scribble-annotation-generator 0.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,5 @@
1
+ __pycache__/
2
+ local/
3
+ .vscode/
4
+ lightning_logs/
5
+ old/
@@ -0,0 +1,108 @@
1
+ Metadata-Version: 2.4
2
+ Name: scribble-annotation-generator
3
+ Version: 0.0.1
4
+ Summary: Programmatically generate semi-realistic synthetic scribble annotations based on statistics from existing scribble datasets
5
+ Project-URL: Homepage, https://github.com/alexsenden/scribble-annotation-generator
6
+ Project-URL: Repository, https://github.com/alexsenden/scribble-annotation-generator
7
+ Project-URL: Issues, https://github.com/alexsenden/scribble-annotation-generator/issues
8
+ Author: Alex Senden
9
+ License: MIT
10
+ Keywords: annotation,computer-vision,scribble,segmentation,synthetic-data
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Classifier: Topic :: Scientific/Engineering :: Image Processing
23
+ Requires-Python: >=3.8
24
+ Requires-Dist: numpy
25
+ Requires-Dist: opencv-python
26
+ Requires-Dist: scikit-image
27
+ Requires-Dist: scipy
28
+ Description-Content-Type: text/markdown
29
+
30
+ # Scribble Annotation Generator
31
+
32
+ Programmatically generate semi-realistic scribble annotations for segmentation-style tasks. The project exposes a single CLI entrypoint for two workflows: synthetic crop-field generation and training/inference of the neural scribble generator.
33
+
34
+ ## Installation
35
+
36
+ ```bash
37
+ pip install -e .
38
+ # or
39
+ pip install scribble-annotation-generator
40
+ ```
41
+
42
+ After installation, the CLI command `scribble-annotation-generator` becomes available.
43
+
44
+ ## Colour Map Specification
45
+
46
+ Many commands require a colour map that links RGB tuples to class IDs. Provide it in either form:
47
+
48
+ - Inline string: `R,G,B=class;R,G,B=class` (also accepts `R,G,B:class`)
49
+ - Example: `0,0,0=0;0,128,255=1;124,255,121=2`
50
+ - File path: a text file with one entry per line. Each line is `R,G,B,class`. If the class column is omitted, class IDs are assigned by line order starting at 0.
51
+
52
+ ## CLI
53
+
54
+ ### 1) Crop-field synthesis
55
+
56
+ Generate synthetic crop-field scribble images using a procedural model.
57
+
58
+ ```bash
59
+ scribble-annotation-generator crop-field \
60
+ --colour-map "0,0,0=0;0,128,255=1;124,255,121=2" \
61
+ --output-dir ./path/to/output \
62
+ --num-samples 50 \
63
+ --min-rows 4 \
64
+ --max-rows 6
65
+ ```
66
+
67
+ Key flags:
68
+
69
+ - `--colour-map` (required): inline or file as described above
70
+ - `--output-dir`: where PNGs are written (default `./local/crop_field`)
71
+ - `--num-samples`: number of images to create (default `200`)
72
+ - `--min-rows`, `--max-rows`: range for rows per sample
73
+
74
+ ### 2) Train and run neural generator
75
+
76
+ Train the transformer-based object generator on a dataset of scribble annotations, then render model predictions on the validation set.
77
+
78
+ ```bash
79
+ scribble-annotation-generator train-nn \
80
+ --train-dir ./local/soybean1/train \
81
+ --val-dir ./local/soybean1/val \
82
+ --colour-map ./colour_map.csv \
83
+ --checkpoint-dir ./local/nn-checkpoints \
84
+ --inference-dir ./local/nn-inference \
85
+ --batch-size 8 \
86
+ --num-workers 4 \
87
+ --max-epochs 50
88
+ ```
89
+
90
+ Key flags:
91
+
92
+ - `--train-dir`, `--val-dir` (required): directories containing training and validation data
93
+ - `--colour-map` (required): inline or file form
94
+ - `--checkpoint-dir`: where PyTorch Lightning checkpoints are stored (default `./local/nn-checkpoints`)
95
+ - `--inference-dir`: where rendered scribbles from validation samples are saved (default `./local/nn-inference`)
96
+ - `--batch-size`, `--num-workers`, `--max-epochs`: training configuration
97
+ - `--num-classes`: override number of classes; by default derived from the colour map
98
+
99
+ ## Python API
100
+
101
+ Instead of calling the CLI, you can call the main functions directly:
102
+
103
+ - `scribble_annotation_generator.crop_field.generate_crop_field_dataset(output_dir, colour_map, num_samples=..., min_rows=..., max_rows=...)`
104
+ - `scribble_annotation_generator.nn.train_and_infer(train_dir, val_dir, colour_map, checkpoint_dir=..., inference_dir=..., batch_size=..., num_workers=..., max_epochs=..., num_classes=None)`
105
+
106
+ ## License
107
+
108
+ MIT
@@ -0,0 +1,79 @@
1
+ # Scribble Annotation Generator
2
+
3
+ Programmatically generate semi-realistic scribble annotations for segmentation-style tasks. The project exposes a single CLI entrypoint for two workflows: synthetic crop-field generation and training/inference of the neural scribble generator.
