sdf-xarray 0.3.0__tar.gz → 0.3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sdf-xarray might be problematic. Click here for more details.
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/PKG-INFO +1 -1
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/0000.sdf +0 -0
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/0001.sdf +0 -0
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/0002.sdf +0 -0
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/0003.sdf +0 -0
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/0004.sdf +0 -0
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/0005.sdf +0 -0
- sdf_xarray-0.3.1/docs/tutorial_dataset_2d/input.deck +65 -0
- sdf_xarray-0.3.1/docs/unit_conversion.rst +228 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/src/sdf_xarray/__init__.py +9 -2
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/src/sdf_xarray/_version.py +3 -3
- sdf_xarray-0.3.1/src/sdf_xarray/dataset_accessor.py +73 -0
- sdf_xarray-0.3.1/tests/example_files_3D/0000.sdf +0 -0
- sdf_xarray-0.3.1/tests/example_files_3D/0001.sdf +0 -0
- sdf_xarray-0.3.1/tests/example_files_3D/input.deck +54 -0
- sdf_xarray-0.3.1/tests/test_epoch_dataset_accessor.py +146 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/uv.lock +481 -476
- sdf_xarray-0.3.0/docs/unit_conversion.rst +0 -175
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.github/workflows/black.yml +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.github/workflows/build_publish.yml +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.github/workflows/lint.yml +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.github/workflows/tests.yml +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.gitignore +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.gitmodules +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/.readthedocs.yaml +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/BEAM.png +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/CITATION.cff +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/CMakeLists.txt +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/CONTRIBUTING.md +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/LICENCE +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/PlasmaFAIR.svg +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/README.md +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/.gitignore +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/_templates/custom-class-template.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/_templates/custom-module-template.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/api.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/conf.py +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/contributing.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/getting_started.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/index.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/key_functionality.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/known_issues.rst +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/make.bat +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0002.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0003.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0004.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0005.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0006.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0007.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0008.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0009.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0010.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0011.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0012.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0013.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0014.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0015.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0016.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0017.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0018.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0019.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0020.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0021.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0022.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0023.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0024.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0025.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0026.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0027.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0028.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0029.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0030.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0031.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0032.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0033.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0034.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0035.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0036.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0037.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0038.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0039.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/0040.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/deck.status +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/epoch1d.dat +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/input.deck +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/normal.visit +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/docs/tutorial_dataset_1d/restart.visit +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/pyproject.toml +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/src/sdf_xarray/csdf.pxd +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/src/sdf_xarray/plotting.py +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/src/sdf_xarray/sdf_interface.pyx +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_array_no_grids/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_array_no_grids/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_array_no_grids/README.md +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_array_no_grids/input.deck +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_dist_fn/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_dist_fn/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_dist_fn/0002.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_dist_fn/input.deck +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0002.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0003.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0004.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0005.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0006.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0007.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0008.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0009.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/0010.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/README.md +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_1D/input.deck +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_2D_moving_window/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_2D_moving_window/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_2D_moving_window/0002.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_2D_moving_window/0003.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_2D_moving_window/0004.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_files_2D_moving_window/input.deck +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_mismatched_files/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_mismatched_files/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_mismatched_files/0002.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_two_probes_2D/0000.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_two_probes_2D/0001.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_two_probes_2D/0002.sdf +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/example_two_probes_2D/input.deck +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/test_basic.py +0 -0
- {sdf_xarray-0.3.0 → sdf_xarray-0.3.1}/tests/test_cython.py +0 -0
- /sdf_xarray-0.3.0/tests/test_epoch_accessor.py → /sdf_xarray-0.3.1/tests/test_epoch_dataarray_accessor.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sdf-xarray
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.1
|
|
4
4
|
Summary: Provides a backend for xarray to read SDF files as created by the EPOCH plasma PIC code.
