scikit-survival 0.25.0__tar.gz → 0.26.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {scikit_survival-0.25.0/scikit_survival.egg-info → scikit_survival-0.26.0}/PKG-INFO +7 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/README.rst +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/conf.py +2 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/install.rst +2 -2
- scikit_survival-0.26.0/doc/release_notes/v0.26.rst +44 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes.rst +1 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/coxnet.ipynb +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/evaluating-survival-models.ipynb +6 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/random-survival-forest.ipynb +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/pyproject.toml +16 -16
- {scikit_survival-0.25.0 → scikit_survival-0.26.0/scikit_survival.egg-info}/PKG-INFO +7 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/scikit_survival.egg-info/SOURCES.txt +2 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/scikit_survival.egg-info/requires.txt +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/setup.py +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/column.py +5 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/compare.py +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/base.py +7 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/io/arffread.py +3 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/io/arffwrite.py +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/kernels/_clinical_kernel.pyx +10 -10
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/kernels/clinical.py +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/CholmodSupport +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Core +4 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SparseLU +0 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ArithmeticSequence.h +28 -35
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Array.h +9 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Block.h +23 -8
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/BooleanRedux.h +28 -26
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CwiseNullaryOp.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/DenseBase.h +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Diagonal.h +10 -9
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Dot.h +3 -8
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/GenericPacketMath.h +12 -12
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/IndexedView.h +12 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/MathFunctions.h +168 -13
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Matrix.h +16 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/MatrixBase.h +6 -12
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/NumTraits.h +38 -22
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/PartialReduxEvaluator.h +7 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Ref.h +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Reshaped.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/SolverBase.h +6 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Stride.h +5 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Transpose.h +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/TriangularMatrix.h +4 -11
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX/Complex.h +6 -10
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +19 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX512/Complex.h +11 -49
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +2 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +31 -64
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +21 -23
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +35 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +818 -979
- scikit_survival-0.26.0/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +159 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +172 -174
- scikit_survival-0.26.0/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/MatrixVectorProduct.h +2400 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +74 -42
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/CUDA/Complex.h +12 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/BFloat16.h +2 -14
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +58 -45
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +6 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/Half.h +13 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +92 -131
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +1 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/MSA/Complex.h +4 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/NEON/Complex.h +11 -35
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +182 -116
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +172 -167
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SSE/Complex.h +5 -18
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +4 -4
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/ZVector/Complex.h +24 -22
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +14 -14
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +8 -8
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +6 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +20 -15
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +19 -14
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +21 -21
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +18 -18
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +21 -21
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +32 -32
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/ConfigureVectorization.h +16 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/Constants.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +63 -31
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/IndexedViewHelper.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/IntegralConstant.h +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/Macros.h +63 -16
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/Memory.h +80 -41
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/Meta.h +24 -24
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +2 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +16 -17
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +26 -27
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +1 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Transform.h +4 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Umeyama.h +4 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Householder/Householder.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Householder/HouseholderSequence.h +10 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +2 -4
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/LU/arch/InverseSize4.h +18 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +5 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SVD/BDCSVD.h +19 -8
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SVD/JacobiSVD.h +1 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +6 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseBlock.h +1 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseMap.h +1 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +3 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseProduct.h +1 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +12 -12
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseVector.h +2 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU.h +10 -8
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +3 -4
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +1 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseQR/SparseQR.h +1 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +83 -10
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +40 -8
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/nonparametric.py +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/preprocessing.py +19 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/svm/_minlip.pyx +7 -7
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/svm/_prsvm.pyx +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/svm/minlip.py +11 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/testing.py +47 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/util.py +5 -4
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/conftest.py +7 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_boosting.py +27 -26
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_clinical_kernel.py +3 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_column.py +29 -27
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_compare.py +8 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_coxnet.py +10 -6
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_coxph.py +43 -42
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_datasets.py +150 -131
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_ensemble_selection.py +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_forest.py +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_functions.py +2 -2
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_io.py +50 -34
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_metrics.py +12 -10
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_minlip.py +10 -10
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_nonparametric.py +11 -9
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_pandas_inputs.py +1 -1
- scikit_survival-0.26.0/tests/test_preprocessing.py +239 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_stacking.py +3 -3
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_survival_function.py +2 -1
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_survival_svm.py +7 -5
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_tree.py +30 -27
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_util.py +10 -9
- scikit_survival-0.25.0/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +0 -221
- scikit_survival-0.25.0/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
- scikit_survival-0.25.0/tests/test_preprocessing.py +0 -145
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/CONTRIBUTING.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/COPYING +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/MANIFEST.in +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/Makefile +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_static/custom.css +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_static/github-stats.js +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_static/images/censoring.svg +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_static/images/metrics-diagram-with-fonts.svg +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_static/images/metrics-diagram.mmd +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_static/images/metrics-diagram.svg +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/_templates/navbar-github-links.html +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/compare.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/datasets.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/ensemble.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/functions.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/index.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/io.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/kernels.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/linear_model.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/meta.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/metrics.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/nonparametric.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/preprocessing.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/svm.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/tree.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/api/util.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/cite.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/contributing.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/index.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.1.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.10.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.11.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.12.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.13.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.14.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.15.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.16.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.17.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.18.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.19.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.2.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.20.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.21.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.22.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.23.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.24.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.25.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.3.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.4.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.5.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.6.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.7.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.8.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/release_notes/v0.9.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/spelling_wordlist.txt +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/00-introduction.ipynb +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/boosting.ipynb +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/competing-risks.ipynb +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/index.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/survival-svm.ipynb +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/understanding_predictions.rst +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/scikit_survival.egg-info/dependency_links.txt +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/scikit_survival.egg-info/top_level.txt +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/setup.cfg +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/base.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/bintrees/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/bintrees/_binarytrees.pyx +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/bintrees/binarytrees.cpp +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/bintrees/binarytrees.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/GBSG2.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/README.md +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/actg320.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/bmt.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/breast_cancer_GSE7390-metastasis.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/cgvhd.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/flchain.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/veteran.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/datasets/data/whas500.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/docstrings.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/ensemble/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/ensemble/_coxph_loss.pyx +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/ensemble/boosting.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/ensemble/forest.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/ensemble/survival_loss.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/exceptions.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/functions.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/io/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/kernels/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/_coxnet.pyx +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/aft.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/coxnet.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/coxph.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/constants.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/coxnet.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/data.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/error.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/fit_params.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/fit_result.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/ordered_dict.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/parameters.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet/soft_threshold.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/coxnet_wrapper.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Cholesky +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Dense +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Eigen +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Eigenvalues +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Geometry +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Householder +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/IterativeLinearSolvers +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Jacobi +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/KLUSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/LU +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/MetisSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/OrderingMethods +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/PaStiXSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/PardisoSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/QR +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/QtAlignedMalloc +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SPQRSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SVD +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/Sparse +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SparseCholesky +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SparseCore +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SparseQR +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/StdDeque +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/StdList +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/StdVector +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/SuperLUSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/UmfPackSupport +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Cholesky/LLT.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ArrayBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ArrayWrapper.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Assign.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/AssignEvaluator.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Assign_MKL.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/BandMatrix.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CommaInitializer.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ConditionEstimator.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CoreEvaluators.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CoreIterators.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CwiseBinaryOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CwiseTernaryOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CwiseUnaryOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/CwiseUnaryView.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/DenseCoeffsBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/DenseStorage.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/DiagonalMatrix.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/DiagonalProduct.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/EigenBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ForceAlignedAccess.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Fuzzy.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/GeneralProduct.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/GlobalFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/IO.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Inverse.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Map.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/MapBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/MathFunctionsImpl.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/NestByValue.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/NoAlias.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/PermutationMatrix.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/PlainObjectBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Product.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ProductEvaluators.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Random.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Redux.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Replicate.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/ReturnByValue.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Reverse.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Select.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/SelfAdjointView.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Solve.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/SolveTriangular.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/StableNorm.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/StlIterators.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Swap.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Transpositions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/VectorBlock.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/VectorwiseOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/Visitor.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/Settings.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/GPU/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/functors/BinaryFunctors.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/functors/NullaryFunctors.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/functors/StlFunctors.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/functors/TernaryFunctors.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/functors/UnaryFunctors.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/Parallelizer.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/SelfadjointProduct.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/products/TriangularSolverVector.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/BlasUtil.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/ForwardDeclarations.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/MKL_support.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/NonMPL2.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/ReshapedHelper.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/StaticAssert.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/SymbolicIndex.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Core/util/XprHelper.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Scaling.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/Translation.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/LU/Determinant.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/LU/FullPivLU.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/LU/InverseImpl.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SVD/SVDBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/StlSupport/StdList.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/StlSupport/details.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/Image.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/Kernel.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/blas.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/lapack.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/lapacke.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/linear_model/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/meta/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/meta/base.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/meta/ensemble_selection.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/meta/stacking.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/metrics.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/svm/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/svm/naive_survival_svm.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/svm/survival_svm.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/tree/__init__.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/tree/_criterion.pyx +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/sksurv/tree/tree.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/Lagakos_AIDS_adults.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/Lagakos_AIDS_children.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/breast_cancer_glmnet_coefficients.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/breast_cancer_glmnet_coefficients_high.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cgvhd_aalen.npy +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cgvhd_delta.npy +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cgvhd_dinse.npy +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/channing.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/compnentwise-gradient-boosting-coxph-cumhazard.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/compnentwise-gradient-boosting-coxph-surv.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-1-pf.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-1-pf2.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-1-unpen.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-1.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-2-alpha.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-2-nalpha-norm.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-2-nalpha.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-2-norm.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-2-std.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example-coef-2.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-example.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/cox-simple-coef.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/gradient-boosting-coxph-cumhazard.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/gradient-boosting-coxph-surv.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/rossi.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/whas500-noties.arff +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/data/whas500_predictions.csv +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_aft.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_binarytrees.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_common.py +0 -0
- {scikit_survival-0.25.0 → scikit_survival-0.26.0}/tests/test_show_versions.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: scikit-survival
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.26.0
|
|
4
4
|
Summary: Survival analysis built on top of scikit-learn
|
|
5
5
|
Author-email: Sebastian Pölsterl <sebp@k-d-w.org>
|
|
6
6
|
License-Expression: GPL-3.0-or-later
|
|
@@ -19,21 +19,21 @@ Classifier: Programming Language :: C++
|
|
|
19
19
|
Classifier: Programming Language :: Cython
|
|
20
20
|
Classifier: Programming Language :: Python
|
|
21
21
|
Classifier: Programming Language :: Python :: 3
|
|
22
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
23
22
|
Classifier: Programming Language :: Python :: 3.11
|
|
24
23
|
Classifier: Programming Language :: Python :: 3.12
|
|
25
24
|
Classifier: Programming Language :: Python :: 3.13
|
|
25
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
26
26
|
Classifier: Topic :: Software Development
|
|
27
27
|
Classifier: Topic :: Scientific/Engineering
|
|
28
|
-
Requires-Python: >=3.
|
|
28
|
+
Requires-Python: >=3.11
|
|
29
29
|
Description-Content-Type: text/x-rst
|
|
30
30
|
License-File: COPYING
|
|
31
31
|
Requires-Dist: ecos
|
|
32
32
|
Requires-Dist: joblib
|
|
33
33
|
Requires-Dist: numexpr
|
|
34
34
|
Requires-Dist: numpy
|
|
35
|
-
Requires-Dist: osqp
|
|
36
|
-
Requires-Dist: pandas>=
|
|
35
|
+
Requires-Dist: osqp>=1.0.2
|
|
36
|
+
Requires-Dist: pandas>=2.0.0
|
|
37
37
|
Requires-Dist: scipy>=1.3.2
|
|
38
38
|
Requires-Dist: scikit-learn<1.8,>=1.6.1
|
|
39
39
|
Dynamic: license-file
|
|
@@ -72,13 +72,13 @@ this unique characteristic of such a dataset into account.
|
|
|
72
72
|
Requirements
|
|
73
73
|
============
|
|
74
74
|
|
|
75
|
-
- Python 3.
|
|
75
|
+
- Python 3.11 or later
|
|
76
76
|
- ecos
|
|
77
77
|
- joblib
|
|
78
78
|
- numexpr
|
|
79
79
|
- numpy
|
|
80
80
|
- osqp
|
|
81
|
-
- pandas
|
|
81
|
+
- pandas 2.0.0 or later
|
|
82
82
|
- scikit-learn 1.6 or 1.7
|
|
83
83
|
- scipy
|
|
84
84
|
- C/C++ compiler
|
|
@@ -32,13 +32,13 @@ this unique characteristic of such a dataset into account.
|
|
|
32
32
|
Requirements
|
|
33
33
|
============
|
|
34
34
|
|
|
35
|
-
- Python 3.
|
|
35
|
+
- Python 3.11 or later
|
|
36
36
|
- ecos
|
|
37
37
|
- joblib
|
|
38
38
|
- numexpr
|
|
39
39
|
- numpy
|
|
40
40
|
- osqp
|
|
41
|
-
- pandas
|
|
41
|
+
- pandas 2.0.0 or later
|
|
42
42
|
- scikit-learn 1.6 or 1.7
|
|
43
43
|
- scipy
|
|
44
44
|
- C/C++ compiler
|
|
@@ -1,5 +1,4 @@
|
|
|
1
1
|
#!/usr/bin/env python3
|
|
2
|
-
# -*- coding: utf-8 -*-
|
|
3
2
|
#
|
|
4
3
|
# scikit-survival documentation build configuration file
|
|
5
4
|
#
|
|
@@ -286,7 +285,7 @@ def linkcode_resolve(domain, info):
|
|
|
286
285
|
elif "dev" in release:
|
|
287
286
|
branch = "master"
|
|
288
287
|
else:
|
|
289
|
-
branch = "v{}"
|
|
288
|
+
branch = f"v{release}"
|
|
290
289
|
return "https://github.com/sebp/scikit-survival/blob/{branch}/{filename}{linespec}".format(
|
|
291
290
|
branch=branch, filename=fn, linespec=linespec
|
|
292
291
|
)
|
|
@@ -314,7 +313,7 @@ class RTDUrlPreprocessor(Preprocessor):
|
|
|
314
313
|
|
|
315
314
|
rel_url = "/".join(path)
|
|
316
315
|
filename = match.group(2)
|
|
317
|
-
replace.append((match.group(0), "({}/{}.rst)"
|
|
316
|
+
replace.append((match.group(0), f"({rel_url}/{filename}.rst)"))
|
|
318
317
|
|
|
319
318
|
for s, r in replace:
|
|
320
319
|
text = text.replace(s, r)
|
|
@@ -93,13 +93,13 @@ Dependencies
|
|
|
93
93
|
|
|
94
94
|
The current minimum dependencies to run scikit-survival are:
|
|
95
95
|
|
|
96
|
-
- Python 3.
|
|
96
|
+
- Python 3.11 or later
|
|
97
97
|
- ecos
|
|
98
98
|
- joblib
|
|
99
99
|
- numexpr
|
|
100
100
|
- numpy
|
|
101
101
|
- osqp
|
|
102
|
-
- pandas
|
|
102
|
+
- pandas 2.0.0 or later
|
|
103
103
|
- scikit-learn 1.6 or 1.7
|
|
104
104
|
- scipy
|
|
105
105
|
- C/C++ compiler
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
.. _release_notes_0_26:
|
|
2
|
+
|
|
3
|
+
What's new in 0.26
|
|
4
|
+
==================
|
|
5
|
+
|
|
6
|
+
scikit-survival 0.26.0 (2025-12-17)
|
|
7
|
+
-----------------------------------
|
|
8
|
+
|
|
9
|
+
This is a maintainance release that adds support for Python 3.14
|
|
10
|
+
and updates the minimum supported version of dependencies:
|
|
11
|
+
|
|
12
|
+
+--------------+-----------------+
|
|
13
|
+
| Package | Minimum Version |
|
|
14
|
+
+==============+=================+
|
|
15
|
+
| Python | 3.11 |
|
|
16
|
+
+--------------+-----------------+
|
|
17
|
+
| pandas | 2.0.0 |
|
|
18
|
+
+--------------+-----------------+
|
|
19
|
+
| osqp | 1.0.2 |
|
|
20
|
+
+--------------+-----------------+
|
|
21
|
+
|
|
22
|
+
Enhancements
|
|
23
|
+
^^^^^^^^^^^^
|
|
24
|
+
|
|
25
|
+
- Port from numpy's legacy :class:`numpy.random.RandomState`
|
|
26
|
+
to :class:`numpy.random.Generator` (:issue:`554`).
|
|
27
|
+
- Add object dtype support to :class:`sksurv.preprocessing.OneHotEncoder` (:issue:`556`).
|
|
28
|
+
- Add support for :external+pandas:ref:`pandas string dtype <string_migration_guide>` (:issue:`558`).
|
|
29
|
+
- Add support for osqp 1.0.0 (:issue:`562`).
|
|
30
|
+
- Upgrade Eigen to 3.4.1.
|
|
31
|
+
- Add support for :external+pandas:ref:`copy-on-write <copy_on_write>` for pandas 2.3.0 and later (:issue:`556`).
|
|
32
|
+
|
|
33
|
+
Documentation
|
|
34
|
+
^^^^^^^^^^^^^
|
|
35
|
+
|
|
36
|
+
- Corrected typo -- changed non-singular to singular --
|
|
37
|
+
in :ref:`penalized Cox models user guide </user_guide/coxnet.ipynb>` (:issue:`552`).
|
|
38
|
+
|
|
39
|
+
Backwards incompatible changes
|
|
40
|
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
41
|
+
|
|
42
|
+
- Require at least for Python 3.11.
|
|
43
|
+
- Require at least pandas 2.0.0.
|
|
44
|
+
- Require at least osqp 1.0.
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
"source": [
|
|
7
7
|
"# Penalized Cox Models\n",
|
|
8
8
|
"\n",
|
|
9
|
-
"[Cox's proportional hazard's model](https://en.wikipedia.org/wiki/Proportional_hazards_model) is often an appealing model, because its coefficients can be interpreted in terms of hazard ratio, which often provides valuable insight. However, if we want to estimate the coefficients of many features, the standard Cox model falls apart, because internally it tries to invert a matrix that becomes
|
|
9
|
+
"[Cox's proportional hazard's model](https://en.wikipedia.org/wiki/Proportional_hazards_model) is often an appealing model, because its coefficients can be interpreted in terms of hazard ratio, which often provides valuable insight. However, if we want to estimate the coefficients of many features, the standard Cox model falls apart, because internally it tries to invert a matrix that becomes singular due to correlations among features.\n",
|
|
10
10
|
"\n",
|
|
11
11
|
"## Ridge\n",
|
|
12
12
|
"\n",
|
{scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/evaluating-survival-models.ipynb
RENAMED
|
@@ -113,7 +113,7 @@
|
|
|
113
113
|
"\n",
|
|
114
114
|
"def generate_marker(n_samples, hazard_ratio, baseline_hazard, rnd):\n",
|
|
115
115
|
" # create synthetic risk score\n",
|
|
116
|
-
" X = rnd.
|
|
116
|
+
" X = rnd.standard_normal(size=(n_samples, 1))\n",
|
|
117
117
|
"\n",
|
|
118
118
|
" # create linear model\n",
|
|
119
119
|
" hazard_ratio = np.array([hazard_ratio])\n",
|
|
@@ -134,7 +134,7 @@
|
|
|
134
134
|
" X, time_event, actual_c = generate_marker(n_samples, hazard_ratio, baseline_hazard, rnd)\n",
|
|
135
135
|
"\n",
|
|
136
136
|
" def get_observed_time(x):\n",
|
|
137
|
-
" rnd_cens =
|
|
137
|
+
" [rnd_cens] = rnd.spawn(1)\n",
|
|
138
138
|
" # draw censoring times\n",
|
|
139
139
|
" time_censor = rnd_cens.uniform(high=x, size=n_samples)\n",
|
|
140
140
|
" event = time_event < time_censor\n",
|
|
@@ -175,7 +175,7 @@
|
|
|
175
175
|
" data_mean[measure] = []\n",
|
|
176
176
|
" data_std[measure] = []\n",
|
|
177
177
|
"\n",
|
|
178
|
-
" rnd = np.random.