4
+
5
+ ## Installation
6
+
7
+ ```bash
8
+ pip install -e .
9
+ # or
10
+ pip install scribble-annotation-generator
11
+ ```
12
+
13
+ After installation, the CLI command `scribble-annotation-generator` becomes available.
14
+
15
+ ## Colour Map Specification
16
+
17
+ Many commands require a colour map that links RGB tuples to class IDs. Provide it in either form:
18
+
19
+ - Inline string: `R,G,B=class;R,G,B=class` (also accepts `R,G,B:class`)
20
+ - Example: `0,0,0=0;0,128,255=1;124,255,121=2`
21
+ - File path: a text file with one entry per line. Each line is `R,G,B,class`. If the class column is omitted, class IDs are assigned by line order starting at 0.
22
+
23
+ ## CLI
24
+
25
+ ### 1) Crop-field synthesis
26
+
27
+ Generate synthetic crop-field scribble images using a procedural model.
28
+
29
+ ```bash
30
+ scribble-annotation-generator crop-field \
31
+ --colour-map "0,0,0=0;0,128,255=1;124,255,121=2" \
32
+ --output-dir ./path/to/output \
33
+ --num-samples 50 \
34
+ --min-rows 4 \
35
+ --max-rows 6
36
+ ```
37
+
38
+ Key flags:
39
+
40
+ - `--colour-map` (required): inline or file as described above
41
+ - `--output-dir`: where PNGs are written (default `./local/crop_field`)
42
+ - `--num-samples`: number of images to create (default `200`)
43
+ - `--min-rows`, `--max-rows`: range for rows per sample
44
+
45
+ ### 2) Train and run neural generator
46
+
47
+ Train the transformer-based object generator on a dataset of scribble annotations, then render model predictions on the validation set.
48
+
49
+ ```bash
50
+ scribble-annotation-generator train-nn \
51
+ --train-dir ./local/soybean1/train \
52
+ --val-dir ./local/soybean1/val \
53
+ --colour-map ./colour_map.csv \
54
+ --checkpoint-dir ./local/nn-checkpoints \
55
+ --inference-dir ./local/nn-inference \
56
+ --batch-size 8 \
57
+ --num-workers 4 \
58
+ --max-epochs 50
59
+ ```
60
+
61
+ Key flags:
62
+
63
+ - `--train-dir`, `--val-dir` (required): directories containing training and validation data
64
+ - `--colour-map` (required): inline or file form
65
+ - `--checkpoint-dir`: where PyTorch Lightning checkpoints are stored (default `./local/nn-checkpoints`)
66
+ - `--inference-dir`: where rendered scribbles from validation samples are saved (default `./local/nn-inference`)
67
+ - `--batch-size`, `--num-workers`, `--max-epochs`: training configuration
68
+ - `--num-classes`: override number of classes; by default derived from the colour map
69
+
70
+ ## Python API
71
+
72
+ Instead of calling the CLI, you can call the main functions directly:
73
+
74
+ - `scribble_annotation_generator.crop_field.generate_crop_field_dataset(output_dir, colour_map, num_samples=..., min_rows=..., max_rows=...)`
75
+ - `scribble_annotation_generator.nn.train_and_infer(train_dir, val_dir, colour_map, checkpoint_dir=..., inference_dir=..., batch_size=..., num_workers=..., max_epochs=..., num_classes=None)`
76
+
77
+ ## License
78
+
79
+ MIT
@@ -0,0 +1,54 @@
1
+ [build-system]
2
+ requires = ["hatchling", "hatch-vcs"]
3
+ build-backend = "hatchling.build"
4
+
5
+ [project]
6
+ name = "scribble-annotation-generator"
7
+ description = "Programmatically generate semi-realistic synthetic scribble annotations based on statistics from existing scribble datasets"
8
+ readme = "README.md"
9
+ requires-python = ">=3.8"
10
+ license = { text = "MIT" }
11
+ authors = [{ name = "Alex Senden" }]
12
+ keywords = [
13
+ "scribble",
14
+ "annotation",
15
+ "segmentation",
16
+ "computer-vision",
17
+ "synthetic-data",
18
+ ]
19
+ classifiers = [
20
+ "Development Status :: 3 - Alpha",
21
+ "Intended Audience :: Science/Research",
22
+ "Intended Audience :: Developers",
23
+ "License :: OSI Approved :: MIT License",