|
|
5
5
|
Author-Email: Peter Hill <peter.hill@york.ac.uk>, Joel Adams <joel.adams@york.ac.uk>, Shaun Doherty <shaun.doherty@york.ac.uk>
|
|
6
6
|
License-Expression: BSD-3-Clause
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
begin:control
|
|
2
|
+
nx = 64
|
|
3
|
+
ny = 64
|
|
4
|
+
|
|
5
|
+
# Final time of simulation
|
|
6
|
+
t_end = 5 * femto
|
|
7
|
+
|
|
8
|
+
# Size of domain
|
|
9
|
+
x_min = 0
|
|
10
|
+
x_max = 6 * micron
|
|
11
|
+
|
|
12
|
+
y_min = 0
|
|
13
|
+
y_max = 6 * micron
|
|
14
|
+
|
|
15
|
+
stdout_frequency = 1
|
|
16
|
+
nparticles = nx * ny * 50
|
|
17
|
+
end:control
|
|
18
|
+
|
|
19
|
+
begin:constant
|
|
20
|
+
n_elec = 1000
|
|
21
|
+
L_target_x = 2 * micron
|
|
22
|
+
L_target_y = 4 * micron
|
|
23
|
+
|
|
24
|
+
x_center = (x_min + x_max) / 2
|
|
25
|
+
y_center = (y_min + y_max) / 2
|
|
26
|
+
|
|
27
|
+
density_profile = if( (abs(x - x_center) lt L_target_x/2), if( (abs(y - y_center) lt L_target_y/2), 1, 0), 0)
|
|
28
|
+
end:constant
|
|
29
|
+
|
|
30
|
+
begin:boundaries
|
|
31
|
+
bc_x_min = periodic
|
|
32
|
+
bc_x_max = periodic
|
|
33
|
+
bc_y_min = periodic
|
|
34
|
+
bc_y_max = periodic
|
|
35
|
+
end:boundaries
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
begin:species
|
|
39
|
+
name = Electron
|
|
40
|
+
frac = 0.5
|
|
41
|
+
number_density = n_elec * density_profile
|
|
42
|
+
identify:electron
|
|
43
|
+
end:species
|
|
44
|
+
|
|
45
|
+
begin:species
|
|
46
|
+
name = Ion
|
|
47
|
+
frac = 0.5
|
|
48
|
+
number_density = n_elec * density_profile
|
|
49
|
+
identify:proton
|
|
50
|
+
end:species
|
|
51
|
+
|
|
52
|
+
begin:output_global
|
|
53
|
+
force_last_to_be_restartable = F
|
|
54
|
+
end:output_global
|
|
55
|
+
|
|
56
|
+
begin:output
|
|
57
|
+
name = normal
|
|
58
|
+
|
|
59
|
+
dt_snapshot = 1 * femto
|
|
60
|
+
|
|
61
|
+
grid = always
|
|
62
|
+
number_density = always + species
|
|
63
|
+
|
|
64
|
+
end:output
|
|
65
|
+
|
|
@@ -0,0 +1,228 @@
|
|
|
1
|
+
.. _sec-unit-conversion:
|
|
2
|
+
|
|
3
|
+
===============
|
|
4
|
+
Unit Conversion
|
|
5
|
+
===============
|
|
6
|
+
|
|
7
|
+
The ``sdf-xarray`` package automatically extracts the units for each
|
|
8
|
+
coordinate/variable/constant from an SDF file and stores them as an :class:`xarray.Dataset`
|
|
9
|
+
attribute called ``"units"``. Sometimes we want to convert our data from one format to
|
|
10
|
+
another, e.g. converting the grid coordinates from meters to microns, time from seconds
|
|
11
|
+
to femto-seconds or particle energy from Joules to electron-volts.
|
|
12
|
+
|
|
13
|
+
.. ipython:: python
|
|
14
|
+
|
|
15
|
+
from sdf_xarray import open_mfdataset
|
|
16
|
+
import matplotlib.pyplot as plt
|
|
17
|
+
plt.rcParams.update({
|
|
18
|
+
"axes.labelsize": 16,
|
|
19
|
+
"xtick.labelsize": 14,
|
|
20
|
+
"ytick.labelsize": 14,
|
|
21
|
+
"axes.titlesize": 16
|
|
22
|
+
})
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
=====================
|
|
26
|
+
Rescaling Coordinates
|
|
27
|
+
=====================
|
|
28
|
+
|
|
29
|
+
For simple scaling and unit relabeling of coordinates (e.g., converting meters to microns),
|
|
30
|
+
the most straightforward approach is to use the ``rescale_coords()`` method
|
|
31
|
+
via the custom ``xarray.Dataset.epoch`` dataset accessor.
|
|
32
|
+
|
|
33
|
+
This method scales the coordinate values by a given multiplier and updates the ``"units"``
|
|
34
|
+
attribute in one step.