|
|
178
|
+
" rnd = np.random.default_rng(seed=20211229)\n",
|
|
179
179
|
" # iterate over different amount of censoring\n",
|
|
180
180
|
" for cens in (0.1, 0.25, 0.4, 0.5, 0.6, 0.7):\n",
|
|
181
181
|
" data = {\n",
|
|
@@ -238,7 +238,7 @@
|
|
|
238
238
|
"outputs": [
|
|
239
239
|
{
|
|
240
240
|
"data": {
|
|
241
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFLCAYAAACNy2aDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtI0lEQVR4nO3de5wU1Zn/8c9XBPHKGDAjihHWgIrRYJx4A93xsiom3qKumotoLqyJmIhxI675RdxkE2JM1hsbdInRZI2uxiTeSIyyQDTxghiiIl6IEh1BY1TwHkSe3x9VwzRDd09DTXdNT3/fr9e8puvUqaqni2mePlWnzlFEYGZmZutvg7wDMDMzq3dOpmZmZhk5mZqZmWXkZGpmZpaRk6mZmVlGTqZmZmYZbZh3ALU0aNCgGDp0aN5hmJnxxBNPALDjjjvmuo+eoJ7Oxbx58/4WEVt1Lm+oZDp06FAefPDBvMMwM6O1tRWA2bNn57qPnqCezoWkvxQr92VeMzOzjJxMzczMMnIyNTMzy6ih7pmamfVW7777Lm1tbbzzzjt5h7LOzj//fAAWLlyY6z4K9e/fnyFDhtC3b9+K6juZmpn1Am1tbWy++eYMHToUSXmHs0422CC5SJqlJ2537KNdRPDyyy/T1tbGsGHDKjt+5qOamVnu3nnnHQYOHFh3ibQnksTAgQPXqZXvZGpm1ks4kXafdT2XTqZmZtYtNttsszWWr776aiZMmFCVYxXue/LkyfziF7+oeNsHHniA/fffnx133JGddtqJz3/+87z11luZ4vE9UzOzXmjopNu7dX+Lp3ysW/dXzMqVK9lwww1LLneHF198keOPP57rr7+effbZh4jgpptu4vXXX2eTTTZZ7/06mZqZWdXdeuutfOtb32LFihUMHDiQa6+9lubmZiZPnsxjjz3G888/z/bbb8+IESNYsmQJixcvZtCgQVxyySWcdtppPPvsswBcfPHFjB49eo19b7bZZvTp0weASy+9lGnTprHhhhsycuRIrr/++jXqTp06lXHjxrHPPvsAyeXc4447LvP7czI1M7Nu8fbbbzNq1KjVy6+88gpHHnkkAGPGjOG+++5DEtOnT+fCCy/k+9//PgALFizgZz/7GR/+8IeZPHky8+bN45577mHjjTfmk5/8JBMnTmTMmDE8++yzHHrooWs9/nL22WevHpt3ypQpPPPMM2y00UYsW7ZsrRgfffRRxo0b1+3v3cnUrA70ljFYrXfbeOONmT9//urlq6++evV46G1tbZxwwgksXbqUFStWrPHIyYEHHkj//v1XLx955JFsvPHGANx111089thjq9e99tprvP766yVj2G233fjUpz7F0UcfzdFHH91N76xr7oBkZmZVd8YZZzBhwgQeeeQRrrjiijUeO2lPnO023XTT1a9XrVrFvffey/z585k/fz7PP/88m2++ecnj3H777Zx++unMmzePPfbYg5UrV66xfpdddmHevHnd9K465JpMJR0m6QlJiyRNKrJeki5N1z8s6SNpeX9JD0j6k6QFki6offRmZlap5cuXs+222wJwzTXXVLzdIYccwuWXX756ubDl29mqVat47rnnOOCAA7jwwgtZtmwZb7zxxhp1JkyYwDXXXMP999+/uux//ud/eOGFFyqOqZjckqmkPsBUYCwwEjhJ0shO1cYCw9Of8cAP0/K/AwdGxIeBUcBhkvauRdxmZrbuJk+ezPHHH89+++3HoEGDKt7u0ksv5cEHH2S33XZj5MiRTJs2rWTd9957j09/+tPsuuuu7L777kycOJGmpqY16jQ3N3P99ddz9tlns+OOO7Lzzjtz9913s8UWW6zvWwNAEZFpB+t9YGkfYHJEHJounwsQEd8pqHMFMDsirkuXnwBaI2JpQZ1NgHuAL0bE/ZTR0tISns/U6pHvmfY+3T2H58KFC9l5552zB5aDnjo5eLFzKmleRLR0rptnB6RtgecKltuAvSqosy2wNG3ZzgM+CEwtlUgljSdp1dLc3Oz/jKwutfdK9N8vnHnmmUDyiEQ9645/08J9DBgwoGzHnJ6s/b5mlvi7Yx+dvfPOOxX/++SZTIuN1dS5mVyyTkS8B4yS1AT8UtKHIuLRtSpHXAlcCUnLtP2bnFk9ab9U5b/f3nMuuuN9FO5j4cKFZTvm9GTtAzNkib879tFZ//792X333Suqm2cHpDZgu4LlIcCSda0TEcuA2cBh3R6hmZlZBfJMpnOB4ZKGSeoHnAjc0qnOLcDJaa/evYHlEbFU0lZpixRJGwMHA4/XMHYzM7PVcrvMGxErJU0A7gD6AFdFxAJJp6XrpwEzgMOBRcBbwKnp5oOBa9L7phsAN0TEbbV+D2ZmZpDzCEgRMYMkYRaWTSt4HcDpRbZ7GKjsQrZZztwT16z38whIZmaW2eLFi/nQhz60RtnkyZO56KKL1mt/s2fP5pRTTqm4/ksvvcRZZ53FDjvswMiRIzn88MN58skn1+vY68Nj85qZ9UaTB3Tz/pZ37/66UUQwYcIEjjnmGG6/PZl6bv78+bz44ouMGDGiJjG4ZWpmZlXX2trKOeecw5577smIESO4++67geRZznPPPZcjjjiC3XffnVmzZgHQr18/BgxIvhDMmTOHUaNGMWrUKHbfffe1niWdNWsWffv25cQTT1xdNmrUKPbbb78avTu3TM3MrEZWrlzJAw88wIwZM7jgggu46667mDp1KpDMdxoRHHLIITz55JPsu+++7LvvvgBcdNFFTJ06ldGjR/PGG2+sMcMMJNOq7bLLLjV/P4XcMjUzs8ykYmPsrFn+iU98AoA99tiDxYsXA3DPPfdw1FFHAbDTTjux/fbbr3Wvc/To0Zx11llceumlLFu2bPUADT2Jk6mZ1Uxra2vdj1xkxQ0cOJBXX311jbJXXnlljUHtN9poIwD69Omzevi/SsaHnzRpEtOnT+ftt99m77335vHH1xxWYJdddmHBggVZ30ImTqZmZpbZZpttxuDBg5k5cyaQJNLf/OY3jBkzpux2+++/P7feeisATz75JM8+++xag9X/+c9/Ztddd+Wcc86hpaVlrWR64IEHsmLFCm644YbVZXPnzmXOnDnd8dYq0vPaymZmVpd+8pOfcPrpp/PVr34VgPPPP58ddtih7DZf+tKXuPvuuzniiCPYdNNNufrqq1e3YNtdfPHFzJo1iz59+jBy5EjGjh27xnpJXHbZZXznO99hhx12oH///gwdOrSmkyE4mZqZ9UY5PMoycuTI1b1xOysctGTQoEGr75n279+fKVOmAKWnT7vsssu6PHZzczMXX3xxt07Bti58mdfMzCwjJ1MzM7OMnEzNzMwycjK1HsuPUZitm0oeM7HKrOu5dDI1M+sF+vfvz8svv+yE2g0igpdffnmtkZbKcW9eM7NeYMiQIbS1tfHSSy/lHco6e+GFFwBYtWpVrvso1L9/f4YMGVJxfSdTM7NeoG/fvgwbNizvMNbLF7/4RSDbnL/dsY8sfJnXzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEytKjzji5k1EidTMzOzjHJNppIOk/SEpEWSJhVZL0mXpusflvSRtHw7SbMkLZS0QNJXah+9mZlZIrdkKqkPMBUYC4wETpI0slO1scDw9Gc88MO0fCXw1YjYGdgbOL3ItmZmZjWRZ8t0T2BRRDwdESuA64GjOtU5CvhJJO4DmiQNjoilEfEQQES8DiwEtq1l8GZmZu3yTKbbAs8VLLexdkLsso6kocDuwP3dH6KZmVnX8pwcXEXKYl3qSNoMuAk4MyJeK3oQaTzJJWKam5tzmzi20SxbtgzINlFvd+yjJ/C56OBz0cHnokNvOBd5JtM2YLuC5SHAkkrrSOpLkkivjYhflDpIRFwJXAnQ0tISflyjNpqamgAyPR7THfvoCXwuOvhcdPC56NAbzkWel3nnAsMlDZPUDzgRuKVTnVuAk9NevXsDyyNiqSQBPwIWRsQPahu2mZnZmnJrmUbESkkTgDuAPsBVEbFA0mnp+mnADOBwYBHwFnBquvlo4DPAI5Lmp2X/FhEzavgWzMzMgHwv85ImvxmdyqYVvA7g9CLb3UPx+6lmZmY15xGQzMzMMnIyNTMzy8jJtIfxAPFmZvXHydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJtBt5wAUzs8bkZGpmZpaRk6mZmVlGTqZmZmYZlUymkraSNLJI+S6StqpuWGZmZvWjXMv0MqBY0hwCXFKdcMzMzOpPuWS6a0TM6VwYEXcAu1UvJDMzs/pSLpn2Xc91ZmZmDaVcMn1K0uGdCyWNBZ6uXkhmZmb1ZcMy6yYCt0n6Z2BeWtYC7AN8vNqBmZmZ1YuSLdOIeBLYFZgDDE1/5gC7pevMzMyM8i1TIuLvwI9rFIuZmVldKptMzcwsR5MHlF+/+M2u601e3n3xWEkeAcnMzCwjt0wtP/7WbWa9RMlkKukRIEqtjwgP3GBmZkb5lmn74y+np79/mv7+FPBW1SIyMzOrMyWTaUT8BUDS6IgYXbBqkqTfA/+e9eCSDiMZ57cPMD0ipnRar3T94SQJ/JSIeChddxVJwv9rRHwoayxmufIlb7O6VkkHpE0ljWlfkLQvsGnWA0vqA0wFxgIjgZOKzFIzFhie/owHfliw7mrgsKxxmJmZZVVJB6TPAVdJGkByD3U58NluOPaewKKIeBpA0vXAUcBjBXWOAn4SEQHcJ6lJ0uCIWBoRv5M0tBviMDMzy6TLZBoR84APS9oCUER017WkbYHnCpbbgL0qqLMtsLSbYjAzM8usy2QqqRn4NrBNRIxNL8XuExE/ynhsFSnr3Hu4kjrlDyKNJ7lETHNzM7Nnz16XzdfJsmXLADIdozv20RNU9D52vKD8Pja5PNnHjhNKV6qD8+Rz0cGfkQ7+u+jQG/4uKrnMezXJkILnpctPAv8LZE2mbcB2BctDgCXrUaesiLgSuBKgpaUlWltb1znQSjU1NQGQ5RjdsY+eoKL3Mfmo8vt4K+l00/rE+aUrndTzO934XHTwZ6SD/y469Ia/i0qS6aCIuEHSuQARsVLSe91w7LnAcEnDgOeBE4FPdqpzCzAhvZ+6F7A8InyJ18zqwtBJt5dc98LTL3dZZ3H/bg/JqqSSZPqmpIGkl1cl7U3SCSmTNClPAO4geTTmqohYIOm0dP00YAbJYzGLSB6NObV9e0nXAa3AIEltwPndcOnZzPLmx4SsDlWSTM8iaSHukD5fuhVwfHccPCJmkCTMwrJpBa+DjkEjOm97UnfEYGZmllUlyXQB8I/AjiQdgp7AA+SvP3/rNjPrdSpJivdGxMqIWBARj0bEu8C91Q7MzMysXpQb6H5rkmc6N5a0Ox2PqWwBbFKD2MzMzOpCucu8hwKnkDyO8oOC8teBf6tiTGZmZnWl3ED31wDXSDo2Im6qYUxWJ9zt38wsUclwgjdJ+hiwC9C/oDzzrDFmZma9QZcdkCRNA04AziC5b3o8sH2V4zIzM6sblfTm3TciTgZejYgLgH1Yc4g/MzOzhlZJMn07/f2WpG2Ad4Fh1QvJzMysvlQyaMNtkpqA7wEPkQwrOL2aQZnVG3fGMmtslXRA+mb68iZJtwH9u3FOUzMzs7pXyXymfYCPAUPb60siIn5Qbrveyi0QMzPrrJLLvLcC7wCPAKuqG46ZmVn9qSSZDomI3aoeiZn1Cr56Y42okt68v5Z0SNUjMTMzq1OVtEzvA34paQOSx2JEMtXoFlWNzMzMrE5Ukky/TzJQwyPpZN1mZmZWoJLLvE8BjzqRmpmZFVdJy3QpMFvSr4G/txc26qMxZmZmnVWSTJ9Jf/qlP2ZmZlagkhGQLqhFIGZmZvWqZDKVdHFEnCnpVpLxeNcQEUdWNTIzM7M6Ua5l+tP090W1CMTMzKxelUymETEvfTkqIi4pXCfpK8CcagZmZmZWLyp5NGZckbJTujkOMzOzulXunulJwCeBYZJuKVi1BfBytQMzMzOrF+Xumf6B5BnTQSSjILV7HXi4mkGZmZnVk3L3TP8C/EXSwcDbEbFK0ghgJ5Lp2MzMzIzKBm34HbCfpC2BmcCDwAnAp6oZmJmZ2WqTB5Rfv/jNrutNXt598XRSSQckRcRbwCeAyyLiGGBkdxxc0mGSnpC0SNKkIusl6dJ0/cOSPlLptmZmZrVSUTKVtA9JS7R9Rt9KWrRd7bQPMBUYS5KcT5LUOUmPBYanP+OBH67DtmZmZjWhriaDkbQ/cDbw+4j4rqR/AM6MiC9nOnCSoCdHxKHp8rkAEfGdgjpXALMj4rp0+QmgFRja1bbFDBs2LM4///wsYXPf06U7Mq/46zMA9Hv/sJJ19t5gYdn9z3/hPQBGbd2ndKWhY8ruo1Z8Ljr4XHTwuejgc1GZ+fPnAzBq1KjSlRbfU34fNToXp5566ryIaOlcXsnYvL8juW/avvy0pLMyRwTbAs8VLLcBe1VQZ9sKtwVA0niSVi2DBw9m2bJlmYLe6X2l/6EWvZL8/mCZOsv4UNn9r/zboqRe0wdLV8r4HrqLz0UHn4sOPhcdfC4Sb/59Zdn1K959F4DnX/xbyTqbNvXsc1GyZSrpnogYk77+aUR8pmDdQxHxkaIbVnpg6Xjg0Ij4fLr8GWDPiDijoM7twHci4p50eSbwNeAfutq2mJaWlnjwwQezhF1Wa2srALNnz851Hz2Bz0UHn4sOPhcdGulcDJ10e9n1L/ws6fay9SenlKyzeMrHyu6jVudC0jq3TDcteN35K4G6IaY2YLuC5SHAkgrr9KtgWzMzs5oo1wEpSrwutrw+5gLDJQ2T1A84EbilU51bgJPTXr17A8sjYmmF25qZmdVEuZZpk6RjSBJuk6RPpOUCunjgp2sRsVLSBOAOoA9wVUQskHRaun4aMAM4HFgEvAWcWm7brDH1BD39co2Zma2tXDKdAxxZ8PqIgnW/W7v6uouIGSQJs7BsWsHrAE6vdFszM7M8lBtO8NRaBmLWmVvpZlYvKhm0wczMzMpwMjUzM8vIydTMzCyjdUqmkq6sViBmZmb1al1bpmuN+mBmZtbo1jWZ/rUqUZiZmdWxdUqmEXFYtQIxMzOrV5nnJTUzMyuny0Hq7/seALO7qNeTuTevmZlZRm6ZdiOP2GNm1phKtkwlXdg+6Hyn8omSvlvdsMzMzOpHucu8HweKPVd6CVC/F7bNzMy6Wdn5TCNiVZHCVXTP5OBmZma9Qrlk+pak4Z0L07K3qxeSmZlZfSnXAekbwK8lfQuYl5a1AOcCZ1Y5LjMzs7pRbj7TX0s6GvhX4Iy0+FHg2Ih4pAaxmZmZ1YWyj8ZExKPAuBrFYr2IHxMys0biQRvMzMwycjI1MzPLyMnUzMwso5L3TCVdBkSp9RHx5apEZGZmVmfKdUB6sGZRmJmZ1bFyj8ZcU8tAzMzM6lWXs8ZI2go4BxgJ9G8vj4gDqxiXmZlZ3aikA9K1wEJgGHABsBiYW8WYzMzM6kolyXRgRPwIeDci5kTEZ4G9qxyXmZlZ3ahkcvB3099LJX0MWAIMqV5IZmZm9aWSlum3JA0AvgqcDUwHJmY5qKT3SbpT0lPp7y1L1DtM0hOSFkmaVFB+vKQFklZJaskSi5mZWVZdJtOIuC0ilkfEoxFxQETsERG3ZDzuJGBmRAwHZqbLa5DUB5gKjCXp/HSSpJHp6keBTwC/yxiHmZlZZpX05v0xRQZvSO+drq+jgNb09TXAbJIew4X2BBZFxNNpHNen2z0WEQvTsgwhmNUPTxxg1rNVcs/0toLX/YFjSO6bZtEcEUsBImKppPcXqbMt8FzBchuw17oeSNJ4YDxAc3Oz/1Oymlu2bBnghAjdcy56y/n0uejQG85Fl8k0Im4qXJZ0HXBXV9tJugvYusiq8yqMrVizs+TwhqVExJXAlQAtLS3R2tq6rrswy6SpqQkA/+11z7noLefT56JDbzgXlbRMOxsOfKCrShFxcKl1kl6UNDhtlQ4G/lqkWhuwXcHyELK3iM3MzLpdlx2QJL0u6bX2H+BW1r6/ua5uoWPS8XHAzUXqzAWGSxomqR9wYrqdmZlZj1LJZd7Nq3DcKcANkj4HPAscDyBpG2B6RBweESslTQDuAPoAV0XEgrTeMcBlwFbA7ZLmR8ShVYjTzMysS5X05p0ZEQd1VbYuIuJlYK3tI2IJcHjB8gxgRpF6vwR+ub7HNzMz607l5jPtD2wCDEoHVWjvELQFsE0NYjMzW0u991y13qlcy/RfgDNJEuc8OpLpaySDKZiZmRnl5zO9BLhE0hkRcVkNYzIzM6srlYzNu0pSU/uCpC0lfal6IZmZmdWXSpLpFyJiWftCRLwKfKFqEZmZmdWZSpLpBioYBDcdgL5f9UIyMzOrL5WMgHQHyTOh00iG8zsN+E1VozIzM6sjlSTTc0gGiv8iSY/e3wL/Xc2gzMzM6kkl85muiohpEXFcRBwLLCAZfcjMzMyocKB7SaOAk4ATgGeAX1QxJjMzs7pSbgSkESSDy58EvAz8L6CIOKBGsZmZmdWFci3Tx4G7gSMiYhGApIk1icrMzKyOlLtneizwAjBL0n9LOojiE3abmZk1tJLJNCJ+GREnADsBs4GJQLOkH0o6pEbxmZmZ9XiV9OZ9MyKujYiPA0OA+cCkagdmZmZWLyoZAWm1iHglIq6IiAOrFZCZmVm9WadkamZmZmtzMjUzM8uookEbzGz9zZ49O+8QzKzK3DI1MzPLyC1TM6sZt9Ktt3LL1MzMLCMnUzMzs4ycTM3MzDLyPVMzszrle9A9h1umZmZmGTmZmpmZZeRkamZmllEuyVTS+yTdKemp9PeWJeodJukJSYskTSoo/56kxyU9LOmXkppqFryZmVknebVMJwEzI2I4MJMiU7pJ6gNMBcYCI4GTJI1MV98JfCgidgOeBM6tSdRmZmZF5JVMjwKuSV9fAxxdpM6ewKKIeDoiVgDXp9sREb+NiJVpvftI5lk1MzPLRV7JtDkilgKkv99fpM62wHMFy21pWWefBX7d7RGamZlVqGrPmUq6C9i6yKrzKt1FkbLodIzzgJXAtWXiGA+MB2hubvZzWWbWIyxbtgzws6LQPeci7/NZtWQaEQeXWifpRUmDI2KppMHAX4tUawO2K1geAiwp2Mc44OPAQRERlBARVwJXArS0tERra+s6vQ8zs2poamoCwP8ndc+5yPt85nWZ9xZgXPp6HHBzkTpzgeGShknqB5yYboekw4BzgCMj4q0axGtmZlZSXsl0CvBPkp4C/ildRtI2kmYApB2MJgB3AAuBGyJiQbr95cDmwJ2S5kuaVus3YGZm1i6XsXkj4mXgoCLlS4DDC5ZnADOK1PtgVQM0MzNbBx4ByczMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzyyiXge7NzBqdJwXvXdwyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4xySaaS3ifpTklPpb+3LFHvMElPSFokaVJB+TclPSxpvqTfStqmdtGbmZmtKa+W6SRgZkQMB2amy2uQ1AeYCowFRgInSRqZrv5eROwWEaOA24Bv1CRqMzOzIvJKpkcB16SvrwGOLlJnT2BRRDwdESuA69PtiIjXCuptCkT1QjUzMytvw5yO2xwRSwEiYqmk9xepsy3wXMFyG7BX+4Kk/wBOBpYDB1QxVjMzs7Kqlkwl3QVsXWTVeZXuokjZ6hZoRJwHnCfpXGACcH6JOMYD4wGam5uZPXt2hYc3M7NaWLZsGUCm/5+7Yx9ZVC2ZRsTBpdZJelHS4LRVOhj4a5FqbcB2BctDgCVF6v0MuJ0SyTQirgSuBGhpaYnW1tbK3oCZmdVEU1MTAFn+f+6OfWSR1z3TW4Bx6etxwM1F6swFhksaJqkfcGK6HZKGF9Q7Eni8irGamZmVldc90ynADZI+BzwLHA+QPuIyPSIOj4iVkiYAdwB9gKsiYkH79pJ2BFYBfwFOq/k7MDMzS+WSTCPiZeCgIuVLgMMLlmcAM4rUO7aqAZqZma0Dj4BkZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmlpGTqZmZWUZOpmZmZhk5mZqZmWXkZGpmZpaRk6mZmVlGTqZmZmYZOZmamZll5GRqZmaWkZOpmZlZRoqIvGOoGUkvkcx/mqdBwN9yjqGn8Lno4HPRweeig89Fh55yLraPiK06FzZUMu0JJD0YES15x9ET+Fx08Lno4HPRweeiQ08/F77Ma2ZmlpGTqZmZWUZOprV3Zd4B9CA+Fx18Ljr4XHTwuejQo8+F75mamZll5JapmZlZRk6mZmZmGTmZmpmZZeRkarmR9KW8Y7CeS9JOeceQN39G6seGeQfQKCT1jYh3O5UNioieMKJH1Uk6q3MRcK6k/gAR8YPaR5UPSZsBXwOOBYYAK4A/A9Mi4uocQ+tpfgt8IO8gasWfkcpI+nVEjM07js6cTKtM0gHAT4GNJP0RGB8Ri9PVvwU+kldsNXYBMANYQPKfBEAfYPPcIsrPtcAvgUOBfwY2Ba4Hvi5pRET8W57B1ZKkS0utAppqGEpP4M9ISlKp/xcFjKphKBXzozFVJmkucEpELJB0HPAd4DMRcZ+kP0bE7jmHWBOSPgD8gKQFdkFEvCXp6Yj4h5xDqzlJf4qIDxcsz42Ij0raAHgsIhrm8qak14GvAn8vsvr7ETGoxiHlxp+RDpLeA+bQ8aWi0N4RsXGNQ+qSW6bV1y8iFgBExM8lLQR+IWkS0DDfZCLiWeA4SUcBd0r6z7xjytGbksZExD2SjgBeAYiIVZKK/efRm80FHo2IP3ReIWly7cPJjz8ja1gI/EtEPNV5haTncoinS+6AVH3vStq6fSFNrAcB5wPDc4sqJxFxM/BPwF5AW87h5OU04AeSlgPnAF8GkLQVMDXPwHJwHDC/2IqIGFbbUHoGf0YAmEzp/HRGDeOomC/zVpmkg4GXIuJPncqbgNMj4j9yCczMzLqNk6nVRNo6Px9YBXyD5NvlJ4DHga9ExNIcw6spSf2AE4HnI2KmpE8C+5Jc2rqyc6/v3kzSAOBc4GigfY7IvwI3A1MiYlk+kdWepIeAXwDXRcSf844nb5J2AI4BtgNWAk+RnJvluQZWgi/zVpmkFkmzJP2PpO0k3SlpuaS5kkblHV8NXQ08BjwHzALeBj4O3A1Myy+sXPwY+BhwpqSfAscD9wMfBabnGVgObgBeBVojYmBEDAQOSMtuzDWy2tuSpAfzLEkPSJooaZucY8qFpC+T/L/Qn+RzsTFJUr1XUmt+kZXmlmmVSXqApEXWBFwITEw7Ih0EfCsi9skzvlop7Lks6dmI+EDBuvkRMSq34GpM0sMRsZukDYHngW0i4r2089GfImK3nEOsGUlPRMSO67quN5L0UER8JH29H3ASydWbhSQtsh49a0p3kvQIMCr9XGwCzIiI1rTH88098SkIt0yrr29E/DoirgMiIn5O8mImybeuRlH4t/aTMusawQbppd7NgU2AAWn5RkDf3KLKx18kfU1Sc3uBpGZJ55BcxWhIEXF3RHwJ2Bb4LtAQX7o7aX/aZCPSZ23THs898jPiR2Oq7x1Jh5D8hxmSjo6IX0n6R+C9nGOrpZslbRYRb0TE19sLJX0QeDLHuPLwI5J7xX2A84AbJT0N7E0yeEMjOQGYBMyR9P607EXgFpIBLRrJWp+DiHgP+E3600imA3Ml3QfsT/KFor3H+yt5BlaKL/NWmaQPk1zeXQVMBL4IjCO5vDc+In6fY3iWk/Z7YRGxJO3ZfTDwbEQ8kGtgZj2EpF2AnUmeQ34873i64mRqNVHQg3VJRNzVyD1YrTRJY4A9Sf4D/W3e8eRN0k8i4uS847CuOZnWQDr7xbbA/RHxRkH5YRHREJdvJF1LclthE2AZsBnJYwAHkfwdjssvup5D0m0R8fG846gVSQ9ExJ7p6y8Ap5OMW3wIcGtETMkzvlqSdEvnIpKezf8HEBFH1jyoHqinfkacTKss7eJ9OkkLbBTJM5U3p+tW997r7dyDtTKSBjfYM7eFvbznAodHxEuSNgXui4hd842wdtLnTB8juV8YJMn0OpIrOkTEnPyi6zl66mek0XpR5uELwB4RcTTQCvw/SV9J1zXSOKzuwVqBnvifRJVtIGlLSQNJvty/BBARb5I8qN9IWoB5JJ3SlkfEbODtiJjjRArp30iP/Yy4N2/19Wm/tBsRi9MHjn8uaXsaK5m6B2vKI92sYQBJAhFJb/etI+IFJXO+NtLng4hYBfynpBvT3y/SoP9HS5oCXBQRf5PUQjK4xypJfYGTe+KXC1/mrTJJ/wecFRHzC8o2BK4CPhURffKKrdbcgzUh6RngJpJHP14guZT3vxGxJNfAepD0Qf3miHgm71jyIuljwOhGmt+2naRH2i/xS5oFfC0i5koaAfwsIlryjXBtTqZVJmkIsDIiXiiybrQfjWk8HunGrDxJjwMfioiVku6LiL0L1q1OtD2J75lWWUS0FUuk6TonUpLeeXnHkBePdFNaI/9ddNaA52IqMEPSgcBvJF0saX9JF1Biyr68uWWao57axbvWemrvvGqRdH1EnJh3HD1do/1dlNOI5yLtX/JFYATJvePngF8BP+6Jz6U7meaoET8glpC0J8lYzXMljQQOAx6PiBk5h2aWO0l7AQsj4rX0/vkk4CPAAuDbPXEaNl/mzVEjJVJJW0v6oaSpkgZKmizpEUk3SBqcd3y1JOl84FLgh5K+A1xOMojFJEnn5RpcjUl6SNLXlcxd2dB8LtZwFfBW+vpikkfqpqRlP84pprKcTKtM0mEFrwdI+pGkhyX9rHCmjAZwNWvPZ/oxGnM+0+OA0SQDeJ8OHB0R/w4cSjLweyPxHJ4dfC46bBAR7c8Zt0TExIi4JyIuAP4hz8BKcTKtvm8XvP4+sBQ4ApgLXJFLRPlojojL0uHhmiLiuxHxbERcBmyfd3A1tjIi3ouIt4A/R8RrABHxNsmECI3k1Yg4O53f9qvAcOAhSbMkjc85tlrzuejwqKRT09d/Sp81JX00psfdLwUn01priYivR8RfIuI/gaF5B1RD5eYzbZhnbVMr0vtAAHu0F0oaQOMl09Xcs7mDzwWfB/5R0p+BkcC96SAv/52u63EacnSNGnu/pLNIRnPZQpKio9dXI32ZuVml5zN9Ise48rB/RPwdVo96064vyfR8jcRzeHbwuUilHYxOkbQ5yWXdDYG2iHgx38hKc2/eKks7mxT6r3Qg762BCxtpeiXPnmOV8LRjCXk6urriZJojSadGRI/smdbdJJ0BTKDBZ8+xNXnasQ6ejq6+OZnmSNKzaWeDXk/SI8A+EfGGpKHAz4GfRsQlhdNwWWOR9EeSZwcbftoxT0dX33zPtMokPVxqFdBIj8Z49hwrZg/gKyQzCf1rRMyX9HYjJdECG0jakqQvxRrT0UlqtOno6o6TafU1kzw/+GqncgF/qH04uXlB0qj22XPSFurHSR7O9jfuBuVpx9bg6ejqWKP+0dbSbcBmhVOwtZM0u+bR5OdkOk32nD6UfbKkRnre1oqIiDbg+HTasdfyjicPETG0xKpVwDE1DMXWg++ZmpmZZdRIzzmamZlVhZOpmZlZRk6mZg1MUqukffOOoxYkHSlpUt5xWO/ke6ZmdUbShgUzamTd12TgjYi4qDv211N15zkzK8YtU2tIkoZKelzSdEmPSrpW0sGSfi/pqXTybiRtKukqSXMl/VHSUQXb353OQflQe+subenNlvTzdP/XSlrrsYa0zsWS/pAev6vjnSLpRkm3Ar+VtJmkHyuZE/ZhScem9Q6RdG8a043pYxVIWizpgrT8EUk7pYNnnAZMlDRf0n6SjpB0f3rsu5ROEyhpK0l3pttfIekvkgal6z6tZMqw+em6tSYukPTR9L3+Ka27uaQ+kr6XvteHJf1LV+dQ0hRJj6X1L0rLtpc0My2bKekDafnVkn4gaRbw3fQcXl6w7tI0pqclHZeWbyDpvyQtkHSbpBnt68zKigj/+Kfhfkhm7FlJ8ozrBiTP911F8jzfUcCv0nrfBj6dvm4iGYx8U2AToH9aPhx4MH3dCiwHhqT7vRcYU+T4s4H/Tl/vTzL+arnjnQK0Ae9L130XuLhgf1sCg4DfAZumZecA30hfLwbOSF9/CZievp4MnN1pP+1XrD4PfD99fTlwbvr6MJLRigYBOwO3An3Tdf8FnNzpvfYDngY+mi5vQfJY3njg62nZRsCDwLBS5xB4H8mkCO3xNaW/bwXGpa8/W/BvdzXJo2l90uVTgMsL1t2Y7n8ksCgtPw6YkZZvTfJ8+HF5/736p+f/+DlTa2TPRMQjAJIWADMjIpQMfTg0rXMIcKSks9Pl/sAHgCXA5ZJGAe8BIwr2+0Akz00iaX66r3uKHP86gIj4naQtJDWVOR7AnRHxSvr6YNIh99J9vKpkEIyRwO/Thlw/kkTU7hfp73nAJ0qckyHA/0oanG7/TFo+hvRZx4j4jaT2QUgOIhnFaG56zI2Bv3ba547A0oiYm27/GiStaGC3gpbfAJIvJisofg7vA94Bpku6nSRRQjI9Wfv7+SlwYcGxb4xk5pVifhXJoBGPtbfA0/d5Y1r+QtqqNeuSk6k1sr8XvF5VsLyKjs+GgGMjYo1p4pTca3wR+DBJK+adEvt9j9Kfs84dFtrHpi12vL2ANwuLimwvkoR7UonjtcdVLqbLgB9ExC1KhnycXLDvYgRcExHnllhfKtb28jMi4o41CpPjrnUOI2Jlejn8IJIvEhOAA4vst/BYbxZZ367wGOr022yd+J6pWXl3AGcU3LNrH5B/AElraxXwGdZvgvMT0n2OAZZHModjqeN19luSZEJab0uSlttoJXPEImkTSSNKbN/udWDzguUBwPPp68K5Ve8B/jnd7yEkl4MBZgLHSXp/uu59SsZbLvQ4sI2kj6Z1Npe0Yfpevyipb1o+Qsmg7kWl938HRMQM4EyS2YcgGZazvZX+KYpfBajUPcCx6b3TZpJLzmZdcjI1K++bJJN2Pyzp0XQZknuD4yTdR3KJt1wLqJRXJf0BmAZ8rovjdfYtYEslnZf+BBwQycDopwDXKZlg4T5gpy5iuBU4pr0DEklL9EZJdwN/K6h3AXCIpIeAscBS4PWIeAz4OkmnqIeBO4HBhQeIiBUkXxwuS2O9k+Ty9XTgMeCh9L1eQfmrZZsDt6XHmQNMTMu/DJyaln+GZOD89XUTyb3p9njuJ7l/a1aWH40xy4GScZnPjogH846lEpI2At5LL7XuA/wwIkblHFZVSNoskokYBgIPAKMj4oW847KezfdMzawSHwBukLQBSQehL+QcTzXdlnYG6wd804nUKuGWqZmZWUa+Z2pmZpaRk6mZmVlGTqZmZmYZOZmamZll5GRqZmaWkZOpmZlZRv8fw2BH4vdxMqMAAAAASUVORK5CYII=",
|
|
241
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFQCAYAAADk2pTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5oElEQVR4nO3de1wUVf8H8M8CKuIFTVOX1rytcllYUcDQvGCKJCGmpmk+hbcIU/PJbnT7iT2ZdDFv2GN0UboIZmZ4g0yDfmkqqZEZmVSQLiIqAoqKyHJ+f/BzEJdl0YGdBT7v1+t5PczMmZnvnAa+npk556iEEAJERER02+yUDoCIiKihYzIlIiKSicmUiIhIJiZTIiIimZhMiYiIZGIyJSIikslB6QCsqWPHjujevbvSYRA1WX/88QcAwNXVVdFj2ALWRaWGVBfZ2dk4d+6cyfomlUy7d++OgwcPKh0GUZMVEBAAAEhNTVX0GLaAdVGpIdWFr69vtev5mJeIiEgmJlMiIiKZmEyJiIhkalLvTImIGqtr167BYDCgpKRE6VBu2cKFCwEAv//+u6LHuJGjoyM0Gg2aNWtWq/JMpkREjYDBYECbNm3QvXt3qFQqpcO5JXZ2FQ9J5XyJWxfHuE4Igfz8fBgMBvTo0aN255d9ViIiUlxJSQk6dOjQ4BKpLVKpVOjQocMttfKZTImIGgkm0rpzq3XJZEpERHWidevWVZbXrVuHuXPn1su5bjx2VFQUvvrqq1rvm5aWhqFDh8LV1RVubm6YNWsWLl++LCsevjMlImqEukdur9PjZUc/UKfHq05ZWRkcHBzMLteFvLw8TJw4EQkJCRg4cCCEENi0aRMuXrwIJyen2z4ukykREdW7rVu34vXXX0dpaSk6dOiAzz//HJ07d0ZUVBQyMjKQk5ODbt26oU+fPjh16hSys7PRsWNHrFixAhEREThx4gQAYPny5bj33nurHLt169awt7cHAKxcuRJr1qyBg4MDPDw8kJCQUKXs6tWrERYWhoEDBwKoeJz70EMPyb4+JlMiIqoTV65cgbe3t7R8/vx5hIaGAgAGDx6M/fv3Q6VS4cMPP8Rbb72FpUuXAgB+++03rF+/Hn379kVUVBQOHTqEPXv2oGXLlnjkkUfw9NNPY/DgwThx4gSCgoJMur88++yz0ti80dHRyMrKQosWLVBYWGgS49GjRxEWFlbn185kSkREdaJly5ZIT0+XltetWyeNh24wGPDwww8jNzcXpaWlVbqc3HfffXB0dJSWQ0ND0bJlSwDArl27kJGRIW27cOECLl68aDYGvV6PqVOn4sEHH8SDDz5YR1dmGT9AIqpnAQEB0iDcRE3VvHnzMHfuXPz66694//33q3Q7uZ44r2vVqpX0c3l5Ofbt24f09HSkp6cjJycHbdq0MXue7du3Y86cOTh06BB8fHxQVlZWZbtOp8OhQ4fq6KoqKZpMk5OT4erqCq1Wi+joaJPtQgg89dRT0Gq10Ov1OHz4MICK/lQDBgxA3759odPppJEviIjINhUVFeGuu+4CAMTFxdV6v1GjRiEmJkZavrHle7Py8nKcPHkSw4cPx1tvvYXCwkIUFxdXKTN37lzExcXhwIED0rrPPvsMp0+frnVM1VEsmRqNRsyZMwdJSUnIyMhAfHx8laY8ACQlJSEzMxOZmZmIjY3F7NmzAQAtWrTAd999h19++QXp6elITk7G/v37lbgMIiKqhaioKEycOBFDhgxBx44da73fypUrcfDgQej1enh4eGDNmjVmyxqNRvzrX/+Cl5cX+vXrh6effhrt2rWrUqZz585ISEjAs88+C1dXV7i7u+OHH35A27Ztb/fSACj4zjQtLQ1arRY9e/YEAEyePBmJiYnw8PCQyiQmJuKxxx6DSqWCv78/CgsLkZubC7VaLfVnunbtGq5du8bOytSoNZZ5K8l6rNGV5WY3twKnTZuGadOmAQDGjh2LsWPHmuwTFRUlfTx0fflGHTt2xIYNG0z2u/HY1zVr1gx79uyxGOfAgQPxww8/WCx3KxRrmebk5KBr167SskajQU5OTq3LGI1GeHt7o1OnTggMDMQ999xjncCJiIhuoljLVAhhsu7m1mVNZezt7ZGeno7CwkKMGzcOR48ehaenp0n52NhYxMbGAqj4moz/sidru/55vpx7ry6OYQtYF5Xqui6cnZ1r/MrVll3/SEhO/HVxjJuVlJTU+r+PYslUo9Hg5MmT0rLBYICLi8stl2nXrh0CAgKQnJxcbTINDw9HeHg4AMDX15dfVZLVXX9nI+feq4tj2ALWRaW6rovff/+9xq9cbdn1UY7kxF8Xx7iZo6Mj+vXrV6uyij3m9fPzQ2ZmJrKyslBaWoqEhASpc+91oaGh+OSTTyCEwP79++Hs7Ay1Wo2zZ89K/yK7cuUKdu3aBTc3NwWugoiISMGWqYODA2JiYhAUFASj0YgZM2ZAp9NJX2pFREQgODgYO3bsgFarhZOTE9auXQsAyM3NRVhYGIxGI8rLyzFp0iSEhIQodSlERNTEKToCUnBwMIKDg6usi4iIkH5WqVRYvXq1yX56vR4///xzvcdHRERUGxwBiYiIZMvOzjb5biUqKgrvvPPObR0vNTXVpOtLTc6ePYsFCxagV69e8PDwQHBwMI4fP35b574dHJuXiKgxinKu4+MV1e3x6pAQAnPnzsW4ceOwfXvF1HPp6enIy8tDnz59rBIDW6ZERFTvAgIC8MILL2DAgAHo06ePNGhCSUkJXnzxRYwZMwb9+vVDSkoKAKB58+Zwdq74B8H3338Pb29veHt7o1+/fibdX1JSUtCsWTNMnjxZWuft7Y0hQ4ZY6erYMiUiIispKytDWloaduzYgUWLFmHXrl3SdzFbt26FEAKjRo3C8ePHMWjQIAwaNAgA8M4772D16tW49957UVxcXGWGGaBiWjWdTmf167kRW6ZERCSbuSFdb1w/fvx4AICPjw+ys7MBAHv27JGGGXRzc0O3bt1M3nXee++9WLBgAVauXInCwkKpT6ktYTIlIiLZOnTogIKCgirrzp8/X2VQ+xYtWgCoGMHu+ohF1Y10d7PIyEh8+OGHuHLlCvz9/XHs2LEq23U6HX777Te5lyALkykREcnWunVrqNVq7N69G0BFIk1OTsbgwYNr3G/o0KHYunUrAOD48eM4ceIEXF1dq5T566+/4OXlhRdeeAG+vr4myfS+++5DaWkpvvjiC2ndTz/9hO+//74uLq1WbK+tTEREDdInn3yCOXPm4JlnngEALFy4EL169apxnyeffBI//PADxowZg1atWmHdunVSC/a65cuXIyUlBfb29vDw