24
+ "Programming Language :: Python :: 3",
25
+ "Programming Language :: Python :: 3.8",
26
+ "Programming Language :: Python :: 3.9",
27
+ "Programming Language :: Python :: 3.10",
28
+ "Programming Language :: Python :: 3.11",
29
+ "Programming Language :: Python :: 3.12",
30
+ "Topic :: Scientific/Engineering :: Image Processing",
31
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
32
+ ]
33
+
34
+ dependencies = ["numpy", "scipy", "scikit-image", "opencv-python"]
35
+
36
+ # Version is automatically provided by hatch-vcs
37
+ dynamic = ["version"]
38
+
39
+ [project.scripts]
40
+ scribble-annotation-generator = "scribble_annotation_generator.cli:main"
41
+
42
+ [project.urls]
43
+ Homepage = "https://github.com/alexsenden/scribble-annotation-generator"
44
+ Repository = "https://github.com/alexsenden/scribble-annotation-generator"
45
+ Issues = "https://github.com/alexsenden/scribble-annotation-generator/issues"
46
+
47
+ [tool.hatch.version]
48
+ source = "vcs"
49
+
50
+ [tool.hatch.build.targets.sdist]
51
+ include = ["scribble_annotation_generator/**", "README.md"]
52
+
53
+ [tool.hatch.build.targets.wheel]
54
+ include = ["scribble_annotation_generator/**"]
@@ -0,0 +1,195 @@
1
+ import argparse
2
+ import os
3
+ from typing import Dict, Tuple
4
+
5
+ from scribble_annotation_generator.crop_field import (
6
+ NUM_SAMPLES_TO_GENERATE,
7
+ generate_crop_field_dataset,
8
+ )
9
+ from scribble_annotation_generator.nn import train_and_infer
10
+
11
+
12
+ def parse_colour_map(value: str) -> Dict[Tuple[int, int, int], int]:
13
+ """Parse a colour map from an inline string or a file path."""
14
+
15
+ def _validate_rgb(rgb: Tuple[int, int, int]) -> Tuple[int, int, int]:
16
+ r, g, b = rgb
17
+ for channel in (r, g, b):
18
+ if channel < 0 or channel > 255:
19
+ raise ValueError("RGB values must be between 0 and 255")
20
+ return rgb
21
+
22
+ mapping: Dict[Tuple[int, int, int], int] = {}
23
+
24
+ if os.path.isfile(value):
25
+ with open(value, "r", encoding="utf-8") as handle:
26
+ for idx, line in enumerate(handle):
27
+ stripped = line.strip()
28
+ if not stripped:
29
+ continue
30
+ parts = [part.strip() for part in stripped.split(",") if part.strip()]
31
+ if len(parts) == 4:
32
+ r, g, b, cls = parts
33
+ elif len(parts) == 3:
34
+ r, g, b = parts
35
+ cls = idx
36
+ else:
37
+ raise ValueError(
38
+ "Each line in the colour map file must have 3 (RGB) or 4 (RGB,class) comma-separated values"
39
+ )
40
+ rgb = _validate_rgb((int(r), int(g), int(b)))
41
+ mapping[rgb] = int(cls)
42
+ else:
43
+ entries = [entry.strip() for entry in value.split(";") if entry.strip()]
44
+ for entry in entries:
45
+ if "=" in entry:
46
+ colour_part, class_part = entry.split("=", 1)
47
+ elif ":" in entry:
48
+ colour_part, class_part = entry.split(":", 1)
49
+ else:
50
+ raise ValueError(
51
+ "Inline colour map entries must separate colour and class with '=' or ':'"
52
+ )
53
+ rgb_parts = [part.strip() for part in colour_part.split(",") if part.strip()]
54
+ if len(rgb_parts) != 3:
55
+ raise ValueError("Colours must be provided as R,G,B")
56
+ rgb = _validate_rgb((int(rgb_parts[0]), int(rgb_parts[1]), int(rgb_parts[2])))
57
+ mapping[rgb] = int(class_part.strip())
58
+
59
+ if not mapping:
60
+ raise ValueError("No colours were parsed for the colour map")
61
+
62
+ return mapping
63
+
64
+
65
+ def build_parser() -> argparse.ArgumentParser:
66
+ parser = argparse.ArgumentParser(
67
+ description="Scribble Annotation Generator CLI",
68
+ )
69
+ subparsers = parser.add_subparsers(dest="command", required=True)
70
+
71
+ crop_parser = subparsers.add_parser(
72
+ "crop-field", help="Generate synthetic crop field scribble images."