|
|
35
|
+
|
|
36
|
+
Rescaling Grid Coordinates
|
|
37
|
+
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
38
|
+
|
|
39
|
+
We can use the ``xarray.Dataset.epoch.rescale_coords()`` method to convert X, Y, and Z
|
|
40
|
+
coordinates from meters (m) to microns (µm) by applying a multiplier of ``1e6``.
|
|
41
|
+
|
|
42
|
+
.. ipython:: python
|
|
43
|
+
|
|
44
|
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
|
|
45
|
+
|
|
46
|
+
with open_mfdataset("tutorial_dataset_2d/*.sdf") as ds:
|
|
47
|
+
ds_in_microns = ds.epoch.rescale_coords(
|
|
48
|
+
multiplier=1e6,
|
|
49
|
+
unit_label="µm",
|
|
50
|
+
coord_names=["X_Grid_mid", "Y_Grid_mid"]
|
|
51
|
+
)
|
|
52
|
+
derived_number_density = ds["Derived_Number_Density_Electron"].isel(time=0).compute()
|
|
53
|
+
derived_number_density_microns = ds_in_microns["Derived_Number_Density_Electron"].isel(time=0).compute()
|
|
54
|
+
|
|
55
|
+
derived_number_density.plot(ax=ax1, x="X_Grid_mid", y="Y_Grid_mid")
|
|
56
|
+
ax1.set_title("Original X Coordinate (m)")
|
|
57
|
+
|
|
58
|
+
derived_number_density_microns.plot(ax=ax2, x="X_Grid_mid", y="Y_Grid_mid")
|
|
59
|
+
ax2.set_title("Rescaled X Coordinate (µm)")
|
|
60
|
+
|
|
61
|
+
@savefig coordinate_conversion.png width=9in
|
|
62
|
+
fig.tight_layout()
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
Rescaling Time Coordinate
|
|
66
|
+
~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
67
|
+
|
|
68
|
+
We can also use the ``xarray.Dataset.epoch.rescale_coords()`` method to convert the time
|
|
69
|
+
coordinate from seconds (s) to femto-seconds (fs) by applying a multiplier of ``1e15``.
|
|
70
|
+
|
|
71
|
+
.. ipython:: python
|
|
72
|
+
|
|
73
|
+
with open_mfdataset("tutorial_dataset_2d/*.sdf") as ds:
|
|
74
|
+
ds_time_in_femto = ds.epoch.rescale_coords(
|
|
75
|
+
multiplier=1e15,
|
|
76
|
+
unit_label="fs",
|
|
77
|
+
coord_names="time"
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
print(f"[Original] units: {ds['time'].attrs['units']}, values: {ds['time'].values}")
|
|
81
|
+
print(f"[Rescaled] units: {ds_time_in_femto['time'].attrs['units']}, values: {ds_time_in_femto['time'].values}")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
================================
|
|
85
|
+
Unit Conversion with pint-xarray
|
|
86
|
+
================================
|
|
87
|
+
|
|
88
|
+
While this is sufficient for most use cases, we can enhance this functionality
|
|
89
|
+
using the `pint <https://pint.readthedocs.io/en/stable/getting/index.html>`_ library.
|
|
90
|
+
Pint allows us to specify the units of a given array and convert them
|
|
91
|
+
to another, which is incredibly handy. We can take this a step further,
|
|
92
|
+
however, and utilize the `pint-xarray
|
|
93
|
+
<https://pint-xarray.readthedocs.io/en/latest/>`_ library. This library
|
|
94
|
+
allows us to infer units directly from an `xarray.Dataset.attrs` while
|
|
95
|
+
retaining all the information about the `xarray.Dataset`. This works
|
|
96
|
+
very similarly to taking a NumPy array and multiplying it by a constant or
|
|
97
|
+
another array, which returns a new array; however, this library will also
|
|
98
|
+
retain the unit logic (specifically the ``"units"`` information).
|
|
99
|
+
|
|
100
|
+
.. note::
|
|
101
|
+
Unit conversion is not supported on coordinates in ``pint-xarray`` which is due to an
|
|
102
|
+
underlying issue with how ``xarray`` implements indexes.
|
|
103
|
+
|
|
104
|
+
Installation
|
|
105
|
+
~~~~~~~~~~~~
|
|
106
|
+
|
|
107
|
+
To install the pint libraries you can simply run the following optional
|
|
108
|
+
dependency pip command which will install both the ``pint`` and ``pint-xarray``
|
|
109
|
+
libraries. You can install these optional dependencies via pip:
|
|
110
|
+
|
|
111
|
+
.. code:: console
|
|
112
|
+
|
|
113
|
+
$ pip install "sdf_xarray[pint]"
|
|
114
|
+
|
|
115
|
+
.. note::
|
|
116
|
+
Once you install ``pint-xarray`` it is automatically picked up and loaded
|
|
117
|
+
by the code so you should have access to the ``xarray.Dataset.pint`` accessor.