8MDo0aOrbFepVFi1ahWWLFmCXr16wdHREd27d8fy5cvr9PpqwmRKRNQYKdCVxcPDQ/oa92Y3DhjfsWNH6Z2po6MjoqOjAcCkRXrdqlWrLJ67c+fOWL58udlj1Dc+5iUiIpKJyZSIiEgmJlMiIiKZmEyJiBqJ2nQzodq51bpkMiUiagQcHR2Rn5/PhFoHhBDIz883GWmpJvyal4ioEdBoNDAYDDh79qzSodyy06dPAwDKy8sVPcaNHB0dodFoal2eyZRsVkBAAICqn9QTUfWaNWuGHj16KB3GbZk9ezYAeb/rdXEMOfiYl4iISCYmUyIiIpmYTImIiGRiMiUiIpKJyZSIiEgmJlMiIiKZmEyJiIhkYjIlIiKSicmUiIhIJiZTqhcBAQHSCEZERI0dkykREZFMTKZEREQyMZnaGD4eJSJqeBRNpsnJyXB1dYVWq0V0dLTJdiEEnnrqKWi1Wuj1ehw+fBgAcPLkSQwfPhzu7u7Q6XRYsWKFtUMnIiKSKJZMjUYj5syZg6SkJGRkZCA+Ph4ZGRlVyiQlJSEzMxOZmZmIjY2VpthxcHDA0qVL8fvvv2P//v1YvXq1yb5ERETWolgyTUtLg1arRc+ePdG8eXNMnjwZiYmJVcokJibiscceg0qlgr+/PwoLC5Gbmwu1Wo3+/fsDANq0aQN3d3fk5OQocRlERETKJdOcnBx07dpVWtZoNCYJsTZlsrOz8fPPP+Oee+6p34CJiIjMcFDqxEIIk3UqleqWyhQXF2PChAlYvnw52rZtW+15YmNjERsbCwAwGAyKzcJeW4WFhQCUmy2+rtTFdbAu6vYYtoB1UYl1Uakx1IViyVSj0eDkyZPSssFggIuLS63LXLt2DRMmTMDUqVMxfvx4s+cJDw9HeHg4AMDX17dev5S9fmw5/zHbtWtX5VgNVV1cB+uibo9hC1gXlVgXlRpDXSj2mNfPzw+ZmZnIyspCaWkpEhISEBoaWqVMaGgoPvnkEwghsH//fjg7O0OtVkMIgZkzZ8Ld3R0LFixQ6AqIiIgqKNYydXBwQExMDIKCgmA0GjFjxgzodDqsWbMGABAREYHg4GDs2LEDWq0WTk5OWLt2LQBg7969+PTTT+Hl5QVvb28AwBtvvIHg4GClLoeIiJowxZIpAAQHB5skwIiICOlnlUqF1atXm+w3ePDgat+nEhERKYEjIBEREcnEZEpERCQTkykREZFMTKZEREQyMZkSERHJxGRKREQkE5MpERGRTEymREREMjGZEhERycRkSkREJBOTKRERkUxMpkRERDIxmRIREcnEZEpERCQTkykREZFMTKZEREQymU2mZ8+eRUZGhsn63377DWfPnq3XoIiIiBoSs8l03rx51SZNg8GA+fPn12tQREREDYnZZPrrr79i2LBhJuuDgoJw5MiReg2KiIioITGbTK9du2Z2p5q2ERERNTVmk2nv3r2xY8cOk/VJSUno2bNnvQZFRETUkDiY27Bs2TKEhITgiy++gI+PDwDg4MGD2LdvH7Zt22a1AImIiGyd2WTap08f/Prrr1i/fj2OHj0KABg2bBjef/99ODo6Wi1AasSinGvenn3JcrmoorqLh2wD7wtqgMwmUwBo0aIFpk+fbq1YiIiIGqQakykRWQlbY0QNGkdAIiIikonJlIiISCazj3m9vLygUqnM7siBG4gqdY/cbnbb6b/zLZbJ5jd9RA2a2WR6vfvL6tWrAQCPPvooAODzzz+Hk5OTFUIjIiJqGMw+5u3WrRu6deuGvXv34q233oKXlxe8vLwQHR2Nb775pk5OnpycDFdXV2i1WkRHR5tsF0LgqaeeglarhV6vx+HDh6VtM2bMQKdOneDp6VknsRAREd0ui+9ML126hD179kjLP/74Iy5duiT7xEajEXPmzEFSUhIyMjIQHx9vMktNUlISMjMzkZmZidjYWMyePVvaNm3aNCQnJ8uOg4iISC6LXWM++ugjzJgxA0VFRVCpVHB2dsbHH38s+8RpaWnQarXS0ISTJ09GYmIiPDw8pDKJiYl47LHHoFKp4O/vj8LCQuTm5kKtVmPo0KHIzs6WHQcREZFcFpOpj48PfvnlF1y4cAFCCDg7W+gPV0s5OTno2rWrtKzRaHDgwAGLZXJycqBWq+skBiIiorpgMZnm5eXhpZdewqlTp6RHsvv27cPMmTNlnVgIYbLu5q+Ha1PGktjYWMTGxgKomIs1NTX1lva/FYWFhQBQ8zly02s+xhlDxTHil5svpPa+lbAUUau6cF1U8zGcYiqO4TrXfKF6/O95K57xKjO7bWWrivv4qRrKpNo1nrqoSVO7L2pSq7qwwjFsQWOoC4vJdNq0aZg+fToWL14MoGLM3ocfflh2MtVoNDh58qS0bDAY4OLicstlLAkPD0d4eDgAwNfXFwEBAbcftAXt2rUDgJrPETW25mNcrngfHfDHQvOFptjGSDc1dgc5bwQATEs2/34927GGa0TDqotpNdXFpYp/AC791fyvW2Oqi5o0td+RmtSqLqxwDFvQGOrCYjI9d+4cJk2ahCVLllTs4OAAe3t72Sf28/NDZmYmsrKycNdddyEhIQHr16+vUiY0NBQxMTGYPHkyDhw4AGdnZz7iJbJx7HNLTZHFr3lbtWqF/Px86fHq/v376+S9qYODA2JiYhAUFAR3d3dMmjQJOp0Oa9aswZo1awAAwcHB6NmzJ7RaLR5//HG899570v5TpkzBwIED8ccff0Cj0eCjjz6SHRMREdHtsNgyfffddxEaGoq//voL9957L86ePYuNGzfWycmDg4MRHBxcZV1ERIT0s0qlkgaNuFl8fHydxEBERCSXxWSq0+nw/fff448//oAQAq6urigvL7dGbERERA2Cxce8AwcOhIODA3Q6HTw9PdGsWTMMHDjQGrERERE1CGZbpqdPn0ZOTg6uXLmCn3/+WeqmcuHCBVy+fNlqAdoaflxBREQ3M5tMv/nmG6xbtw4GgwELFiyQ1rdp0wZvvPGGVYIjIiJqCMwm07CwMISFhWHTpk2YMGGCNWMiIiJqUCx+gDRhwgRs374dv/32G0pKSqT1//M//1OvgRERETUUFj9AioiIwIYNG7Bq1SoIIbBx40b8888/1oiNiIioQbDYMv3xxx9x5MgR6PV6LFy4EM888wzGjx9vjdiIiJq2KAsD5GRfslwuyvaHVmwMLLZMW7ZsCQBwcnLCqVOn0KxZM2RlZdV7YERERA2FxZZpSEgICgsL8dxzz6F///5QqVSYNWuWNWIjImrQ2JWu6bCYTF999VUAFR8ihYSEoKSkpM7mNCUiImoMLCZTo9GI7du3Izs7G2VllfMx3tj3lIiIqCmzmEzHjBkDR0dHeHl5wc7O4itWIiKiJsdiMjUYDDhy5Ig1YiEiImqQLDY1R48ejZ07d1ojFiIiogbJYsvU398f48aNQ3l5OZo1awYhBFQqFS5cuGCN+IiIiGyexWT6zDPPYN++ffDy8oJKpbJGTERERA2Kxce8vXv3hqenJxMpERGRGRZbpmq1GgEBARg9ejRatGghrWfXGCIiogoWk2mPHj3Qo0cPlJaWorS01BoxERERVWXj4xRbTKYLFy6st5MTERE1BmaT6b///W8sX74cY8aMqfZ96ZYtW+o1MCIioobCbDJ99NFHAQDPPvus1YIhIiJqiMwmUx8fHwBAeno65s+fX2XbihUrMGzYsPqNjIiIqIGw2DUmLi7OZN26devqIxYiIqIGyWzLND4+HuvXr0dWVhZCQ0Ol9RcuXECHDh2sEhwREVFDYDaZDho0CGq1GufOncMzzzwjrW/Tpg30er1VgiMiImoIzCbTbt26oVu3bti1axdatmwJOzs7HD9+HMeOHYOXl5c1YyQiIrJpFt+ZDh06FCUlJcjJycGIESOwdu1aTJs2zQqhUVOXOq0VUqe1UjoMIiKLLCZTIQScnJzw1VdfYd68edi8eTMyMjLq5OTJyclwdXWFVqtFdHR0ted+6qmnoNVqodfrcfjw4VrvS0REZC21Sqb79u3D559/jgceeAAAUFZWJvvERqMRc+bMQVJSEjIyMhAfH2+SpJOSkpCZmYnMzEzExsZi9uzZtd6XiIjIWiwm0xUrVmDJkiUYN24cdDod/v77bwwfPlz2idPS0qDVatGzZ080b94ckydPRmJiYpUyiYmJeOyxx6BSqeDv74/CwkLk5ubWal8iIiJrsTg279ChQzF06FBpuWfPnnj33XdlnzgnJwddu3aVljUaDQ4cOGCxTE5OTq32rU5+fr7sPrL3N883u600uGIgi+bNj5ktsw4Tazy+9/3G/y9nb76QjfTzre+6qJUmUhe8LyqxLio1pLqoibe3NwBLYxjYdl2YTaaDBw/Gnj17AFQMLfjpp59K2wYMGFDl/eXtEEKYrLt5DGBzZWqz73WxsbGIjY0FAFy9ehWFhYW3EW0ltzvM/4f683zF/2trKFMIzxqPX3buz4py7bTmC8m8hrpS33VRK02kLnhfVGJdVGoodXHpas2vBkuvXQMA5OSdM1umVTvbrguzyfTSpUvSz0ePHq2yrbpkdqs0Gg1OnjwpLRsMBri4uNSqTGlpqcV9rwsPD0d4eDgAwNfXF//+979lx25OQEAAACAmJkbRY9iCxnIddYH3RSXWRaWmVBfdI7fXuP301oqR9ro8Emy2THb0AzUew1p18dlnn1W73uw70xtbeje3+sy1Am+Fn58fMjMzkZWVhdLSUiQkJFQZaQkAQkND8cknn0AIgf3798PZ2RlqtbpW+xIREVmL2ZZpYWEhNm/ejPLychQWFuKrr74CUNEqLSqSP8Gqg4MDYmJiEBQUBKPRiBkzZkCn02HNmjUAgIiICAQHB2PHjh3QarVwcnLC2rVra9yXiIhsj8VW5f63AQCpFsrZMrPJdNiwYdKcpcOGDcPWrVulbTd+kCRHcHAwgoOrNusjIiKkn1UqFVavXl3rfYmIiJRgNplebwUSERFRzSx2jSHrSk1NVToEIiK6RRYHbSAiIqKaMZkSERHJdEvJ9Hp/TSJLUlNT+ciaiJqMW0qmBw8erK84iIiIGqxbSqadOnWqrziIiIgarFtKpsnJyfUVBxERUYPFrjF1iO8IiYiaJn7NS0REJBOTKRERkUxmk+nzzz8vDTp/o2XLluGFF16o16CIiIgaErPJdNu2bdX2K50/fz62b695bjoiIqKmpMb5TO3sTDfb2dnVyeTgREREjYXZZOrk5ITMzEyT9ZmZmWjZsmW9BkVERNSQmO0a89prr2H06NF45ZVX4OPjA6BiBKQlS5Zg+fLl1oqPiIjI5plNpqNHj8bXX3+Nt99+G6tWrQIAeHp6YtOmTfDy8rJagERERLauxkEbPD09ERcXZ61YiIiIGiSOgETUAHB0LSLbxkEbiIiIZGIyJSIiksnsY9558+ZBpVKZ3XHlypX1EhAREVFDYzaZ+vr6WjMOIiKiBstsMg0LC7NmHERERA2Wxa95z549izfffBMZGRkoKSmR1n/33Xf1GhgREVFDYfEDpKlTp8Ld3R1ZWVlYuHAhunfvDj8/P2vERkRE1CBYTKb5+fmYOXMmmjVrhmHDhuHjjz/G/v37rREbUaOQmprKfqJEjZzFx7zNmjUDAKjVamzfvh0uLi4wGAz1HhgREVFDYTGZvvLKKygqKsLSpUsxb948XLhwAcuWLbNGbERERA2Cxce8ISEhcHZ2hqenJ1JSUnDo0CGEhobKOun58+cRGBiI3r17IzAwEAUFBdWWS05OhqurK7RaLaKjo6X1GzduhE6ng52dHQ4ePCgrFiIiIrkstkynT59e7eANH3/88W2fNDo6GiNGjEBkZCSio6MRHR2NN998s0oZo9GIOXPm4Ntvv4VGo4Gfnx9CQ0Ph4eEBT09PfPXVV3jiiSduOwYiIqK6YjGZhoSESD+XlJRg8+bNcHFxkXXSxMRE6YOMsLAwBAQEmCTTtLQ0aLVa9OzZEwAwefJkJCYmwsPDA+7u7rLOT0REVJcsJtMJEyZUWZ4yZQpGjhwp66R5eXlQq9UAKj5sOnPmjEmZnJwcdO3aVVrWaDQ4cOCArPMSERHVh1uegi0zMxMnTpywWG7kyJE4ffq0yfrFixfX6jxCCJN1NY0VbE5sbCxiY2MBAAaDgV0UiBRUWFgIQN6UcnVxDFvAuqjUGOrCYjJt06ZNlSTWpUsXk0ey1dm1a5fZbZ07d0Zubi7UajVyc3PRqVMnkzIajQYnT56Ulg0Gw209Xg4PD0d4eDiAivGGAwICbvkYRFQ32rVrBwCyfg/r4hi2gHVRqTHUhcVkevHixTo/aWhoKOLi4hAZGYm4uDiMHTvWpIyfnx8yMzORlZWFu+66CwkJCVi/fn2dx0JERCSXxa4xI0aMqNW6WxEZGYlvv/0WvXv3xrfffovIyEgAwKlTpxAcHAwAcHBwQExMDIKCguDu7o5JkyZBp9MBADZv3gyNRoN9+/bhgQceQFBQkKx4iIiI5DDbMi0pKcHly5dx7tw5FBQUSO8wL1y4gFOnTsk6aYcOHbB7926T9S4uLtixY4e0HBwcLCXXG40bNw7jxo2TFQMREVFdMZtM33//fSxfvhynTp2Cj4+PlEzbtm2LOXPmWC1AIiIiW2c2mc6fPx/z58/HqlWrMG/ePGvGRERkVkP/cpUaJ4vvTO3s7KRPjgGgoKAA7733Xn3GRERE1KBYTKYffPCB9MkxALRv3x4ffPBBfcZERETUoFhMpuXl5VUGUDAajSgtLa3XoIiIiBoSi/1Mg4KCMGnSJEREREClUmHNmjW4//77rREbERFRg2Axmb755puIjY3Ff//7XwghMGrUKDz++OPWiI2IiKhBqNUHSBEREfjyyy+xadMm6HQ6ft1LRER0g1oNdJ+eno74+Hhs2LABPXr0wPjx4+s7LiIiogbDbDI9fvw4EhISEB8fjw4dOuDhhx+GEAIpKSnWjI+IiMjmmU2mbm5uGDJkCLZu3QqtVgsAWLZsmdUCIyIiaijMvjPdtGkTunTpguHDh+Pxxx/H7t27q51jlIiIqKkzm0zHjRuHDRs24NixYwgICMCyZcuQl5eH2bNnY+fOndaMkYiIyKZZ/Jq3VatWmDp1KrZt2waDwQBvb29ER0dbIzYiIqIGwWIyvdEdd9yBJ554At999119xUNERNTg3FIyJSIiIlNMpkRERDIxmRIREclUqxGQiIjqAif2psaKLVMiIiKZmEyJiIhkYjIlIiKSicmUiIhIJiZTIiIimZhMiYiIZGIyJSIikonJlIiISCYmUyIiIpmYTImIiGRSJJmeP38egYGB6N27NwIDA1FQUFBtueTkZLi6ukKr1VaZQ/W5556Dm5sb9Ho9xo0bh8LCQitFTkREZEqRZBodHY0RI0YgMzMTI0aMqHaycaPRiDlz5iApKQkZGRmIj49HRkYGACAwMBBHjx7FkSNH0KdPHyxZssTal0BERCRRJJkmJiYiLCwMABAWFoavv/7apExaWhq0Wi169uyJ5s2bY/LkyUhMTAQAjBo1Cg4OFWP0+/v7w2AwWC12IiKimymSTPPy8qBWqwEAarUaZ86cMSmTk5ODrl27SssajQY5OTkm5T7++GOMHj26/oIlIiKyoN6mYBs5ciROnz5tsn7x4sW12l8IYbJOpVKZHMvBwQFTp041e5zY2FjExsYCAAwGA6eAIiKbcP1bDzl/k+riGLagMdRFvSXTXbt2md3WuXNn5ObmQq1WIzc3F506dTIpo9FocPLkSWnZYDDAxcVFWo6Li8O2bduwe/dukyR7o/DwcISHhwMAfH19ERAQcBtXQ0RUt9q1awcAsv4m1cUxbEFjqAtFHvOGhoYiLi4OQEVSHDt2rEkZPz8/ZGZmIisrC6WlpUhISEBoaCiAiq9833zzTWzZsgVOTk5WjZ2IiOhmiiTTyMhIfPvtt+jduze+/fZbREZGAgBOnTqF4OBgAICDgwNiYmIQFBQEd3d3TJo0CTqdDgAwd+5cXLx4EYGBgfD29kZERIQSl0FERASgHh/z1qRDhw7YvXu3yXoXFxfs2LFDWg4ODpaS643+/PPPeo2PiIjoVnAEJCIiIpmYTImIiGRiMiUiIpKJyZSIiEgmJlMiIiKZmEyJiIhkYjIlIiKSicmUiIhIJkUGbSAiIvka+gD3jQlbpkRERDIxmRIREcnEZEpERCQTkykREZFMTKZEREQyMZkSERHJxGRKREQkE5MpERGRTEymREREMjGZEhERycRkSkREJBOTKRERkUxMpkRERDIxmRIREcnEKdiIiBTA6dMaF7ZMiYiIZGIyJSIikonJlIiISCYmUyIiIpmYTImIiGRSJJmeP38egYGB6N27NwIDA1FQUFBtueTkZLi6ukKr1SI6Olpa/+qrr0Kv18Pb2xujRo3CqVOnrBU6ERGRCUWSaXR0NEaMGIHMzEyMGDGiSqK8zmg0Ys6cOUhKSkJGRgbi4+ORkZEBAHjuuedw5MgRpKenIyQkBK+99pq1L4GIiEiiSDJNTExEWFgYACAsLAxff/21SZm0tDRotVr07NkTzZs3x+TJk5GYmAgAaNu2rVTu0qVLUKlUVombiIioOooM2pCXlwe1Wg0AUKvVOHPmjEmZnJwcdO3aVVrWaDQ4cOCAtPzyyy/jk08+gbOzM1JSUuo/aCIiIjPqLZmOHDkSp0+fNlm/ePHiWu0vhDBZd2MLdPHixVi8eDGWLFmCmJgYLFq0qNrjxMbGIjY2FgBgMBg46ggRkY0pLCwEIG9UqLo4hhz1lkx37dpldlvnzp2Rm5sLtVqN3NxcdOrUyaSMRqPByZMnpWWDwQAXFxeTco888ggeeOABs8k0PDwc4eHhAABfX18EBATc4pUQEVF9ateuHQDI+vtcF8eQQ5F3pqGhoYiLiwMAxMXFYezYsSZl/Pz8kJmZiaysLJSWliIhIQGhoaEAgMzMTKncli1b4ObmZp3AiYiIqqHIO9PIyEhMmjQJH330Ee6++25s3LgRAHDq1CnMmjULO3bsgIODA2JiYhAUFASj0YgZM2ZAp9NJ+//xxx+ws7NDt27dsGbNGiUug4iICIBCybRDhw7YvXu3yXoXFxfs2LFDWg4ODkZwcLBJuU2bNtVrfERERLeCIyARERHJxGRKREQkE5MpERGRTEymREREMinyARIREVFdUnpAHrZMiYiIZGIyJSIikonJlIiISCYmUyIiIpmYTImIiGRiMiUiIpKJyZSIiEgmJlMiIiKZmEyJiIhkUgkhhNJBWEvHjh3RvXt3RWM4e/Ys7rzzTkVjsBWsi0qsi0qsi0qsi0q2UhfZ2dk4d+6cyfomlUxtga+vLw4ePKh0GDaBdVGJdVGJdVGJdVHJ1uuCj3mJiIhkYjIlIiKSicnUysLDw5UOwWawLiqxLiqxLiqxLirZel3wnSkREZFMbJkSERHJxGRKREQkE5MpERGRTEymZBWlpaW48fV8SkoKli5diqSkJAWjUta1a9dM1lXXGbwx431RVXl5OcrLywFU1M3hw4dx/vx5haOyviNHjigdwi1jMq1n/GNRwc/PD4WFhQCAt99+Gy+//DKuXLmCd999Fy+++KKywVlZSkoKNBoNXFxcMGrUKGRnZ0vbRo0apVxgCuB9Uenrr7+GWq3GXXfdhcTERAwZMgTPPvss9Ho9tm7dqnR4VtWvXz9otVq8+uqryMjIUDqc2hFUr/R6vTh//rwQQoi33npLDBw4UPznP/8RI0eOFJGRkQpHZz06nU762cfHR1y+fFkIIcS1a9eEl5eXUmEpwtfXVxw9elQIIcTGjRuFVqsV+/btE0II4e3trWRoVsf7opK3t7fIzc0Vf//9t2jTpo04duyYEEKI7Oxs4ePjo3B01uXt7S1+/fVX8dJLL4levXoJvV4vlixZIrKyspQOzSy2TOuZ0WhE+/btAQAbNmzA7t278corryApKQnbt29XODrradu2LY4ePQqgYozkkpISAEBZWZn0WKupKC0thU6nAwA89NBD+PrrrxEWFobNmzdDpVIpHJ118b6oqkuXLujRowfuvvtuuLq6AgC6devW5OpCpVLB09MTixcvxp9//okPPvgAZ86cwZAhQzBo0CClw6uWg9IBNHbX/1h4enpKfyxatmzZ5P5YrFmzBlOnTkXfvn3RqVMn+Pr6YtiwYThy5AheeuklpcOzqmbNmuH06dPo0qULAECn02H37t0ICQnBX3/9pXB01sX7oqry8nLY2dnh448/ltYZjUaUlpYqGJX1iZuGPxgwYAAGDBiApUuX4n//938ViqpmHLShnh05cgSPPvoo+vbtCwDYu3ev9MdiwYIFeOSRRxSO0HqMRiN27tyJ48ePo6ysDBqNBkFBQWjXrp3SoVnVrl27cOedd0r3xHVFRUWIiYnByy+/rFBkyuB9UeGnn36Cl5cXHB0dq6zPzs7Gnj178K9//UuhyKxv/fr1De5vI5OpFfCPBRFR48ZkSlbRv39/jB8/HlOmTEGvXr2UDkdRFy5cwJIlS2AwGDB69Ogq/wJ/8skn8d577ykYnXXxvqid0aNHN6keAKdPn8aiRYtgZ2eH1157DatWrcKmTZvg7u6OFStWQK1WKx2iCX6AVM8uXLiAyMhIPProo4iPj6+y7cknn1QoKusrKChAYWEhhg8fjgEDBmDZsmU4deqU0mEpYvr06RBCYMKECUhISMCECRNw9epVAMD+/fsVjs66eF9UOnz4cLX/O3ToENLT05UOz6qmTZsGDw8PdO3aFcOHD0fLli2xfft2DBkyBBEREUqHVy22TOvZhAkT0Lt3b/j7++Pjjz9Gs2bNsH79erRo0QL9+/fH4cOHlQ7RKm681h9++AHx8fH46quv4O7ujilTptj8jBB1ydvbu8ofx8WLF2PHjh3YsmULAgMDm8w9AfC+uJG9vT2GDRtm8vENUPGPrCtXrigQlTL69euHn3/+GQBw991348SJE9K2m39/bIZCXXKajL59+1ZZfv3118WgQYPEuXPnRL9+/ZQJSgHVXWtZWZlISkoS06ZNUyAi5bi5uQmj0Vhl3bp164SHh4e4++67FYpKGbwvKul0OnH8+PFqt2k0GitHoyy9Xi/9/PLLL1fZZqv9j9k1pp5dvXpV+twdAF5++WVoNBoMHToUxcXFCkdnPX369DFZZ29vj/vvvx/333+/AhEpZ8yYMfjuu+8wcuRIaV1YWBg6d+6MefPmKRiZ9fG+qBQVFWW2u9yqVausHI2yxo4di+LiYrRu3Rqvv/66tP7PP/+s9p6xBXzMW8+ef/55jBo1qsofTgBITk7GvHnzkJmZqVBkRERUV5hMyWqOHTuGnJwc3HPPPWjdurW0Pjk5uUm1QkpLS5GQkAAXFxeMHDkS69evx48//gh3d3eEh4ejWbNmSodoNayLSgcOHIC7uzvatm2LK1euIDo6GocPH4aHhwdeeuklODs7Kx2iVaWlpUGlUsHPzw8ZGRlITk6Gm5sbgoODlQ6tWkymVrZnzx6kpaXB09OzSQ1qvnLlSqxevRru7u5IT0/HihUrMHbsWABoUh9iAcDUqVNRVlaGy5cvo127diguLsb48eOxe/duCCEQFxendIhWw7qopNPp8Msvv8DBwQHh4eFwcnLCQw89hN27d+OXX37BV199pXSIVrNo0SIkJSWhrKwMgYGBOHDgAAICArBr1y4EBQXZ5sAmyr2ubRr8/Pykn2NjY0Xfvn1FVFSUGDRokFiyZImCkVmXp6enuHjxohBCiKysLOHj4yOWL18uhGh6g7tf/4Di2rVrolOnTqKsrEwIIUR5ebnNflxRX1gXldzc3KSfb/4w6+YPGRs7T09PUVZWJi5duiTatGkjioqKhBBCXL582WbvC/YzrWc3zlkZGxuLb7/9FgsXLsTOnTvx+eefKxiZdRmNRunRbvfu3ZGamoqkpCQsWLCg2q4AjVl5eTlKS0tx8eJFXL58GUVFRQAqPlarbo7Txox1UcnT0xNr164FAPTt2xcHDx4EABw/frxJPe4GAAcHB9jb28PJyQm9evVC27ZtAQAtW7aUPua0Nfyat56Vl5ejoKAA5eXlEELgzjvvBAC0atUKDg5Np/q7dOmC9PR0eHt7AwBat26Nbdu2YcaMGfj111+VDc7KZs6cCTc3NxiNRixevBgTJ05Ez549sX//fkyePFnp8KyKdVHpww8/xPz58/H666+jY8eOGDhwILp27YquXbviww8/VDo8q2revDkuX74MJycnHDp0SFpfVFRks8mU70zrWffu3WFnZwchBFQqFX788Ud06dIFxcXFGDx4sG12Pq4HBoMBDg4O0kwpN9q7dy/uvfdeBaJSzvVRflxcXFBYWIhdu3bh7rvvxoABAxSOzPpYF1VdvHgRf//9tzSOd+fOnZUOyequXr2KFi1amKw/d+4ccnNz4eXlpUBUNWMyVcjly5eRl5eHHj16KB0KERHJZJvt5SbAycmJifT/hYSEKB2CzWBdVGJdVGJdVLLVumDLVEEhISHYtm2b0mEoLjc31yZngVAC66IS66IS66KSrdYFk6mCbPWmICKiW8PHvApqSon0woULePHFF/Hoo49i/fr1VbY1panogIoRn64rKirCzJkzodfr8cgjjyAvL0/ByKyP90Ul3heVioqKEBkZCTc3N3To0AEdOnSAu7s7IiMjUVhYqHR41WIyrWf8BanAOTwrvfTSS9LPzzzzDNRqNbZu3Qo/Pz888cQTCkZmfbwvKvG+qDRp0iS0b98eqampyM/PR35+PlJSUtC+fXtMnDhR6fCqp8hQEU3IjSOZzJw5U7z88ssiOztbvPvuu2Ls2LHKBWZlnIqu0o3Xe3O9NLWRbnhfVOJ9UalPnz63tU1JTWfUABtw8OBBqV/p008/3aTGHeVUdJXOnDmDd999F0IIXLhwQeqDDMDsFFyNFe+LSrwvKnXr1g1vvfWWNDUhAOTl5WHdunXo2rWrwtFVj49569n1X5ClS5dKvyDXNaVfkOtzeN4oLCwMS5cuRfPmzRWKShmPP/44Ll68iOLiYoSFheHcuXMAgNOnT0sjRDUVvC8q8b6otGHDBuTn52PYsGFo37497rjjDgQEBOD8+fP44osvlA6vWvyat54tWrSoyvKTTz6JO++8E6dPn8bzzz+PTz75RKHIrM/cFGxJSUkYPXq0gpFZX0ObXsqaHnvssSb1e2FOU51hCqiYjs7NzQ3Ozs64fPmyNB2dTqez2enomEwVtHbtWkyfPl3pMKxi1apViImJ4RRsaKDTS9WT0NDQKstCCKSkpOC+++4DAGzZskWJsBQxYMAApKWlAagYpzcmJgbjxo3Dzp07MWbMGERGRiocofXcPB1dq1atMGHCBNuejk6pl7UkRNeuXZUOwWo4BVulhji9VH3x9vYWU6dOFSkpKSI1NVWkpKSILl26iNTUVJGamqp0eFZ14++Br6+vOHPmjBBCiOLiYuHp6alUWIpoiNPR8QOkeqbX66tdL4RoUl1jqpuC7aGHHsI///zT5KZga4jTS9WXQ4cOYcWKFVi8eDHefvtteHt7o2XLlhg2bJjSoVkdZ5iqdH06uunTp0vT0fn6+tr0dHRN67+QAvLy8vDNN9+gffv2VdYLITBo0CCForI+TsFWqSFOL1Vf7Ozs8PTTT2PixIl4+umn0blzZ5SVlSkdliKKiorg4+MjfcV7+vRpaYappvYPzoY4HR3fmdazmTNnYvr06Rg8eLDJtkceecRk1JfGilOwVWqI00tZy/bt27F371688cYbSodiM5ryDFMNaTo6JlMiIiKZmtYzJSIionrAZEpERCQTkylRE5aamooff/xR6TCsYsuWLYiOjlY6DGqk+M6UqIEpKyurs64SUVFRaN26NZ599tk6OZ6tqss6I6oOW6bUJGVnZ8PNzQ2zZs2Cp6cnpk6dil27duHee+9F7969pZFoLl26hBkzZsDPzw/9+vVDYmKitP+QIUPQv39/9O/fX2rdpaamIiAgAA899BDc3NwwderUars1BAQE4N///jcGDRoET09Pi+dbt24dJk6ciDFjxmDUqFEoLi7G9OnT4eXlBb1ej02bNgEAdu7ciYEDB6J///6YOHGiNFh89+7dsXDhQvTv3x9eXl44duwYsrOzsWbNGixbtgze3t744YcfsHXrVtxzzz3o168fRo4cKfWFPnv2LAIDA9G/f3888cQT6NatmzR27GeffYYBAwbA29sbTzzxBIxGo8n1/vTTTxg0aBD69u2LAQMG4OLFizAajXjuuefg5+cHvV6P999/32IdRkZGwsPDA3q9XvoHwD///IMRI0ZAr9djxIgROHHiBABg2rRpWLBgAYYPH44XXngB69atw9y5c6VtTz31FAYNGoSePXviyy+/BFDR1/PJJ5+ETqdDSEgIgoODpW1ENVJipAgipWVlZQl7e3tx5MgRYTQaRf/+/cX06dNFeXm5+Prrr6Xp8V588UXx6aefCiGEKCgoEL179xbFxcXi0qVL4sqVK0IIIY4fPy58fHyEEEKkpKSItm3bipMnTwqj0Sj8/f3FDz/8YHL+YcOGiVmzZgkhhPj++++FTqer8Xxr164Vd911l8jPzxdCCPH888+L+fPnS8c7f/68OHv2rBgyZIgoLi4WQggRHR0tFi1aJIQQolu3bmLlypVCCCFWr14tZs6cKYQQYuHCheLtt9+ucpzy8nIhhBAffPCBWLBggRBCiDlz5og33nhDCCFEUlKSACDOnj0rMjIyREhIiCgtLRVCCDF79mwRFxdX5VqvXr0qevToIdLS0oQQQhQVFYlr166J999/X/znP/8RQghRUlIifHx8xN9//222DvPz80WfPn2k+AoKCoQQQoSEhIh169YJIYT46KOPpP92YWFh4oEHHhBlZWVCCCHWrl0r5syZI2176KGHhNFoFL/99pvo1auXEEKIjRs3itGjRwuj0Shyc3NFu3btxMaNG03++xHdjM89qMnq0aOH1KdTp9NhxIgRUKlU8PLyQnZ2NoCKlt6WLVvwzjvvAABKSkpw4sQJuLi4YO7cuUhPT4e9vT2OHz8uHXfAgAHQaDQAAG9vb2RnZ1fbz3jKlCkAgKFDh+LChQsoLCw0ez4ACAwMxB133AEA2LVrFxISEqRjtW/fHtu2bUNGRobUZ7e0tBQDBw6UyowfPx4A4OPjY3ZsU4PBgIcffhi5ubkoLS2V+jbu2bMHmzdvBgDcf//90iAku3fvxqFDh+Dn5wcAuHLlCjp16lTlmH/88QfUarVU5vqITzt37sSRI0ekll9RUREyMzPRvHnzauvQ398fjo6OmDVrFh544AGEhIQAAPbt2yddz6OPPornn39eOvfEiRNhb29f7bU++OCDsLOzg4eHh9QC37NnDyZOnAg7Ozt06dIFw4cPr3ZfopsxmVKTdePACXZ2dtKynZ2dNAqPEAKbNm2Cq6trlX2joqLQuXNn/PLLLygvL4ejo2O1x7W3tzc7os/1uSpvXDZ3vgMHDqBVq1bSsrhhrssb1wUGBiI+Pr7G660ppnnz5mHBggUIDQ1FamoqoqKipGNXRwiBsLAwLFmypNrt5mK9vn7VqlUICgqqsj41NbXaOnRwcEBaWhp2796NhIQExMTEmEzfBlSt1xvr7GY3nuP69Zm7TiJL+M6UqAZBQUFYtWqV9Ef2559/BlDRilKr1bCzs8Onn35a7XtCSzZs2ACgojXk7OwMZ2dns+e72ahRoxATEyMtFxQUwN/fH3v37sWff/4JoGLknBtbzNVp06YNLl68KC0XFRXhrrvuAoAqk9cPHjxYmkdy586dKCgoAACMGDECX375Jc6cOQMAOH/+PP75558q53Bzc8OpU6fw008/AagY1aasrAxBQUH473//i2vXrgEAjh8/jkuXLpmNtbi4GEVFRQgODsby5cuRnp4OABg0aJDUSv/888+rfQpQW4MHD8amTZtQXl6OvLw8pKam3vaxqGlhMiWqwauvvopr165Br9fD09MTr776KoCKeWnj4uLg7++P48eP19gCMqd9+/YYNGgQIiIi8NFHH9V4vpu98sorKCgogKenJ/r27YuUlBTceeedWLduHaZMmQK9Xg9/f38cO3asxhjGjBmDzZs3Sx8gRUVFYeLEiRgyZAg6duwolVu4cCF27tyJ/v37IykpCWq1Gm3atIGHhwdef/11jBo1Cnq9HoGBgcjNza1yjubNm2PDhg2YN28e+vbti8DAQJSUlGDWrFnw8PBA//794enpiSeeeKLGcXkvXryIkJAQ6PV6DBs2DMuWLQMArFy5EmvXroVer8enn36KFStW1Kr+qzNhwgRoNBopnnvuuccm584k28OuMUQKCAgIwDvvvANfX1+lQ6mVq1evwt7eHg4ODti3bx9mz54ttQwbm+LiYrRu3Rr5+fkYMGAA9u7dW+2Y0kQ34jtTIrLoxIkTmDRpEsrLy9G8eXN88MEHSodUb0JCQlBYWIjS0lK8+uqrTKRUK2yZEhERycR3pkRERDIxmRIREcnEZEpERCQTkykREZFMTKZEREQyMZkSERHJ9H/JHLGX6YxDVwAAAABJRU5ErkJggg==",
|
|
242
242
|
"text/plain": [
|
|
243
243
|
"<Figure size 518.4x345.6 with 1 Axes>"
|
|
244
244
|
]
|
|
@@ -272,7 +272,7 @@
|
|
|
272
272
|
"outputs": [
|
|
273
273
|
{
|
|
274
274
|
"data": {
|
|
275
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFLCAYAAACNy2aDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAr/klEQVR4nO3de7xVdZ3/8ddbFEFRULAjigUZXvCGevKKzlEbFWu8lI5aKdqFscKSxhlxnEfi5DRm1qhJITEGlWmaOaFRhvyEtEQBhwREkZT0JGKp4P0CfH5/rHVgc9h7n43r7L3OPvv9fDzO4+z1Xd+11mcv9uGzv2t91/eriMDMzMzeuy3yDsDMzKzeOZmamZll5GRqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZbRl3gHU0oABA2Lw4MF5h2FmZnVq/vz5f4uIndqXN1QyHTx4MPPmzcs7DDMzq1OS/lys3Jd5zczMMnIyNTMzy8jJ1MzMLKOGumdqZtZdvfvuu7S2tvLWW2/lHUq30KtXLwYNGsRWW21VUX0nUzOzbqC1tZXtttuOwYMHIynvcOpaRPDiiy/S2trKkCFDKtrGl3nNzLqBt956i/79+zuRdgJJ9O/ff7Na+U6mZmbdhBNp59ncc+lkamZmnaJPnz4bLU+ZMoUxY8ZU5ViF+x4/fjxTpkypeNuHH36Yo48+mj333JO99tqLz33uc7zxxhuZ4vE9UzOzbmjwuF916v6WX/XRTt1fMWvWrGHLLbcsudwZVq5cyRlnnMGtt97K4YcfTkRwxx138Oqrr7LNNtu85/06mZqZWdXdddddXHnllbzzzjv079+fm2++maamJsaPH89zzz3H8uXLGTBgAHvsscdGy9dddx0XXHABzzzzDADXXnstRx555Eb77tOnD7179wbg+uuvZ+LEiWy55ZYMGzaMW2+9daO6EyZMYNSoURx++OFAcjn39NNPz/z+nEzNzKxTvPnmmwwfPnz98ksvvcTJJ58MwIgRI5gzZw6SmDx5MldffTXf/va3AZg/fz4PPPAAvXv3Zvz48Rstf/KTn2Ts2LGMGDGCZ555hhNOOIElS5ZsdNyLL754/eurrrqKp59+mq233ppVq1ZtEuOiRYsYNWpUp793J1MzM+sUvXv3ZsGCBeuXp0yZsn489NbWVs4880xWrFjBO++8s9EjJyeffPL6lmX75XvvvZfHHnts/bpXXnmFV199tWQM+++/P5/61Kc49dRTOfXUUzvpnXXMHZDMzKzqLrzwQsaMGcPChQu58cYbN3rsZNttt92obuHyunXrePDBB1mwYAELFizgL3/5C9ttt13J4/zqV7/iS1/6EvPnz+fggw9mzZo1G63fZ599mD9/fie9qw1yTaaSTpT0hKRlksYVWS9J16frH5V0UFreS9LDkv4oabGkK2ofvZmZVWr16tXsuuuuAEydOrXi7Y4//nhuuOGG9cuFLd/21q1bx7PPPssxxxzD1VdfzapVq3jttdc2qjNmzBimTp3KQw89tL7sJz/5Cc8//3zFMRWTWzKV1AOYAIwEhgFnSxrWrtpIYGj6Mxr4flr+NnBsRBwADAdOlHRYLeI2M7PNN378eM444wyOOuooBgwYUPF2119/PfPmzWP//fdn2LBhTJw4sWTdtWvX8ulPf5r99tuPAw88kLFjx9KvX7+N6jQ1NXHrrbdy8cUXs+eee7L33ntz//33s/3227/XtwaAIiLTDt7zgaXDgfERcUK6fClARPxXQZ0bgVkRcUu6/ATQEhErCupsAzwAfCEiHqKM5ubm8HymZtYdLVmyhL333jvvMLqVYudU0vyIaG5fN88OSLsCzxYstwKHVlBnV2BF2rKdD3wImFAqkUoaTdKqpampiVmzZnVK8GZmXUnfvn3LdsyxzffWW29VnDPyTKbFxmpq30wuWSci1gLDJfUD7pS0b0Qs2qRyxCRgEiQt05aWliwxm5l1SUuWLCnbMcc2X69evTjwwAMrqptnB6RWYLeC5UHAc5tbJyJWAbOAEzs9QjMzswrkmUznAkMlDZHUEzgLmNauzjTg3LRX72HA6ohYIWmntEWKpN7AR4DHaxi7mZnZerld5o2INZLGAPcAPYCbImKxpAvS9ROB6cBJwDLgDeD8dPOBwNT0vukWwG0RcXet34OZmRnkPAJSREwnSZiFZRMLXgfwpSLbPQpUdiHbzMysyjwCkpmZZbZ8+XL23XffjcrGjx/PNddc8572N2vWLM4777yK6z///POcddZZ7L777gwbNoyTTjqJpUuXvqdjvxcem9fMrDsa37eT97e6c/fXiSKC0047jVGjRq2fJWbBggWsXLmSPfbYoyYxuGVqZmZV19LSwiWXXMIhhxzCHnvswf333w8kz3Kef/7560ctuu+++wDo2bMnffsmXwhmz57N8OHDGT58OAceeOAmz9Ped999bLXVVlxwwQXry4YPH85RRx1Vo3fnlqmZmdXImjVrePjhh5k+fTpXXHEF9957LxMmTABg4cKFPP744xx//PEsXbqUI444giOOOAKAa665hgkTJnDkkUfy2muv0atXr432u2jRIg4++OCav59CbpmamVlmUrExdjYu//jHPw7AwQcfzPLlywF44IEHOOeccwDYa6+9+MAHPrDJvc4jjzySr371q1x//fWsWrWKLbfseu1AJ1MzM8usf//+vPzyyxuVvfTSSxsNar/11lsD0KNHj/VTo1UyPvy4ceOYPHkyb775JocddhiPP77xsALVmlZtcziZmplZZn369GHgwIHMnDkTSBLpb37zG0aMGFF2u6OPPpqbb74ZgKVLl/LMM8+w5557blTnT3/6E/vttx+XXHIJzc3NmyTTY489lrfffpsf/OAH68vmzp3L7NmzO+OtVcTJ1MzMOsWPfvQjrrzySoYPH86xxx7L5Zdfzu677152my9+8YusXbuW/fbbjzPPPJMpU6asb8G2ufbaa9l333054IAD6N27NyNHjtxovSTuvPNOZsyYwe67784+++zD+PHj2WWXXTr9PZaS2xRsefAUbGbWXXkKts63OVOwuWVqZmaWkZOpmZlZRk6mZmZmGTmZmpl1E43UB6baNvdcOpmamXUDvXr14sUXX3RC7QQRwYsvvrjJSEvldL1hJMzMbLMNGjSI1tZW/vrXv+YdSrfQq1cvBg0aVHF9J1Mzs25gq622YsiQIXmH0bB8mdfMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8so12Qq6URJT0haJmlckfWSdH26/lFJB6Xlu0m6T9ISSYslfaX20ZuZmSVyS6aSegATgJHAMOBsScPaVRsJDE1/RgPfT8vXAP8cEXsDhwFfKrKtmZlZTeTZMj0EWBYRT0XEO8CtwCnt6pwC/CgSc4B+kgZGxIqIeAQgIl4FlgC71jJ4MzOzNnkm012BZwuWW9k0IXZYR9Jg4EDgoc4P0czMrGN5Tg6uImWxOXUk9QHuAC6KiFeKHkQaTXKJmKamJmbNmvWegjUzMyslz2TaCuxWsDwIeK7SOpK2IkmkN0fEL0odJCImAZMAmpubo6WlJXPgZmZmhfK8zDsXGCppiKSewFnAtHZ1pgHnpr16DwNWR8QKSQL+B1gSEd+pbdhmZmYby61lGhFrJI0B7gF6ADdFxGJJF6TrJwLTgZOAZcAbwPnp5kcC5wALJS1Iy/4tIqbX8C2YmZkBoIj2tym7r+bm5pg3b17eYZiZWZ2SND8imtuXewQkMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy6hkMpW0k6RhRcr3kbRTdcMyMzOrH+Vapt8FiiXNQcB11QnHzMys/pRLpvtFxOz2hRFxD7B/9UIyMzOrL+WS6VbvcZ2ZmVlDKZdMn5R0UvtCSSOBp6oXkpmZWX3Zssy6scDdkv4RmJ+WNQOHAx+rdmBmZmb1omTLNCKWAvsBs4HB6c9sYP90nZmZmVG+ZUpEvA38sEaxmJmZ1SUP2mBmZpaRk6mZmVlGTqZmZmYZlbxnKmkhEKXWR4QHbjAzM6N8B6S2x1++lP7+cfr7U8AbVYvIzMyszpR7NObPEfFn4MiI+NeIWJj+jANO6IyDSzpR0hOSlkkaV2S9JF2frn9U0kEF626S9IKkRZ0Ri5mZ2XtVyT3TbSWNaFuQdASwbdYDS+oBTABGAsOAs4vMUjMSGJr+jAa+X7BuCnBi1jjMzKz+tbS00NLSktvxyz5nmvoscJOkviT3UFcDn+mEYx8CLIuIpwAk3QqcAjxWUOcU4EcREcAcSf0kDYyIFRHxO0mDOyEOMzOzTDpMphExHzhA0vaAImJ1Jx17V+DZguVW4NAK6uwKrOikGMzMzDLrMJlKagK+AewSESPTS7GHR8T/ZDy2ipS17z1cSZ3yB5FGk1wipqmpiVmzZm3O5mZmXdZFF10EwLXXXptrHF3BqlWrAHL7P76Sy7xTSIYUvCxdXgr8DMiaTFuB3QqWBwHPvYc6ZUXEJGASQHNzc+R5Td3svWr73PrLoBXq168fQK73CruKvM9FJR2QBkTEbcA6gIhYA6zthGPPBYZKGiKpJ3AWMK1dnWnAuWmv3sOA1RHhS7xmZtalVJJMX5fUn/TyaltSy3rgNCmPAe4BlgC3RcRiSRdIuiCtNp1k7tRlwA+AL7ZtL+kW4EFgT0mtkj6bNSYz6/ry7rVpVkwll3m/StJC3F3S74GdgDM64+ARMZ0kYRaWTSx4HWwYNKL9tmd3RgxmZmZZVZJMFwN/B+xJ0iHoCTymr5mZdZLu0CegkqT4YESsiYjFEbEoIt4lubxqZmZmlB/ofmeSZzp7SzqQDY+pbA9sU4PYzMzM6kK5y7wnAOeRPI7ynYLyV4F/q2JMZmZmdaVkMo2IqcBUSZ+IiDtqGJOZmVldqWQ4wTskfRTYB+hVUP4f1QzMrDt0SjCzxtBhByRJE4EzgQtJ7pueAXygynGZmZnVjUp68x4REecCL0fEFcDhbDzEn5mZWUOrJJm+mf5+Q9IuwLvAkOqFZNa9eMQes+6vkkEb7pbUD/gW8AjJsIKTqxmUmZlZPamkA9LX05d3SLob6NWJc5qamZnVvUrmM+0BfBQY3FZfEhHxnXLbmZm15x7a1l1Vcpn3LuAtYCHpNGxmZma2QSXJdFBE7F/1SMzMzOpUJb15fy3p+KpHYmbWQNzLu3uppGU6B7hT0hYkj8WIZKrR7asamdU13xszs0ZSSTL9NslADQvTybrNrLON71t+/fLXO6433p3szfJSyWXeJ4FFTqRmZmbFVdIyXQHMkvRr4O22Qj8aY5m5NWZm3UQlyfTp9Kdn+mNmZmYFKhkB6YpaBGJmZlavSiZTSddGxEWS7iIZj3cjEXFyVSNrUO4Fa2ZWf8q1TH+c/r6mFoGYmZnVq5LJNCLmpy+HR8R1heskfQWYXc3AzKxBuWOa1aFKOiCNAq5rV3ZekTIzM+tM/mJRN8rdMz0b+CQwRNK0glXbAy9WO7B65PudZmaNqVzL9A8kz5gOIBkFqc2rwKPVDMrMzKyelLtn+mfgz5I+ArwZEesk7QHsRTIdm70XvmxjZtbtVHLP9HfAUZJ2AGYC84AzgU9VMzDr+gaP+1XJdc8/9WKHdZb36vSQzMxyUcnYvIqIN4CPA9+NiNOAYZ1xcEknSnpC0jJJ44qsl6Tr0/WPSjqo0m3NzMxqpZKWqSQdTtIS/exmbNfRTnsAE4C/B1qBuZKmRcRjBdVGAkPTn0OB7wOHVritWc24lW7W2NTRZDCSjgYuBn4fEd+U9EHgooj4cqYDJwl6fESckC5fChAR/1VQ50ZgVkTcki4/AbQAgzvatpghQ4bE5ZdfniVs5jxVuiPzOy88DUDP9w0pWeewLZaU3f+C59cCMHznHqUrDR5Rdh+1Uu1zUZEGORf19LkoZ8GCBQAMHz68dKXlD5Tfh8/Fhn000rmowT4qcf7558+PiOb25ZWMzfs7kvumbctPSfpqJ8S0K/BswXIrSeuzozq7VrgtAJJGA6MBBg4cyKpVqzIFvdeOpT+0y15Kfn+oTJ1V7Ft2/2v+tiyp1+9DpStlfA+dpdrnoiINci7q6XPx+ttrSq575913AfjLyr+VrLNtP5+LNt3lXJQ7D1DhudBbZfex5t1kUrNVL7SWrtSzT9l9ZFHuOdMHImJE+vrHEXFOweqHgYOKb1kxFSlr30wuVaeSbZPCiEnAJIDm5ua46KKLNiPEzdP2nOkNN9xQtWPUC5+LDTrjXNTT+Sx7yfuuqQDs/MmTStZZftVHy+7f52KDejkX5c4DdPK5mPD9zQtuM40dO7ZoebmW6bYFr9t/PSqWzDZXK7BbwfIg4LkK6/SsYFszM7OaKNebN0q8Lrb8XswFhkoaIqkncBYwrV2dacC5aa/ew4DVEbGiwm3NzMxqolzLtJ+k00gSbj9JH0/LBXQw8kDHImKNpDHAPUAP4KaIWCzpgnT9RGA6cBKwDHgDOL/ctlljMuuqPESlWddWLpnOBk4ueP0PBet+t2n1zRcR00kSZmHZxILXAXyp0m3z5v/wzMwaU7nhBM+vZSBmZmb1KvPgC2Zmhcr1umyZ8y0AZnXQM9Os3lQynKCZmZmV4WRqZmaW0WZd5pU0KSJGVysY6z7cGcvMGsnmtkw3GY/QzMys0W1uB6QXqhKFmZl1Wx0OBdgNOqZtVss0Ik6sViBmZmb1yh2QzMzMMvJzpmZmVeJnbhuHk6mZ1RX3FLeuqORlXklXtw063658rKRvVjcsMzOz+lHununHSCfVbuc6wNclzMzMUmXnM42IdUUK19E5k4ObmZl1C+Xumb4haWhEPFlYKGko8GZ1wzLrPnyPz6z7K5dMvwb8WtKVwPy0rBm4FLioynGZmZnVjXLzmf5a0qnAvwAXpsWLgE9ExMIaxGZmZmX4qkfXUfbRmIhYBIyqUSxmZmZ1ySMgmZmZZeRkamZmlpGTqZmZWUYl75lK+i4QpdZHxJerEpGZmVmdKdcBaV7NojAzM6tj5R6NmVrLQMzMzOpVh7PGSNoJuAQYBvRqK4+IY6sYl5mZWd2opAPSzcASYAhwBbAcmFvFmMzMzOpKJcm0f0T8D/BuRMyOiM8Ah1U5LjMzs7pRyeTg76a/V0j6KPAcMKh6IZmZmdWXSlqmV0rqC/wzcDEwGRib5aCSdpQ0Q9KT6e8dStQ7UdITkpZJGldQfoakxZLWSWrOEouZ1c6sWbM8nqx1Sx0m04i4OyJWR8SiiDgmIg6OiGkZjzsOmBkRQ4GZ6fJGJPUAJgAjSTo/nS1pWLp6EfBx4HcZ4zAzM8uskt68P6TI4A3pvdP36hSgJX09FZhF0mO40CHAsoh4Ko3j1nS7xyJiSVqWIQQzM7POUck907sLXvcCTiO5b5pFU0SsAIiIFZLeV6TOrsCzBcutwKGbeyBJo4HRAE1NTb7EZGZdwqpVqwBPowadcy7yPp8dJtOIuKNwWdItwL0dbSfpXmDnIqsuqzC2Ys3OksMblhIRk4BJAM3NzdHS0rK5uzAz63T9+vUDwP8ndc65yPt8VtIybW8o8P6OKkXER0qtk7RS0sC0VToQeKFItVZgt4LlQWRvEZuZmXW6DjsgSXpV0ittP8BdbHp/c3NNY8Ok46OAXxapMxcYKmmIpJ7AWel2ZmZmXUoll3m3q8JxrwJuk/RZ4BngDABJuwCTI+KkiFgjaQxwD9ADuCkiFqf1TgO+C+wE/ErSgog4oQpxmpmZdaiS3rwzI+K4jso2R0S8CGyyfUQ8B5xUsDwdmF6k3p3Ane/1+GZmZp2p3HymvYBtgAHpoAptHYK2B3apQWxmZmYVybtXdLmW6T8BF5EkzvlsSKavkAymYGZmZpSfz/Q64DpJF0bEd2sYk5mZWV2pZGzedZL6tS1I2kHSF6sXkpmZWX2pJJl+PiJWtS1ExMvA56sWkZlZA/Cg/91LJcl0CxUMgpsOQN+zeiGZmZnVl0pGQLqH5JnQiSTD+V0A/KaqUZmZmdWRSpLpJSQDxX+BpEfvb4EfVDMoMzOzelLJfKbrImJiRJweEZ8AFpOMPmRmZmZUONC9pOHA2cCZwNPAL6oYk5mZWV0pNwLSHiSDy58NvAj8DFBEHFOj2MzMzOpCuZbp48D9wD9ExDIASWNrEpWZmVkdKXfP9BPA88B9kn4g6TiKT9htZmbW0Eom04i4MyLOBPYCZgFjgSZJ35d0fI3iMzMz6/Iqmc/0deBm4GZJO5LMPTqO5BEZMzOzTLrDSFCVjIC0XkS8FBE3RsSx1QrIzMys3mxWMjUzM7NNOZmamZll5GRqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmlpGTqZmZWUZOpmZmZhk5mZqZmWXkZGpmZpaRk6mZmVlGuSRTSTtKmiHpyfT3DiXqnSjpCUnLJI0rKP+WpMclPSrpTkn9aha8mZlZO3m1TMcBMyNiKDAzXd6IpB7ABGAkMAw4W9KwdPUMYN+I2B9YClxak6jNzMyKyCuZngJMTV9PBU4tUucQYFlEPBUR7wC3ptsREb+NiDVpvTnAoOqGa2ZmVlpeybQpIlYApL/fV6TOrsCzBcutaVl7nwF+3ekRmpmZVWjLau1Y0r3AzkVWXVbpLoqURbtjXAasAW4uE8doYDRAU1NTt5jR3czMupaqJdOI+EipdZJWShoYESskDQReKFKtFditYHkQ8FzBPkYBHwOOi4ighIiYBEwCaG5ujpaWls16H2ZmZh3J6zLvNGBU+noU8MsideYCQyUNkdQTOCvdDkknApcAJ0fEGzWI18zMrKS8kulVwN9LehL4+3QZSbtImg6QdjAaA9wDLAFui4jF6fY3ANsBMyQtkDSx1m/AzMysTdUu85YTES8CxxUpfw44qWB5OjC9SL0PVTVAMzOzzeARkMzMzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMckmmknaUNEPSk+nvHUrUO1HSE5KWSRpXUP51SY9KWiDpt5J2qV30ZmZmG8urZToOmBkRQ4GZ6fJGJPUAJgAjgWHA2ZKGpau/FRH7R8Rw4G7gazWJ2szMrIi8kukpwNT09VTg1CJ1DgGWRcRTEfEOcGu6HRHxSkG9bYGoXqhmZmblbZnTcZsiYgVARKyQ9L4idXYFni1YbgUObVuQ9J/AucBq4JgqxmpmZlZW1ZKppHuBnYusuqzSXRQpW98CjYjLgMskXQqMAS4vEcdoYDRAU1MTs2bNqvDwZmZmlalaMo2Ij5RaJ2mlpIFpq3Qg8EKRaq3AbgXLg4DnitT7KfArSiTTiJgETAJobm6OlpaWyt6AmZlZhfK6ZzoNGJW+HgX8skiducBQSUMk9QTOSrdD0tCCeicDj1cxVjMzs7Lyumd6FXCbpM8CzwBnAKSPuEyOiJMiYo2kMcA9QA/gpohY3La9pD2BdcCfgQtq/g7MzMxSimicjrDNzc0xb968vMMwM7M6JWl+RDS3L/cISGZmZhk5mZqZmWXkZGpmZpaRk6mZmVlGTqZmZmYZOZmamZll5GRqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmlpGTqZmZWUZOpmZmZhk5mZqZmWXUUFOwSforyfyneRoA/C3nGLoKn4sNfC428LnYwOdig65yLj4QETu1L2yoZNoVSJpXbC68RuRzsYHPxQY+Fxv4XGzQ1c+FL/OamZll5GRqZmaWkZNp7U3KO4AuxOdiA5+LDXwuNvC52KBLnwvfMzUzM8vILVMzM7OMnEzNzMwycjI1MzPLyMnUciPpfXnH0BVI6iPpIEn98o4lL5K2KlI2II9YrGuQ9P62vwlJgyWdLmnfnMMqyck0J5J+nXcMtSRpx3Y//YGHJe0gace846slSd8reD0CeAz4NrBQ0km5BZYDScdIagWek/RbSYMLVv82p7ByIalZ0n2SfiJpN0kzJK2WNFfSgXnHV0uSxgGzgTmSPgf8BhgJ/EzSV3MNroQt8w6gO5N0UKlVwPAahtIV/I1Nh3LcFXgECOCDNY8oP4cVvP46cGpEPCLpg8BtwPR8wsrF1cAJEbFY0unADEnnRMQckr+TRvI94HKgH/AHYGxE/L2k49J1h+cYW62dAwwDtgGWAx+MiL9K2hZ4CPhOjrEV5WRaXXNJvl0V+0+hX21Dyd2/Ah8B/iUiFgJIejoihuQbVu62j4hHACLiKUk98g6oxnpGxGKAiPi5pCXAL9KWSaM9t7dVRPwaQNI3I+LnABExU9I1+YZWc2sj4k1J7wBvAi8CRMTrUtf8juVkWl1LgH+KiCfbr5D0bA7x5CYirpF0K/Df6Xu/nMb7z7LNXpIeJfmSNVjSDhHxsqQtgE3uHXZz70raOSKeB0hbqMcBdwO75xtazb0l6XigLxCSTo2I/5X0d8DanGOrtUck/RTYFpgJTJX0G+BYktsiXY6TaXWNp/R96QtrGEeXEBGtwBmS/gGYQXIJpxHt3W759fT3jsDXahxL3sYBTcDzbQUR0ZomkDG5RZWPC0gue68DTgC+IGkK8Bfg8znGlYfPAWeQfOH+OXAI8EngCWBCjnGV5BGQLBeSegO7R8SivGMxM8vKybTKJO0FnELS2SaA54BpEbEk18C6AEk/iohz846j1iT1BS4FTgXa5kV8AfglcFVErMonstqTtD3JuRgE/Doiflqw7nsR8cXcgsuBpN2B04DdgDXAk8BPI+KVXAOrsXr8XPjRmCqSdAlwK8m9sYdJOiQJuCXtYNEwJE1r93MX8PG25bzjq7HbgJeBlojoHxH9gWPSsttzjaz2fkjyN3EHcJakOyRtna47rPRm3Y+kLwMTgV7Ah4HeJEl1jqSW/CLLRd19LtwyrSJJS4F9IuLdduU9gcURMTSfyGpP0iMkHQcmk7TQBdwCnAUQEbPzi662JD0REXtu7rruSNKCiBhesHwZcBJwMjAjIko9XtbtSFoIDI+ItZK2AaZHRIuk9wO/jIiGeda0Hj8XbplW1zpglyLlA9N1jaQZmA9cBqyOiFnAmxExu5ESaerPkv5VUlNbgaSm9EpGQ/XyBrZOezEDEBH/STLV1u+A/rlFlZ+2TqFbA9sBRMQzNF4v77r7XLg3b3VdBMyU9CQb/pN8P/AhGqynYkSsI3ks5vb090oa9/N3Jkkv1tkFQyquBKYB/5hbVPm4i+Rxh3vbCiJiavr5+G5uUeVjMjBX0hzgaOCbAJJ2Al7KM7Ac1N3nwpd5qyz9dnUISQckAa3A3IhotOfGNiLpo8CREfFvecdi1lVI2ofk0alFEfF43vFY5ZxMq0zSlhGxJn3dB9gLeCoiGu2bplVA0vkR8cO846gl93i3Ykr0bL4lIlbnGlgJvmdaRZLOA1ZKWippJPAoyaWbP0o6O9fguhBJd+cdQxdyRd4B1JJ7vFem0f5GJH2F4j2bH+yqPZvdMq2itHfeMSQdCf4IHBgRf0o7nsyIiP1zDbCLkDQwIlbkHUetpEMJFl0F7BERW5dY3+24x3tlGvBvpO56NjdqB5BaWRsRfwP+Jum1iPgTQESs7KqDNdeSpPdFxAuN9J9EqolkuLiX25WLZLaQRtLW4739jEKN2OO9pAb8G4EkP62lXc9mFZn7titwMq2uZyT9F8kH4XFJ3wZ+QTJ7SkP9cWjTOUtFMp/pgSRXSBrpHvLdQJ+IWNB+haRZNY8mXxfhHu9AMp8p8C2SsXgvBW4i6by4FBgdEf+XY3i1Vnc9m32Zt4rSIbG+RNKp4gaS1sj5JN/Cr2ykb5uS1rFp62MQSe/miIhGms/UCrjHe0LSw2yYz/RqkvlMf57OonNlRDTSfKZ117PZydRqQtLFeD5Ts5Ik/V/bvUBJz0TE+4uts67JvXlzIml03jHUUkRcQzKt0tckfUfSdjTufKYlNVqvzXIa8Fy8Jel4SWeQzmcK0KDzmZbUVT8Xvmean4brgeT5TCvSaPNWltNo5+ILJPcGC+cz/SHJc7cN9eW7A13yc+HLvFVWbw8eV1P6cP6uwEMk37R3j4hFkk6MiN/kG51Z1yLpKJJ7yQsj4rd5x2Pl+TJvFZWZUqnLPnhcLem5+CVwIbAIOL5gYvBv5BZYDiT1kfQfkhZLWi3pr5LmpIN8NBSfiw3SDkhtrz8PXA/0AS5vtAEsJDVLuk/STyTtJmlG+vmYmz4B0OW4ZVpF9fjgcbWk5+LwiHhN0mDg58CPI+K6RutcIemXwJ0kg3j/I7AtyShA/w78pZHGK/a52KBdB6S5wEkR8VdJ2wJzImK/fCOsnXrs2exkWkVpAmmOiLcl7QDcGxEHp+sWRcS++UZYO5Iei4hhBct9SBLqY8CxhXMXdneS/hgRBxQsz42ID6ePiDwWEXvlGF5N+VxsIOmPQAvJFcN7IqK5YF2jfeGsu57NvsxbXW0PHk8CHiR51rRLP3hcRc9LGt62EBGvAR8DBgAN84079bqkEQBpZ6yXYP00dY3WMc3nYoO+JHP+zgN2lLQzrP/i2Wjnou56NrtlWmX19uBxtUgaBKyJiOeLrDsyIn6fQ1i5kHQA8ANgD5L7x5+JiKXpl6yzI+L6XAOsoYJzsSewEPhsRDzRiOeilPQWUVNEPJ13LLWSfi6uJunZPJakp/O5pD2bu+L/F06mZjmQdCiwLiLmShoGnAg8HhHTcw4td5J+FBHn5h2H5Sf9+3g8IlZL6k0yvOJBwGLgG13xaQgnU7Mak3Q5MJLkOe8ZwKHALJIRou6JiP/ML7rakjStSPGxwP8DiIiTaxuRdQWSFgMHRMSa9DbZ68AdwHFp+cdzDbAIJ1OzGmvr5U0yG8bzwKCIeCX9Bv5QI03NJ+n/SFobk0lGxBJwC3AWQETMzi86y4ukJRGxd/r6kYg4qGDdgq7YYdEdkMxqb01ErI2IN4A/RcQrABHxJo037djBJJ1uLgNWR8Qs4M2ImO1E2tAWSTo/ff1HJTPqIGkP4N3Sm+XHwwma1d47krZJk+nBbYWS+tJgyTTttfvfkm5Pf6/E/y9ZMo73dZL+HfgbyUA3z5JM0/e5XCMrwZd5zWpM0tYR8XaR8gHAwLZZdRqRpI8CRzbSYA1WWjohxgdJvmC1RsTKnEMqycnUzMwsI98zNTMzy8jJ1MzMLCMnU7MGJqlF0hF5x1ELkk5utNlXrHZ8z9SszkjaMiLWdNK+xgOvRcQ1nbG/rqozz5lZMW6ZWkOSNFjS45ImS1ok6WZJH5H0e0lPSjokrbetpJvSeRT/T9IpBdvfL+mR9OeItLxF0ixJP0/3f7OkTQYpT+tcK+kP6fE7Ot55km6XdBfwWyXzgP5Q0kJJj0r6RFrveEkPpjHdng6SjqTlkq5IyxdK2kvJVHgXAGMlLZB0lKR/kPRQeux7JTWl2++kZE7JRyTdKOnPae9jJH1a0sPpPm6U1KPI+/1w+l7/mNbdTlIPSd9K3+ujkv6po3Mo6SpJj6X1r0nLPiBpZlo2U8kUh0iaIuk7ku4DvpmewxsK1l2fxvSUpNPT8i0kfU/J/Kp3S5rets6srIjwj38a7gcYDKwhmbFmC5KBA24iGYHnFOB/03rfAD6dvu4HLCWZc3MboFdaPhSYl75uAVYDg9L9PgiMKHL8WcAP0tdHk0yEUO545wGtwI7pum8C1xbsbweSGXh+B2ybll0CfC19vRy4MH39RWBy+no8cHG7/bRdsfoc8O309Q3ApenrE0lGKxpAMonDXcBW6brvAee2e689gaeAD6fL25M86jAa+Pe0bGuS2VKGlDqHwI7AEwXx9Ut/3wWMSl9/puDfbgpwN9AjXT4PuKFg3e3p/ocBy9Ly04HpafnOwMvA6Xl/Xv3T9X/8cLQ1sqcjfaZTyVigMyMilAz3NzitczxwsqSL0+VewPtJZq+4Qcm0cmtJZoBp83BEtKb7XZDu64Eix78FICJ+J2l7Sf3KHA9gRkS0Td33EdIh99J9vCzpYySJ4fdpQ64nSSJq84v093yg1Nimg4CfSRqYbt82U8kI4LT0WL+R9HJafhzJwBNz02P2Bl5ot889gRURMTfd/hVIWtHA/gUtv74kX0zeofg5nAO8BUyW9CuSRAlweMH7+THJbCNtbo+IUlN2/W8kg0Y81tYCT9/n7Wn582mr1qxDTqbWyAoHTlhXsLyODX8bAj4REU8UbqjkXuNK4ACSVsxbJfa7ltJ/Z+07LLSNTVvseIeSDPa9vqjI9iJJuGeXOF5bXOVi+i7wnYiYJqmFpOXatu9iBEyNiEtLrC8Va1v5hRFxz0aFyXE3OYeRDHp+CEkCPwsYQzIofnuFx3q9yPo2hcdQu99mm8X3TM3Kuwe4sOCe3YFpeV+S1tY64Bxgk/uEFTgz3ecIknFpV5c5Xnu/JUkmpPV2IGm5HSnpQ2nZNkrGMi3nVWC7guW+wF/S16MKyh8A/jHd7/Ekl4MBZgKnS3pfum5HSR9od4zHgV0kfTits52kLdP3+gVJW6Xle0jatlSg6f3fvpFMU3cRyWQBAH9gQyv9UxS/ClCpB4BPpPdOm0guOZt1yMnUrLyvA1sBj0palC5Dcm9wlKQ5JJd4y7WASnlZ0h+AicBnOzhee1cCOyjpvPRH4JiI+CvJfcFbJD1Kklz36iCGu4DT2jogkbREb5d0P8mYqG2uAI6X9AjJ9HErgFcj4jHg30k6RT1KMqXcwMIDRMQ7JF8cvpvGOoPk8vVk4DHgkfS93kj5q2XbAXenx5lNMmk0wJeB89Pyc4CvdPCey7mD5N50WzwPkdy/NSvLj8aY5UDSLJKOP/PyjqUSkrYG1qaXWg8Hvh9dcBqsziCpT0S8Jqk/8DDJWMHP5x2XdW2+Z2pmlXg/cJukLUg6CH0+53iq6e60M1hP4OtOpFYJt0zNzMwy8j1TMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDL6/xEcrFrYCoz/AAAAAElFTkSuQmCC",
|
|
275
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFQCAYAAADk2pTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3r0lEQVR4nO3de1wU9f4/8Nfier9gxyu6/FRc5LYgykU0L5gCioSpaZinUFPE8FJWRp38Suebid00xTLMFK2gY2Z4g1ITj5ZKZmSFJhUkC3jjpqCILp/fH3wdRFgWG9jh8no+Hj0OM/PZmfd+DvpyZj7zGZUQQoCIiIj+NgulCyAiImrsGKZEREQyMUyJiIhkYpgSERHJxDAlIiKSiWFKREQkk1rpAsypa9eu6Nu3r9JlEBFRI5WRkYErV65UWd+swrRv3744efKk0mUQEVEj5e7uXu16XuYlIiKSiWFKREQkE8OUiIhIpmZ1z5SIqKm6desW9Ho9SkpKlC6lSWjTpg00Gg1atmxZq/YMUyKiJkCv16Njx47o27cvVCqV0uU0akII5ObmQq/Xo1+/frX6DC/zEhE1ASUlJejSpQuDtA6oVCp06dLlvs7yGaZERE0Eg7Tu3G9fMkyJiKhOdOjQodLyli1bsGDBgno51t37joiIwJYtW2r92eTkZIwcORJ2dnawt7fHnDlzcP36dVn18J4pEVET1Dd8b53uLyNyQp3urzq3b9+GWq02ulwXLl68iKlTpyIuLg5Dhw6FEAI7duzAtWvX0K5du7+9X4YpERHVu927d+O1115DaWkpunTpgk8++QQ9evRAREQEsrOzkZGRga5du2LAgAGVlt99912Ehobi/PnzAIA1a9bgwQcfrLTvDh06oG3btgCAtWvXYsOGDVCr1XB0dERcXFyltuvXr0dwcDCGDh0KoPxy7qOPPir7+zFMiYioTty4cQOurq7Scl5eHgIDAwEAw4cPx/Hjx6FSqfDhhx/ijTfewNtvvw0A+OGHH3D06FG0bdsWERERlZYff/xxPPvssxg+fDjOnz8PPz8/nDlzptJxn3/+eennyMhIpKeno3Xr1igoKKhS4y+//ILg4OA6/+4MUyIiqhNt27ZFSkqKtLxlyxZpPnS9Xo/HHnsMOTk5KC0trfTISWBgoHRmee/ygQMHkJqaKm27evUqrl27ZrQGFxcXzJgxA4888ggeeeSROvpmpnEAEhER1buFCxdiwYIF+Pnnn/HBBx9Ueuykffv2ldrevVxWVoZjx44hJSUFKSkpyMrKQseOHY0eZ+/evQgLC8MPP/wANzc33L59u9J2Jycn/PDDD3X0rSooGqaJiYmws7ODVqtFZGRkle1CCCxatAharRYuLi44deoUgPLnqTw9PTFw4EA4OTlh+fLl5i6diIjuQ2FhIXr37g0AiImJqfXnfH19ERUVJS3ffeZ7r7KyMmRmZmL06NF44403UFBQgKKiokptFixYgJiYGJw4cUJa9/HHH+PChQu1rqk6ioWpwWBAWFgYEhISkJqaitjY2Eqn8gCQkJCAtLQ0pKWlITo6GvPnzwcAtG7dGt988w1++uknpKSkIDExEcePH1fiaxARUS1ERERg6tSpGDFiBLp27Vrrz61duxYnT56Ei4sLHB0dsWHDBqNtDQYD/vnPf8LZ2RmDBg3Cs88+i86dO1dq06NHD8TFxeH555+HnZ0dHBwccOTIEXTq1OnvfjUAgEoIIWTt4W86duwYIiIi8NVXXwEAVq5cCQB46aWXpDbz5s2Dt7c3pk+fDgCws7NDUlISrKyspDbXr1/H8OHD8f7772PIkCE1HtPd3Z3vMyWiJunMmTNwcHBQuowmpbo+NZYjip2ZZmVlwdraWlrWaDTIysqqdRuDwQBXV1d0794dPj4+JoOUiIiovig2mre6E+J7p2+qqU2LFi2QkpKCgoICTJo0Cb/88gt0Ol2V9tHR0YiOjgZQPposKSmpDqonImpYLC0taxzlSvevpKSk1pmhWJhqNBpkZmZKy3q9Hr169brvNp07d4a3tzcSExOrDdOQkBCEhIQAKD899/b2rsNvQUTUMJw5c6bGUa50/9q0aYNBgwbVqq1il3k9PDyQlpaG9PR0lJaWIi4uTnq4947AwEBs3boVQggcP34clpaWsLKywuXLl6WHcW/cuIEDBw7A3t5egW9BRESk4JmpWq1GVFQU/Pz8YDAYMHv2bDg5OUkjtUJDQ+Hv7499+/ZBq9WiXbt22Lx5MwAgJycHwcHBMBgMKCsrw7Rp0xAQEKDUVyEiomZOsdG8SuBoXiJqqjiat+41itG8RETUdGRkZFQZtxIREYG33nrrb+0vKSkJM2fOrHX7CxcuICgoCP3794ejoyP8/f1x7ty5v3Xsv4Nz8xIRNUURlnW8v8K63V8dEkJg0qRJCA4Olt4Sk5KSgosXL2LAgAFmqYFnpkREVO+8vb3x4osvwtPTEwMGDMCRI0cAlD9+MmvWLGnWokOHDgEAWrVqBUvL8n8QHD58GK6urnB1dcWgQYOqPAJ06NAhtGzZEqGhodI6V1dXjBgxwkzfjmemRERkJrdv30ZycjL27duHV199FQcOHMD69esBAD///DPOnj0LX19fnDt3DsOGDcOwYcMAAG+99RbWr1+PBx98EEVFRWjTpk2l/f7yyy9wc3Mz+/e5G89MiYhItnsn3alu/eTJkwEAbm5uyMjIAAAcPXoUTzzxBADA3t4effr0qXKv88EHH8SSJUuwdu1aFBQUQK1ueOeBDFMiIpKtS5cuyM/Pr7QuLy+v0qT2rVu3BlA+g92dV6PV5oGS8PBwfPjhh7hx4wa8vLxw9uzZStvr67Vq94NhSkREsnXo0AFWVlY4ePAggPIgTUxMxPDhw2v83MiRI/HJJ58AAM6dO4fz58/Dzs6uUps//vgDzs7OePHFF+Hu7l4lTB966CHcvHkTGzdulNZ9//33OHz4cF18tVphmBIRUZ3YunUrXnvtNbi6uuKhhx7C8uXL0b9//xo/8/TTT8NgMMDZ2RmPPfYYtmzZIp3B3rFmzRrodDoMHDgQbdu2xfjx4yttV6lU2LlzJ/bv34/+/fvDyckJERERVaafrU+ctIGIqAngpA11j5M2EBERmRHDlIiISCaGKRERkUwMUyKiJqIZDYGpd/fblwxTIqImoE2bNsjNzWWg1gEhBHJzc6vMtFSThjeNBBER3TeNRgO9Xo/Lly8rXUqT0KZNG2g0mlq3Z5gSETUBLVu2RL9+/ZQuo9niZV4iIiKZGKZEREQyMUyJiIhkYpgSERHJxDAlIiKSiWFKREQkE8OUiIhIJoYpERGRTAxTIiIimRimREREMjFMiYiIZGKYEhERycQwJSIikknRME1MTISdnR20Wi0iIyOrbBdCYNGiRdBqtXBxccGpU6cAAJmZmRg9ejQcHBzg5OSEd99919ylExERSRQLU4PBgLCwMCQkJCA1NRWxsbFITU2t1CYhIQFpaWlIS0tDdHQ05s+fDwBQq9V4++23cebMGRw/fhzr16+v8lkiIiJzUSxMk5OTodVqYWNjg1atWiEoKAjx8fGV2sTHx+PJJ5+ESqWCl5cXCgoKkJOTAysrKwwePBgA0LFjRzg4OCArK0uJr0FERKRcmGZlZcHa2lpa1mg0VQKxNm0yMjLw448/YsiQIfVbMBERkRFqpQ4shKiyTqVS3VeboqIiTJkyBWvWrEGnTp2qPU50dDSio6MBAHq9HklJSTKqJiIiqkqxMNVoNMjMzJSW9Xo9evXqVes2t27dwpQpUzBjxgxMnjzZ6HFCQkIQEhICAHB3d4e3t3cdfgsiIiIFL/N6eHggLS0N6enpKC0tRVxcHAIDAyu1CQwMxNatWyGEwPHjx2FpaQkrKysIIfDUU0/BwcEBS5YsUegbEBERlVPszFStViMqKgp+fn4wGAyYPXs2nJycsGHDBgBAaGgo/P39sW/fPmi1WrRr1w6bN28GAHz77bfYtm0bnJ2d4erqCgB4/fXX4e/vr9TXISKiZkwlqrsx2US5u7vj5MmTSpdBRESNlLEc4QxIREREMjFMiYiIZGKYEhERycQwJSIikolhSkREJBPDlIiISCaGKRERkUwMUyIiIpkYpkRERDIxTImIiGRimBIREcnEMCUiIpKJYUpERCQTw5SIiEgmhikREZFMDFMiIiKZjIbp5cuXkZqaWmX9r7/+isuXL9drUURERI2J0TBduHBhtaGp1+uxePHiei2KiIioMTEapj///DNGjRpVZb2fnx9Onz5dr0URERE1JkbD9NatW0Y/VNM2IiKi5sZomNra2mLfvn1V1ickJMDGxqZeiyIiImpM1MY2rF69GgEBAfjPf/4DNzc3AMDJkydx7Ngx7Nmzx2wFEhERNXRGz0wHDBgg3TfNyMhARkYGRo0ahdOnT2PAgAHmrJGIiKhBM3pmCgCtW7fGrFmzzFULERFRo8RJG4iIiGRimBIREcnEMCUiIpLJ6D1TZ2dnqFQqox/kxA1ERETljIbpncdf1q9fDwB44oknAACffPIJ2rVrZ4bSiIiIGgejl3n79OmDPn364Ntvv8Ubb7wBZ2dnODs7IzIyEl999VWdHDwxMRF2dnbQarWIjIyssl0IgUWLFkGr1cLFxQWnTp2Sts2ePRvdu3eHTqerk1qIiIj+LpP3TIuLi3H06FFp+bvvvkNxcbHsAxsMBoSFhSEhIQGpqamIjY2t8paahIQEpKWlIS0tDdHR0Zg/f760bebMmUhMTJRdBxFRY+Xt7Q1vb2+lyyCYeM4UADZt2oTZs2ejsLAQKpUKlpaW+Oijj2QfODk5GVqtVpqaMCgoCPHx8XB0dJTaxMfH48knn4RKpYKXlxcKCgqQk5MDKysrjBw5EhkZGbLrICIikstkmLq5ueGnn37C1atXIYSApaVlnRw4KysL1tbW0rJGo8GJEydMtsnKyoKVlVWd1EBERE3DnTP0pKQkRY5vMkwvXryIl19+GdnZ2dIl2WPHjuGpp56SdWAhRJV1944erk0bU6KjoxEdHQ2g/F2sSnU0EVFdKygoAKBcgDQkSveFyTCdOXMmZs2ahRUrVgAon7P3sccekx2mGo0GmZmZ0rJer0evXr3uu40pISEhCAkJAQC4u7vz/gIRNRmdO3cGAP69BuX7wuQApCtXrmDatGmwsChvqlar0aJFC9kH9vDwQFpaGtLT01FaWoq4uDgEBgZWahMYGIitW7dCCIHjx4/D0tKSl3ipWeJAE6KGzWSYtm/fHrm5udLl1TuhJpdarUZUVBT8/Pzg4OCAadOmwcnJCRs2bMCGDRsAAP7+/rCxsYFWq8XcuXPx3nvvSZ+fPn06hg4dit9++w0ajQabNm2SXRMREdHfYfIy7zvvvIPAwED88ccfePDBB3H58mVs3769Tg7u7+8Pf3//SutCQ0Oln1UqlTRpxL1iY2PrpAYialyUHmhCVB2TYerk5ITDhw/jt99+gxACdnZ2KCsrM0dtRETUDDSFfyCZvMw7dOhQqNVqODk5QafToWXLlhg6dKg5aiMiImoUjJ6ZXrhwAVlZWbhx4wZ+/PFH6TGVq1ev4vr162YrkIiIqKEzGqZfffUVtmzZAr1ejyVLlkjrO3bsiNdff90sxRERNVVN4dImVTAapsHBwQgODsaOHTswZcoUc9ZERETUqJgcgDRlyhTs3bsXv/76K0pKSqT1//M//1OvhRERETUWJgcghYaG4rPPPsO6desghMD27dvx119/maM2auY4UQERNRYmw/S7777D1q1b8cADD2D58uU4duxYpSn+iIiImjuTYdq2bVsAQLt27ZCdnY2WLVsiPT293gsjIiJqLEzeMw0ICEBBQQFeeOEFDB48GCqVCnPmzDFHbURERI2CyTBdtmwZgPKBSAEBASgpKamzd5oSERE1BSbD1GAwYO/evcjIyMDt27el9Xc/e0pERNScmQzThx9+GG3atIGzs7P0GjYior+DExVQU2UyTPV6PU6fPm2OWoiIiBolk6ea48ePx9dff22OWoiIiBolk2emXl5emDRpEsrKytCyZUsIIaBSqXD16lVz1EfU6PHSJlHTZzJMn3vuORw7dgzOzs5QqVTmqImIiKhRMXmZ19bWFjqdjkFKRERkhMkzUysrK3h7e2P8+PFo3bq1tJ6PxlBNeGnzPkWYeHY7o9h0u4jCuquHiO6LyTDt168f+vXrh9LSUpSWlpqjJiIiokbFZJguX77cHHVQc8SzMSJqIoyG6TPPPIM1a9bg4YcfrvZ+6a5du+q1sOaKl0eJiBofo2H6xBNPAACef/55sxVDRETUGBkNUzc3NwBASkoKFi9eXGnbu+++i1GjRtVvZURERI2EyUdjYmJiqqzbsmVLfdRCRETUKBk9M42NjcWnn36K9PR0BAYGSuuvXr2KLl26mKW4xob3O