73
+ )
74
+ crop_parser.add_argument(
75
+ "--output-dir",
76
+ default="./local/crop_field",
77
+ help="Directory to write generated crop field images.",
78
+ )
79
+ crop_parser.add_argument(
80
+ "--num-samples",
81
+ type=int,
82
+ default=NUM_SAMPLES_TO_GENERATE,
83
+ help="Number of images to generate.",
84
+ )
85
+ crop_parser.add_argument(
86
+ "--min-rows",
87
+ type=int,
88
+ default=4,
89
+ help="Minimum number of crop rows per sample.",
90
+ )
91
+ crop_parser.add_argument(
92
+ "--max-rows",
93
+ type=int,
94
+ default=6,
95
+ help="Maximum number of crop rows per sample.",
96
+ )
97
+ crop_parser.add_argument(
98
+ "--colour-map",
99
+ required=True,
100
+ help=(
101
+ "Colour map specified inline as 'R,G,B=class;...' or a path to a file "
102
+ "with one 'R,G,B,class' entry per line."
103
+ ),
104
+ )
105
+
106
+ train_parser = subparsers.add_parser(
107
+ "train-nn", help="Train the scribble object generator and run inference."
108
+ )
109
+ train_parser.add_argument(
110
+ "--train-dir",
111
+ required=True,
112
+ help="Path to the training dataset directory.",
113
+ )
114
+ train_parser.add_argument(
115
+ "--val-dir",
116
+ required=True,
117
+ help="Path to the validation dataset directory.",
118
+ )
119
+ train_parser.add_argument(
120
+ "--checkpoint-dir",
121
+ default="./local/nn-checkpoints",
122
+ help="Directory to save model checkpoints.",
123
+ )
124
+ train_parser.add_argument(
125
+ "--inference-dir",
126
+ default="./local/nn-inference",
127
+ help="Directory to save inference visualisations.",
128
+ )
129
+ train_parser.add_argument(
130
+ "--batch-size",
131
+ type=int,
132
+ default=8,
133
+ help="Batch size for training.",
134
+ )
135
+ train_parser.add_argument(
136
+ "--num-workers",
137
+ type=int,
138
+ default=4,
139
+ help="Number of worker processes for data loading.",
140
+ )
141
+ train_parser.add_argument(
142
+ "--max-epochs",
143
+ type=int,
144
+ default=50,
145
+ help="Maximum number of training epochs.",
146
+ )
147
+ train_parser.add_argument(
148
+ "--num-classes",
149
+ type=int,
150
+ default=None,
151
+ help="Override the number of classes; defaults to the number of unique class IDs in the colour map.",
152
+ )
153
+ train_parser.add_argument(
154
+ "--colour-map",
155
+ required=True,
156
+ help=(
157
+ "Colour map specified inline as 'R,G,B=class;...' or a path to a file "
158
+ "with one 'R,G,B,class' entry per line."
159
+ ),
160
+ )
161
+
162
+ return parser
163
+
164
+
165
+ def main(argv=None):
166
+ parser = build_parser()
167
+ args = parser.parse_args(argv)
168
+ colour_map = parse_colour_map(args.colour_map)
169
+
170
+ if args.command == "crop-field":
171
+ generate_crop_field_dataset(
172
+ output_dir=args.output_dir,
173
+ colour_map=colour_map,
174
+ num_samples=args.num_samples,
175
+ min_rows=args.min_rows,
176
+ max_rows=args.max_rows,
177
+ )
178
+ elif args.command == "train-nn":
179
+ train_and_infer(
180
+ train_dir=args.train_dir,
181
+ val_dir=args.val_dir,
182
+ colour_map=colour_map,
183
+ checkpoint_dir=args.checkpoint_dir,
184
+ inference_dir=args.inference_dir,
185
+ batch_size=args.batch_size,
186
+ num_workers=args.num_workers,
187
+ max_epochs=args.max_epochs,
188
+ num_classes=args.num_classes,
189
+ )
190
+ else:
191
+ parser.error("A subcommand is required.")
192
+
193
+
194
+ if __name__ == "__main__":
195
+ main()