|
|
118
|
+
|
|
119
|
+
Quantifying Arrays
|
|
120
|
+
~~~~~~~~~~~~~~~~~~
|
|
121
|
+
|
|
122
|
+
When using ``pint-xarray``, the library attempts to infer units from the
|
|
123
|
+
``"units"`` attribute on each `xarray.DataArray`. Alternatively, you can
|
|
124
|
+
also specify the units yourself by passing a string into the
|
|
125
|
+
``xarray.Dataset.DataArray.pint.quantify()`` function call. Once the type is inferred
|
|
126
|
+
the original `xarray.DataArray` will be converted to a `pint.Quantity`
|
|
127
|
+
and the ``"units"`` attribute will
|
|
128
|
+
be removed.
|
|
129
|
+
|
|
130
|
+
In the following example we will extract the time-resolved total particle
|
|
131
|
+
energy of electrons which is measured in Joules and convert it to electron
|
|
132
|
+
volts.
|
|
133
|
+
|
|
134
|
+
.. ipython:: python
|
|
135
|
+
|
|
136
|
+
with open_mfdataset("tutorial_dataset_1d/*.sdf") as ds:
|
|
137
|
+
total_particle_energy = ds["Total_Particle_Energy_Electron"]
|
|
138
|
+
|
|
139
|
+
total_particle_energy
|
|
140
|
+
|
|
141
|
+
total_particle_energy = ds["Total_Particle_Energy_Electron"].pint.quantify()
|
|
142
|
+
|
|
143
|
+
total_particle_energy
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
Now that this dataset has been converted a `pint.Quantity`, we can check
|
|
147
|
+
it's units and dimensionality
|
|
148
|
+
|
|
149
|
+
.. ipython:: python
|
|
150
|
+
|
|
151
|
+
total_particle_energy.pint.units
|
|
152
|
+
total_particle_energy.pint.dimensionality
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
Converting Units
|
|
156
|
+
~~~~~~~~~~~~~~~~
|
|
157
|
+
|
|
158
|
+
We can now convert it to electron volts utilising the `pint.Quantity.to`
|
|
159
|
+
function
|
|
160
|
+
|
|
161
|
+
.. ipython:: python
|
|
162
|
+
|
|
163
|
+
total_particle_energy_ev = total_particle_energy.pint.to("eV")
|
|
164
|
+
|
|
165
|
+
Unit Propagation
|
|
166
|
+
~~~~~~~~~~~~~~~~
|
|
167
|
+
|
|
168
|
+
Suppose instead of converting to ``"eV"``, we want to convert to ``"W"``
|
|
169
|
+
(watts). To do this, we divide the total particle energy by time. However,
|
|
170
|
+
since coordinates in `xarray.Dataset` cannot be directly converted to
|
|
171
|
+
`pint.Quantity`, we must first extract the coordinate values manually
|
|
172
|
+
and create a new Pint quantity for time.
|
|
173
|
+
|
|
174
|
+
Once both arrays are quantified, Pint will automatically handle the unit
|
|
175
|
+
propagation when we perform arithmetic operations like division.
|
|
176
|
+
|
|
177
|
+
.. note::
|
|
178
|
+
Pint does not automatically simplify ``"J/s"`` to ``"W"``, so we use
|
|
179
|
+
`pint.Quantity.to` to convert the unit string. Since these units are
|
|
180
|
+
the same it will not change the underlying data, only the units. This is
|
|
181
|
+
only a small formatting choice and is not required.
|
|
182
|
+
|
|
183
|
+
.. ipython:: python
|
|
184
|
+
|
|
185
|
+
import pint
|
|
186
|
+
time_values = total_particle_energy.coords["time"].data
|
|
187
|
+
time = pint.Quantity(time_values, "s")
|
|
188
|
+
total_particle_energy_w = total_particle_energy / time
|
|
189
|
+
total_particle_energy_w.pint.units
|
|
190
|
+
total_particle_energy_w = total_particle_energy_w.pint.to("W")
|
|
191
|
+
total_particle_energy_w.pint.units
|
|
192
|
+
|
|
193
|
+
Dequantifying and Restoring Units
|
|
194
|
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
195
|
+
|
|
196
|
+
.. note::
|
|
197
|
+
If this function is not called prior to plotting then the ``units`` will be
|
|
198
|
+
inferred from the `pint.Quantity` array which will return the long
|
|
199
|
+
name of the units. i.e. instead of returning ``"eV"`` it will return
|
|
200
|
+
``"electron_volt"``.
