specified overlap\n",
|
|
106
102
|
" \"\"\"\n",
|
|
@@ -150,7 +146,7 @@
|
|
|
150
146
|
"\n",
|
|
151
147
|
"\n",
|
|
152
148
|
"# Prepare seed data for the SDG-Hub knowledge pipeline.\n",
|
|
153
|
-
"
|
|
149
|
+
"#\n",
|
|
154
150
|
"# The seed data requires the following fields:\n",
|
|
155
151
|
"# - document_outline: A concise title or summary that accurately represents the entire document.\n",
|
|
156
152
|
"# For documents covering multiple themes, consider providing multiple outlines (one per section).\n",
|
|
@@ -161,7 +157,7 @@
|
|
|
161
157
|
"# The code below creates a HuggingFace Dataset from the document chunks,\n",
|
|
162
158
|
"# then maps the required ICL fields to each entry, and finally saves the result as a JSONL file.\n",
|
|
163
159
|
"\n",
|
|
164
|
-
"seed_data = datasets.Dataset.from_dict({
|
|
160
|
+
"seed_data = datasets.Dataset.from_dict({\"document\": chunks})\n",
|
|
165
161
|
"\n",
|
|
166
162
|
"icl = {\n",
|
|
167
163
|
" \"document_outline\": \"The document contains excerpts from FINTRAC regulations designed to combat money laundering and terrorist financing in Canada\",\n",
|
|
@@ -169,14 +165,14 @@
|
|
|
169
165
|
" \"icl_query_1\": \"In Canada, what are the methods for verifying someone's identity?\",\n",
|
|
170
166
|
" \"icl_query_2\": \"In Canada, why is it important to confirm a client's identity?\",\n",
|
|
171
167
|
" \"icl_query_3\": \"In Canada, can I use Reliance method to verify identity of a person?\",\n",
|
|
172
|
-
" \"domain\": \"Finance\"
|
|
168
|
+
" \"domain\": \"Finance\",\n",
|
|
173
169
|
"}\n",
|
|
174
170
|
"\n",
|
|
175
171
|
"# Map the ICL fields to each document chunk (if you want to use the same ICL for all, as shown here)\n",
|
|
176
172
|
"seed_data = seed_data.map(lambda x: icl)\n",
|
|
177
173
|
"\n",
|
|
178
174
|
"# Save the seed data to a JSONL file for downstream use\n",
|
|
179
|
-
"seed_data.to_json(
|
|
175
|
+
"seed_data.to_json(\"seed_data.jsonl\", orient=\"records\", lines=True)"
|
|
180
176
|
]
|
|
181
177
|
},
|
|
182
178
|
{
|