|
|
201
|
+
|
|
202
|
+
The ``xarray.Dataset.DataArray.pint.dequantify`` function converts the data from
|
|
203
|
+
`pint.Quantity` back to the original `xarray.DataArray` and adds
|
|
204
|
+
the ``"units"`` attribute back in. It also has an optional ``format`` parameter
|
|
205
|
+
that allows you to specify the formatting type of ``"units"`` attribute. We
|
|
206
|
+
have used the ``format="~P"`` option as it shortens the unit to its
|
|
207
|
+
"short pretty" format (``"eV"``). For more options, see the `Pint formatting
|
|
208
|
+
documentation <https://pint.readthedocs.io/en/stable/user/formatting.html>`_.
|
|
209
|
+
|
|
210
|
+
.. ipython:: python
|
|
211
|
+
|
|
212
|
+
total_particle_energy_ev = total_particle_energy_ev.pint.dequantify(format="~P")
|
|
213
|
+
total_particle_energy_w = total_particle_energy_w.pint.dequantify(format="~P")
|
|
214
|
+
total_particle_energy_ev
|
|
215
|
+
|
|
216
|
+
To confirm the conversion has worked correctly, we can plot the original and
|
|
217
|
+
converted `xarray.Dataset` side by side:
|
|
218
|
+
|
|
219
|
+
.. ipython:: python
|
|
220
|
+
|
|
221
|
+
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(16,8))
|
|
222
|
+
ds["Total_Particle_Energy_Electron"].plot(ax=ax1)
|
|
223
|
+
total_particle_energy_ev.plot(ax=ax2)
|
|
224
|
+
total_particle_energy_w.plot(ax=ax3)
|
|
225
|
+
ax4.set_visible(False)
|
|
226
|
+
fig.suptitle("Comparison of conversion from Joules to electron volts and watts", fontsize="18")
|
|
227
|
+
@savefig unit_conversion.png width=9in
|
|
228
|
+
fig.tight_layout()
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import contextlib
|
|
1
2
|
import os
|
|
2
3
|
import re
|
|
3
4
|
from collections import Counter, defaultdict
|
|
@@ -18,10 +19,16 @@ from xarray.core import indexing
|
|
|
18
19
|
from xarray.core.utils import close_on_error, try_read_magic_number_from_path
|
|
19
20
|
from xarray.core.variable import Variable
|
|
20
21
|
|
|
21
|
-
# NOTE: Do not delete
|
|
22
|
-
# imported when the user imports sdf_xarray
|
|
22
|
+
# NOTE: Do not delete these lines, otherwise the "epoch" dataset and dataarray
|
|
23
|
+
# accessors will not be imported when the user imports sdf_xarray
|
|
24
|
+
import sdf_xarray.dataset_accessor
|
|
23
25
|
import sdf_xarray.plotting # noqa: F401
|
|
24
26
|
|
|
27
|
+
# NOTE: This attempts to initialise with the "pint" accessor if the user
|
|
28
|
+
# has installed the package
|
|
29
|
+
with contextlib.suppress(ImportError):
|
|
30
|
+
import pint_xarray # noqa: F401
|
|
31
|
+
|
|
25
32
|
from .sdf_interface import Constant, SDFFile # type: ignore # noqa: PGH003
|
|
26
33
|
|
|
27
34
|
# TODO Remove this once the new kwarg options are fully implemented
|
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.3.
|
|
32
|
-
__version_tuple__ = version_tuple = (0, 3,
|
|
31
|
+
__version__ = version = '0.3.1'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 3, 1)
|
|
33
33
|
|
|
34
|
-
__commit_id__ = commit_id = '
|
|
34
|
+
__commit_id__ = commit_id = 'gce5426d4a'
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
|
|
3
|
+
import xarray as xr
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@xr.register_dataset_accessor("epoch")
|
|
7
|
+
class EpochAccessor:
|
|
8
|
+
def __init__(self, xarray_obj: xr.Dataset):
|
|
9
|
+
# The xarray object is the Dataset, which we store as self._ds
|
|
10
|
+
self._ds = xarray_obj
|
|
11
|
+
|
|
12
|
+
def rescale_coords(
|
|
13
|
+
self,
|
|
14
|
+
multiplier: float,
|
|
15
|
+
unit_label: str,
|
|
16
|
+
coord_names: Union[str, list[str]],
|
|
17
|
+
) -> xr.Dataset:
|
|
18
|
+
"""
|
|
19
|
+
Rescales specified X and Y coordinates in the Dataset by a given multiplier
|
|
20
|
+
and updates the unit label attribute.
|
|
21
|
+
|
|
22
|
+
Parameters
|
|
23
|
+
----------
|
|
24
|
+
multiplier : float
|
|
25
|
+
The factor by which to multiply the coordinate values (e.g., 1e6 for meters to microns).
|
|
26
|
+
unit_label : str
|
|
27
|
+
The new unit label for the coordinates (e.g., "µm").
|
|
28
|
+
coord_names : str or list of str
|
|
29
|
+
The name(s) of the coordinate variable(s) to rescale.
|
|
30
|
+
If a string, only that coordinate is rescaled.
|
|
31
|
+
If a list, all listed coordinates are rescaled.
|
|
32
|
+
|
|
33
|
+
Returns
|
|
34
|
+
-------
|
|
35
|
+
xr.Dataset
|
|
36
|
+
A new Dataset with the updated and rescaled coordinates.
|
|
37
|
+
|
|
38
|
+
Examples
|
|
39
|
+
--------
|
|
40
|
+
# Convert X, Y, and Z from meters to microns
|
|
41
|
+
>>> ds_in_microns = ds.epoch.rescale_coords(1e6, "µm", coord_names=["X_Grid", "Y_Grid", "Z_Grid"])
|
|
42
|
+
|
|
43
|
+
# Convert only X to millimeters
|
|
44
|
+
>>> ds_in_mm = ds.epoch.rescale_coords(1000, "mm", coord_names="X_Grid")
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
ds = self._ds
|
|
48
|
+
new_coords = {}
|
|
49
|
+
|
|
50
|
+
if isinstance(coord_names, str):
|
|
51
|
+
# Convert single string to a list
|
|
52
|
+
coords_to_process = [coord_names]
|
|
53
|
+
elif isinstance(coord_names, list):
|
|
54
|
+
# Use the provided list
|
|
55
|
+
coords_to_process = coord_names
|
|
56
|
+
else:
|
|
57
|
+
coords_to_process = list(coord_names)
|
|
58
|
+
|
|
59
|
+
for coord_name in coords_to_process:
|
|
60
|
+
if coord_name not in ds.coords:
|
|
61
|
+
raise ValueError(
|
|
62
|
+
f"Coordinate '{coord_name}' not found in the Dataset. Cannot rescale."
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
coord_original = ds[coord_name]
|
|
66
|
+
|
|
67
|
+
coord_rescaled = coord_original * multiplier
|
|
68
|
+
coord_rescaled.attrs = coord_original.attrs.copy()
|
|
69
|
+
coord_rescaled.attrs["units"] = unit_label
|
|
70
|
+
|
|
71
|
+
new_coords[coord_name] = coord_rescaled
|
|
72
|
+
|
|
73
|
+
return ds.assign_coords(new_coords)
|
|
Binary file
|
|
Binary file
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
begin:control
|
|
2
|
+
nx = 64
|
|
3
|
+
ny = 64
|
|
4
|
+
nz = 64
|
|
5
|
+
|
|
6
|
+
# Final time of simulation
|
|
7
|
+
t_end = 5 * femto
|
|
8
|
+
|
|
9
|
+
# Size of domain
|
|
10
|
+
x_min = 0
|
|
11
|
+
x_max = 5.0e5
|
|
12
|
+
|
|
13
|
+
y_min = 0
|
|
14
|
+
y_max = 5.0e5
|
|
15
|
+
|
|
16
|
+
z_min = 0
|
|
17
|
+
z_max = 5.0e5
|
|
18
|
+
|
|
19
|
+
stdout_frequency = 1
|
|
20
|
+
end:control
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
begin:boundaries
|
|
24
|
+
bc_x_min = periodic
|
|
25
|
+
bc_x_max = periodic
|
|
26
|
+
bc_y_min = periodic
|
|
27
|
+
bc_y_max = periodic
|
|
28
|
+
bc_z_min = periodic
|
|
29
|
+
bc_z_max = periodic
|
|
30
|
+
end:boundaries
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
begin:species
|
|
34
|
+
name = electron
|
|
35
|
+
charge = -1
|
|
36
|
+
mass = 1.0
|
|
37
|
+
temperature_x = 273
|
|
38
|
+
number_density = 10
|
|
39
|
+
nparticles = nx * ny * nz * 2
|
|
40
|
+
end:species
|
|
41
|
+
|
|
42
|
+
begin:output_global
|
|
43
|
+
force_last_to_be_restartable = F
|
|
44
|
+
end:output_global
|
|
45
|
+
|
|
46
|
+
begin:output
|
|
47
|
+
name = normal
|
|
48
|
+
|
|
49
|
+
dt_snapshot = 1 * femto
|
|
50
|
+
|
|
51
|
+
grid = always
|
|
52
|
+
|
|
53
|
+
end:output
|
|
54
|
+
|
|
@@ -0,0 +1,146 @@
|
|
|
1
|
+
import pathlib
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pytest
|
|
5
|
+
import xarray as xr
|
|
6
|
+
|
|
7
|
+
from sdf_xarray import open_mfdataset
|
|
8
|
+
|
|
9
|
+
EXAMPLE_FILES_DIR = pathlib.Path(__file__).parent / "example_files_3D"
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def test_rescale_coords_X():
|
|
13
|
+
multiplier = 1e3
|
|
14
|
+
unit_label = "mm"
|
|
15
|
+
|
|
16
|
+
with xr.open_dataset(EXAMPLE_FILES_DIR / "0000.sdf") as ds:
|
|
17
|
+
ds_rescaled = ds.epoch.rescale_coords(
|
|
18
|
+
multiplier=multiplier,
|
|
19
|
+
unit_label=unit_label,
|
|
20
|
+
coord_names="X_Grid_mid",
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
expected_x = ds["X_Grid_mid"].values * multiplier
|
|
24
|
+
assert np.allclose(ds_rescaled["X_Grid_mid"].values, expected_x)
|
|
25
|
+
assert ds_rescaled["X_Grid_mid"].attrs["units"] == unit_label
|
|
26
|
+
assert ds_rescaled["X_Grid_mid"].attrs["long_name"] == "X"
|
|
27
|
+
assert ds_rescaled["X_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
28
|
+
|
|
29
|
+
assert np.allclose(ds_rescaled["Y_Grid_mid"].values, ds["Y_Grid_mid"].values)
|
|
30
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["units"] == "m"
|
|
31
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["long_name"] == "Y"
|
|
32
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
33
|
+
|
|
34
|
+
assert np.allclose(ds_rescaled["Z_Grid_mid"].values, ds["Z_Grid_mid"].values)
|
|
35
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["units"] == "m"
|
|
36
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["long_name"] == "Z"
|
|
37
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def test_rescale_coords_X_Y():
|
|
41
|
+
multiplier = 1e2
|
|
42
|
+
unit_label = "cm"
|
|
43
|
+
|
|
44
|
+
with xr.open_dataset(EXAMPLE_FILES_DIR / "0000.sdf") as ds:
|
|
45
|
+
ds_rescaled = ds.epoch.rescale_coords(
|
|
46
|
+
multiplier=multiplier,
|
|
47
|
+
unit_label=unit_label,
|
|
48
|
+
coord_names=["X_Grid_mid", "Y_Grid_mid"],
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
expected_x = ds["X_Grid_mid"].values * multiplier
|
|
52
|
+
assert np.allclose(ds_rescaled["X_Grid_mid"].values, expected_x)
|
|
53
|
+
assert ds_rescaled["X_Grid_mid"].attrs["units"] == unit_label
|
|
54
|
+
assert ds_rescaled["X_Grid_mid"].attrs["long_name"] == "X"
|
|
55
|
+
assert ds_rescaled["X_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
56
|
+
|
|
57
|
+
expected_y = ds["Y_Grid_mid"].values * multiplier
|
|
58
|
+
assert np.allclose(ds_rescaled["Y_Grid_mid"].values, expected_y)
|
|
59
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["units"] == unit_label
|
|
60
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["long_name"] == "Y"
|
|
61
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
62
|
+
|
|
63
|
+
assert np.allclose(ds_rescaled["Z_Grid_mid"].values, ds["Z_Grid_mid"].values)
|
|
64
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["units"] == "m"
|
|
65
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["long_name"] == "Z"
|
|
66
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def test_rescale_coords_X_Y_tuple():
|
|
70
|
+
multiplier = 1e2
|
|
71
|
+
unit_label = "cm"
|
|
72
|
+
|
|
73
|
+
with xr.open_dataset(EXAMPLE_FILES_DIR / "0000.sdf") as ds:
|
|
74
|
+
ds_rescaled = ds.epoch.rescale_coords(
|
|
75
|
+
multiplier=multiplier,
|
|
76
|
+
unit_label=unit_label,
|
|
77
|
+
coord_names=("X_Grid_mid", "Y_Grid_mid"),
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
expected_x = ds["X_Grid_mid"].values * multiplier
|
|
81
|
+
assert np.allclose(ds_rescaled["X_Grid_mid"].values, expected_x)
|
|
82
|
+
assert ds_rescaled["X_Grid_mid"].attrs["units"] == unit_label
|
|
83
|
+
assert ds_rescaled["X_Grid_mid"].attrs["long_name"] == "X"
|
|
84
|
+
assert ds_rescaled["X_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
85
|
+
|
|
86
|
+
expected_y = ds["Y_Grid_mid"].values * multiplier
|
|
87
|
+
assert np.allclose(ds_rescaled["Y_Grid_mid"].values, expected_y)
|
|
88
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["units"] == unit_label
|
|
89
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["long_name"] == "Y"
|
|
90
|
+
assert ds_rescaled["Y_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
91
|
+
|
|
92
|
+
assert np.allclose(ds_rescaled["Z_Grid_mid"].values, ds["Z_Grid_mid"].values)
|
|
93
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["units"] == "m"
|
|
94
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["long_name"] == "Z"
|
|
95
|
+
assert ds_rescaled["Z_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def test_rescale_coords_attributes_copied():
|
|
99
|
+
multiplier = 1e6
|
|
100
|
+
unit_label = "µm"
|
|
101
|
+
|
|
102
|
+
with xr.open_dataset(EXAMPLE_FILES_DIR / "0000.sdf") as ds:
|
|
103
|
+
ds_rescaled = ds.epoch.rescale_coords(
|
|
104
|
+
multiplier=multiplier,
|
|
105
|
+
unit_label=unit_label,
|
|
106
|
+
coord_names=["X_Grid_mid"],
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
assert ds_rescaled["X_Grid_mid"].attrs["units"] == unit_label
|
|
110
|
+
assert ds_rescaled["X_Grid_mid"].attrs["long_name"] == "X"
|
|
111
|
+
assert ds_rescaled["X_Grid_mid"].attrs["full_name"] == "Grid/Grid_mid"
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def test_rescale_coords_non_existent_coord():
|
|
115
|
+
with xr.open_dataset(EXAMPLE_FILES_DIR / "0000.sdf") as ds:
|
|
116
|
+
with pytest.raises(ValueError, match="Coordinate 'Time' not found"):
|
|
117
|
+
ds.epoch.rescale_coords(
|
|
118
|
+
multiplier=1.0,
|
|
119
|
+
unit_label="s",
|
|
120
|
+
coord_names="Time",
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
with pytest.raises(ValueError, match="Coordinate 'Bad_Coord' not found"):
|
|
124
|
+
ds.epoch.rescale_coords(
|
|
125
|
+
multiplier=1e6,
|
|
126
|
+
unit_label="µm",
|
|
127
|
+
coord_names=["X_Grid_mid", "Bad_Coord"],
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def test_rescale_coords_time():
|
|
132
|
+
multiplier = 1e-15
|
|
133
|
+
unit_label = "fs"
|
|
134
|
+
|
|
135
|
+
with open_mfdataset(EXAMPLE_FILES_DIR.glob("*.sdf")) as ds:
|
|
136
|
+
ds_rescaled = ds.epoch.rescale_coords(
|
|
137
|
+
multiplier=multiplier,
|
|
138
|
+
unit_label=unit_label,
|
|
139
|
+
coord_names="time",
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
expected_time = ds["time"].values * multiplier
|
|
143
|
+
assert np.allclose(ds_rescaled["time"].values, expected_time)
|
|
144
|
+
assert ds_rescaled["time"].attrs["units"] == unit_label
|
|
145
|
+
assert ds_rescaled["time"].attrs["long_name"] == "Time"
|
|
146
|
+
assert ds_rescaled["time"].attrs["full_name"] == "time"
|