4nqAAemVWBfNBpGw3TYsGGwsrLClStX8Nxzz0nrO3bsCBcXF7MUR0RE1BgYDdM+ffqgT58+OHDgANq2bQsLCwucO3cOZ8+ehbOzszlrbFr4L00ioibH5D3TkSNHoqSkBFlZWRgzZgw2b96MmTNnmqE0IiKixsFkmAoh0K5dO3zxxRdYuHAhdu7cidTU1Do5eGJiIuzs7KDVahEZGVntsRctWgStVgsXFxecOnWq1p8lIiIyl1qF6bFjx/DJJ59gwoQJAIDbt2/LPrDBYEBYWBgSEhKQmpqK2NjYKiGdkJCAtLQ0pKWlITo6GvPnz6/1Z4mIiMzF5HSC7777LlauXIlJkybByckJf/75J0aPHi37wMnJydBqtbCxsQEABAUFIT4+Ho6OjlKb+Ph4PPnkk1CpVPDy8kJBQQFycnKQkZFh8rP1pW/4XqPbLvyZa7JNRps6L4mIiBRmMkxHjhyJkSNHSss2NjZ45513ZB84KysL1tbW0rJGo8GJEydMtsnKyqrVZ6uTm5sr+xnZca1yjW4r9S+fyKJVq7NG22zB1Br37zrO8H/tWhhv1ECe8z3+p/G+sLHXAQBC/+dto228LJpOX9TE1dUVgKnns9kXFdgXFdgX5tyHHEbDdPjw4Th69CiA8qkFt23bJm3z9PSsdP/y7xBCVFl37xzAxtrU5rN3REdHIzo6GgBw8+ZNFBQU/I1qK9j/w/gv7e955f+rraFNAXQ17v/2ld/L23XWGm8k8zvUlfrui76d77SrQQPpi5rcuS1S4+9e56bze1F80/htoNJbtwAAWRevGG3Tnn0haSp9UVM/ALXsC1VJjfu4fesmAKDgkt54o1YdatyHHEbDtLi4WPr5l19+qbStujC7XxqNBpmZmdKyXq9Hr169atWmtLTU5GfvCAkJQUhICADA3d0dzzzzjOzajbkzaUNUVFS9HaOxYF9UqIu+aEz9WeOtkN3lM6r1fNzfaJuMyAk17p99UaGx9EVN/QDUsi/aPF7jPrz3lmdW1Mz2xhstlf9Y4ccff1zteqNheveZ3r1nfcbOAu+Hh4cH0tLSkJ6ejt69eyMuLg6ffvpppTaBgYGIiopCUFAQTpw4AUtLS1hZWaFbt24mP0tERE2Iqefrk7z/r11SfVdSLaNhWlBQgJ07d6KsrAwFBQX44osvAJSflRYWyk93tVqNqKgo+Pn5wWAwYPbs2XBycsKGDRsAAKGhofD398e+ffug1WrRrl07bN68ucbPEhERKcFomI4aNUp6Z+moUaOwe/duadvdA5Lk8Pf3h79/5dP60NBQ6WeVSoX169fX+rNERERKMBqmd84CqfY4wT0RUfNk8tEYIlJeY/qHWk2DZryPvwkASDIxsIaosTE5AxIRERHVjGFKREQk031d5g0JCZEmQCAioprxknfzcV9npidPnqyvOoiIiBqt+zoz7d69e33VQURETZTJmZyawFn6fYVpYmJifdVBTUxjGn1KRCQXByARERHJxDAlIiKSiWFKREQkk9EwXbp0qTTp/N1Wr16NF198sV6LIiIiakyMhumePXuk94DebfHixdi7t+Z30xERETUnRsNUpVLBwqLqZgsLizp5OTgREVFTYfTRmHbt2iEtLQ22traV1qelpaFt27b1XhhRU8HHhOoW+5MaIqNh+u9//xvjx4/HK6+8Ajc3NwDlMyCtXLkSa9asMVd9REREDZ7RMB0/fjy+/PJLvPnmm1i3bh0AQKfTYceOHXB2djZbgURERA1djTMg6XQ6xMTEmKsWIiKiRonPmRIREcnEMCUiIpLpvia6JyKihoMjmxsOo2G6cOFCqFQqox9cu3ZtvRRERETU2BgNU3d3d3PWQURE1GgZDdPg4GBz1kFERNRombxnevnyZaxatQqpqakoKSmR1n/zzTf1WhgREVFjYXI074wZM+Dg4ID09HQsX74cffv2hYeHhzlqIyIiahRMhmlubi6eeuoptGzZEqNGjcJHH32E48ePm6M2IiKiRsHkZd6WLVsCAKysrLB371706tULer2+3gsjIiJqLEyG6SuvvILCwkK8/fbbWLhwIa5evYrVq1ebozYiamL4XCQ1VSYv8wYEBMDS0hI6nQ6HDh3CDz/8gMDAQFkHzcvLg4+PD2xtbeHj44P8/Pxq2yUmJsLOzg5arRaRkZHS+u3bt8PJyQkWFhY4efKkrFqIiIjkMnlmOmvWrGonb/joo4/+9kEjIyMxZswYhIeHIzIyEpGRkVi1alWlNgaDAWFhYdi/fz80Gg08PDwQGBgIR0dH6HQ6fPHFF5g3b97froGIiKiumAzTgIAA6eeSkhLs3LkTvXr1knXQ+Ph46XJPcHAwvL29q4RpcnIytFotbGxsAABBQUGIj4+Ho6MjHBwcZB2fiIioLpkM0ylTplRanj59OsaOHSvroBcvXoSVlRWA8oFNly5dqtImKysL1tbW0rJGo8GJEydkHZeIiKg+3PdE92lpaTh//rzJdmPHjsWFCxeqrF+xYkWtjiOEqLKuprmCjYmOjkZ0dDQAQK/XcwAEETUIBQUFADgoC6ibvlC6P02GaceOHSuFWM+ePatckq3OgQMHjG7r0aMHcnJyYGVlhZycHHTv3r1KG41Gg8zMTGlZr9f/rcvLISEhCAkJAVA+37C3t/d974OIqK517twZAPh3EuqmL5TuT5Nheu3atTo/aGBgIGJiYhAeHo6YmBhMnDixShsPDw+kpaUhPT0dvXv3RlxcHD799NM6r4WIiEguk4/GjBkzplbr7kd4eDj2798PW1tb7N+/H+Hh4QCA7Oxs+Pv7AwDUajWioqLg5+cHBwcHTJs2DU5OTgCAnTt3QqPR4NixY5gwYQL8/Pxk1UNERCSH0TPTkpISXL9+HVeuXEF+fr50D/Pq1avIzs6WddAuXbrg4MGDVdb36tUL+/btk5b9/f2lcL3bpEmTMGnSJFk1EBER1RWjYfrBBx9gzZo1yM7OhpubmxSmnTp1QlhYmNkKJCIiauiMhunixYuxePFirFu3DgsXLjRnTURERPdF6VHRJu+ZWlhYSEOOASA/Px/vvfdefdZERETUqJgM040bN0pDjgHggQcewMaNG+uzJiIiokbFZJiWlZVVmkDBYDCgtLS0XosiIiJqTEw+Z+rn54dp06YhNDQUKpUKGzZswLhx48xRGxFRk6X0PT6qWybDdNWqVYiOjsb7778PIQR8fX0xd+5cc9RGRETUKNRqAFJoaCg+//xz7NixA05OThzdS0REdJdaTXSfkpKC2NhYfPbZZ+jXrx8mT55c33URERE1GkbD9Ny5c4iLi0NsbCy6dOmCxx57DEIIHDp0yJz1ERERNXhGw9Te3h4jRozA7t27odVqAQCrV682W2FERESNhdF7pjt27EDPnj0xevRozJ07FwcPHqz2HaNERETNnUqYSMji4mJ8+eWXiI2NxTfffIPg4GBMmjQJvr6+5qqxzri7u+PkyZNKl0FERI2UsRwxOZq3ffv2mDFjBvbs2QO9Xg9XV1dERkbWS5FERESNkckwvds//vEPzJs3D99880191UNERNTo3FeYEhERUVUMUyIiIpkYpkRERDIxTImIiGRimBIREcnEMCUiIpKJYUpERCQTw5SIiEgmhikREZFMDFMiIiKZGKZEREQyMUyJiIhkYpgSERHJxDAlIiKSSZEwzcvLg4+PD2xtbeHj44P8/Pxq2yUmJsLOzg5arbbSO1RfeOEF2Nvbw8XFBZMmTUJBQYGZKiciIqpKkTCNjIzEmDFjkJaWhjFjxlT7snGDwYCwsDAkJCQgNTUVsbGxSE1NBQD4+Pjgl19+wenTpzFgwACsXLnS3F+BiIhIokiYxsfHIzg4GAAQHByML7/8skqb5ORkaLVa2NjYoFWrVggKCkJ8fDwAwNfXF2q1GgDg5eUFvV5vttqJiIjupUiYXrx4EVZWVgAAKysrXLp0qUqbrKwsWFtbS8sajQZZWVlV2n300UcYP358/RVLRERkgrq+djx27FhcuHChyvoVK1bU6vNCiCrrVCpVlX2p1WrMmDHD6H6io6MRHR0NANDr9UhKSqrV8YmIiGqr3sL0wIEDRrf16NEDOTk5sLKyQk5ODrp3716ljUajQWZmprSs1+vRq1cvaTkmJgZ79uzBwYMHq4Ts3UJCQhASEgIAcHd3h7e399/4NkRERMYpcpk3MDAQMTExAMpDceLEiVXaeHh4IC0tDenp6SgtLUVcXBwCAwMBlI/yXbVqFXbt2oV27dqZtXYiIqJ7KRKm4eHh2L9/P2xtbbF//36Eh4cDALKzs+Hv7w8AUKvViIqKgp+fHxwcHDBt2jQ4OTkBABYsWIBr167Bx8cHrq6uCA0NVeJrEBERAQBUorqbk02Uu7s7Tp48qXQZRETUSBnLEc6AREREJBPDlIiISCaGKRERkUwMUyIiIpkYpkRERDIxTImIiGRimBIREcnEMCUiIpKJYUpERCQTw5SIiEgmhikREZFMDFMiIiKZGKZEREQyMUyJiIhkYpgSERHJxDAlIiKSiWFKREQkE8OUiIhIJoYpERGRTAxTIiIimRimREREMjFMiYiIZGKYEhERycQwJSIikolhSkREJBPDlIiISCaGKRERkUwMUyIiIpkYpkRERDIpEqZ5eXnw8fGBra0tfHx8kJ+fX227xMRE2NnZQavVIjIyUlq/bNkyuLi4wNXVFb6+vsjOzjZX6URERFUoEqaRkZEYM2YM0tLSMGbMmEpBeYfBYEBYWBgSEhKQmpqK2NhYpKamAgBeeOEFnD59GikpKQgICMC///1vc38FIiIiiSJhGh8fj+DgYABAcHAwvvzyyyptkpOTodVqYWNjg1atWiEoKAjx8fEAgE6dOkntiouLoVKpzFI3ERFRddRKHPTixYuwsrICAFhZWeHSpUtV2mRlZcHa2lpa1mg0OHHihLT8r3/9C1u3boWlpSUOHTpU/0UTEREZUW9hOnbsWFy4cKHK+hUrVtTq80KIKuvuPgNdsWIFVqxYgZUrVyIqKgqvvvpqtfuJjo5GdHQ0AECv1yMpKalWxyciIqqtegvTAwcOGN3Wo0cP5OTkwMrKCjk5OejevXuVNhqNBpmZmdKyXq9Hr169qrR7/PHHMWHCBKNhGhISgpCQEACAu7s7vL297/ObEBER1UyRe6aBgYGIiYkBAMTExGDixIlV2nh4eCAtLQ3p6ekoLS1FXFwcAgMDAQBpaWlSu127dsHe3t48hRMREVVDkXum4eHhmDZtGjZt2oT/9//+H7Zv3w4AyM7Oxpw5c7Bv3z6o1WpERUXBz88PBoMBs2fPhpOTk/T53377DRYWFujTpw82bNigxNcgIiICAKhEdTcnmyh3d3ecPHlS6TKIiKiRMpYjnAGJiIhIJoYpERGRTAxTIiIimRimREREMjFMiYiIZGKYEhERycQwJSIikolhSkREJBPDlIiISCaGKRERkUwMUyIiIpkYpkRERDIxTImIiGRimBIREcnUrF7B1rVrV/Tt21fRGi5fvoxu3bopWkNDwb6owL6owL6owL6o0FD6IiMjA1euXKmyvlmFaUPAd6pWYF9UYF9UYF9UYF9UaOh9wcu8REREMjFMiYiIZGKYmllISIjSJTQY7IsK7IsK7IsK7IsKDb0veM+UiIhIJp6ZEhERycQwJSIikolhSkREJBPD1Mxyc3OVLqHBOXv2rNIlNBjsi+br9OnTSpfQ4Ny6davKuuomTGgIGKb1KDw8XPo//uTJk7CxscGQIUPQp08fHD58WOHqGg5fX1+lS2gw2BcVxo8fr3QJZjVo0CBotVosW7YMqampSpejqEOHDkGj0aBXr17w9fVFRkaGtK2h/hlRK11AU7Z3715ERkYCAF544QV89tln8PDwwLlz5/D444836Nk86tqiRYuqXS+EQEFBgXmLURj7osKpU6eqXS+EQEpKinmLUZiLiwu2bduG2NhYBAYGon379pg+fTqCgoIUnwbV3JYuXYqvvvoKTk5O+Pzzz+Hj44Nt27bBy8sLDfUBFIZpPbp16xZu374NtVqNGzduwMPDAwAwYMAA3Lx5U+HqzGvz5s14++230bp16yrbYmNjFahIOeyLCh4eHhg1alS1f0E2t39YqFQq6HQ6rFixAitWrEBycjLi4uIwYsQIWFtb47vvvlO6RLMpLS2Fk5MTAODRRx+Fg4MDJk+ejMjISKhUKoWrqx7DtB6FhYXB398f4eHhGDduHJ555hlMnjwZBw8ehKurq9LlmZWHhwd0Oh2GDRtWZVtERIT5C1IQ+6KCg4MDPvjgA9ja2lbZZm1trUBFyrn3HxSenp7w9PTE22+/jf/+978KVaWMli1b4sKFC+jZsycAwMnJCQcPHkRAQAD++OMPhaurHidtqGdJSUl4//33ce7cOdy+fRvW1tZ45JFHMGvWLLRs2VLp8swmLy8Pbdq0Qbt27ZQuRXHsiwqff/45nJ2dYWdnV2Xbl19+iUceecT8RSnk008/xeOPP650GQ3CgQMH0K1bNwwcOLDS+oKCAqxfvx7/+te/FKrMOIYpUQOQm5uLLl26KF0GEf1NHM1bj9auXQu9Xq90GQ3CyZMnMXr0aPzzn/9EZmYmfHx8YGlpCQ8PD/z4449Kl2dWHOVd2dmzZ7Fq1SosWrQIixcvxqpVq3DmzBmlyzK7CxcuYP78+QgLC0Nubi4iIiLg7OyMadOmIScnR+nyzCoxMVH6ubCwEE899RRcXFzw+OOP4+LFiwpWZhzDtB4tW7YMnp6eGDFiBN577z1cvnxZ6ZIU8/TTT2Pp0qWYMGEChg0bhnnz5qGwsBCRkZF4+umnlS7PrPbu3YuuXbsCqBjl/fvvv2P//v147rnnFK7OvFatWoWgoCAIIeDp6QkPDw8IITB9+nRpJHxzMXPmTDg6OsLa2hqjR49G27ZtsXfvXowYMQKhoaFKl2dWL7/8svTzc889BysrK+zevRseHh6YN2+egpXVQFC9cXV1FQaDQXz11Vdi9uzZomvXrsLPz09s2bJFXL16VenyzMrV1VX62dra2ui25sDOzk7cunVLCCHEkCFDKm3T6XRKlKQYW1tbUVpaWmX9zZs3hVarVaAi5dT0Z2TgwIFmrkZZgwYNkn6+97s31L7gaN56pFKpYGFhAV9fX/j6+uLWrVtISEhAbGwsnn/++WZ1ptqmTRt8/fXXKCwshEqlkgaXHD58GC1atFC6PLPiKO8KFhYWyM7ORp8+fSqtz8nJgYVF87pwVlZWJv385JNPGt3WHFy6dAnvvPMOhBC4evUqhBDSIzENtS8YpvVI3DO2q2XLlggMDERgYCBu3LihUFXK2LBhA5YuXQoLCwt89dVXeP/99zFz5kz07t0bGzduVLo8s1q4cCGcnZ0rjfL+7bff8Mgjj+CVV15RujyzWrNmDcaMGQNbW1vpUZjz58/j999/R1RUlMLVmdfEiRNRVFSEDh064LXXXpPW//777xgwYICClZnf3Llzce3aNQBAcHAwrly5gm7duuHChQsN9h+cHM1bj86dO9fs/hAQ3a+ysjIkJycjKysLQghoNBp4eHg0uysW1LgxTM3o999/x08//QQHBwc4OjoqXY7ZnT17FvHx8cjKyoJKpUKvXr0wceJE2NvbK12aoo4ePYrk5GTodLoGO+8o1b+1a9di8uTJ0Gg0SpeiuBMnTsDBwQGdOnXCjRs3EBkZiVOnTsHR0REvv/wyLC0tlS6xiuZ1U8LMRo8eLT0CsW3bNvj7+yMhIQGPPfYY1q1bp3B15mVs1GZQUFCzG7Xp6ekp/bxx40YsWLAA165dw6uvvtrs+qImAQEBSpdgVhz9X2H27NnSpCaLFy9GYWEhXnzxRbRr1w6zZs1SuDojlBr51Bw4OTlJP7u7u4srV64IIYQoLi4Wzs7OSpWlCI7arHD3qE13d3dx6dIlIYQQRUVFzW40b02ys7OVLsGsOPq/gr29vfTz3SN7hWi4o3l5ZlqPWrZsiaysLABAhw4d0L59ewBA69atYTAYlCzN7O6M2rxXcx21mZ+fj9zcXAgh0K1bNwBA+/btoVZzTOAdVlZWSpdgVneP/t+0aROys7Px9NNPIzExETY2NkqXZ1Y6nQ6bN28GAAwcOFB6w9a5c+ca7DSs/JNbj1avXg1fX19MmTIFTk5OeOihhzBu3DgcOXKk4V6qqCcctVmhsLAQbm5u0nD/OxN6FxUVNdjXS9WXoqIivPHGG9ixYwf0ej1atWqF/v37IzQ0FDNnzlS6PLO69//75jz6/8MPP8TixYvx2muvoWvXrhg6dCisra1hbW2NDz/8UOnyqsUBSPWssLAQn376qfQIhEajabaDbjhqs2bXr1/HxYsX0a9fP6VLMZuJEydi0qRJGDt2LP7zn/+guLgYQUFBeO2119C7d2+8/vrrSpdoNhz9X9W1a9fw559/Sn939ujRQ+mSjGKYEpFiBg4ciJ9++kla9vDwwPfff4+ysjI4Ojri7NmzClZHVHvN62ZVAxIdHa10CQ1Gcxu1WZPm1hft27fH0aNHAQC7d+/GP/7xDwDl99j57/wKze33oiYNtS94z1Qh/IuiQnObAakmza0v3n//fcydOxe//fYbnJ2dsWnTJgDA5cuXERYWpnB1DUdz+72oSUPtC17mrWd//PEHdu7ciczMTKjVatja2mL69OkN8qFjc7t06RK6d++udBnUwDz55JPYunWr0mUQ3Rde5q1Ha9euRWhoKEpKSvD999/jxo0byMzMxNChQ5GUlKR0eWaVl5dX6b/c3Fx4enoiPz8feXl5SpdnVny3a4U7o1Xv/u+LL76Qfm5O+HtRoVH2hSJPtzYTOp1O3L59WwhRPlHDqFGjhBBC/PXXX83utWMqlUr07du30n9qtVr07dtX9OvXT+nyzMrDw0Ps27dPfPrpp0Kj0Yjt27cLIYQ4cOCA8PLyUrg683J1dRUzZswQhw4dEklJSeLQoUOiZ8+eIikpSSQlJSldnlnx96JCY+wLhmk90ul0oqSkRAghRF5enhg8eLC07e7ZkZqDN998U/j5+YnTp09L6/r27atgRcrhu10rGAwG8c4774ixY8eKH3/8UQghmt0/ru7g70WFxtgXHIBUj+bMmQMPDw94eXnhv//9L1588UUA5YMr7oxabC6ef/55BAUF4dlnn4W1tTVeffVV6f2EzQ3f7VrBwsICzz77LKZOnYpnn30WPXr0wO3bt5UuSxH8vajQKPtC6TRv6n755Rexfft2cebMGaVLaTB27dolhgwZInr06KF0KYpISUkRvr6+Yty4ceLMmTNi0aJFonPnzsLR0VEcPXpU6fIUtWfPHvHSSy8pXYYifvzxR/5e/J/G+GeEo3nJbM6ePYusrCwMGTIELVq0wB9//AGdTofExESMGzdO6fLM6sSJE7CwsICHhwd+/fVXJCYmwsHBAf7+/kqXRg3EkSNHkJycDGdn52b3ar4TJ07A3t4elpaWuHHjBlauXIlTp07BycmJr2Cj5m3t2rWYOHEi1q1bB51Oh6+//ho6nQ4A8PLLLytcnXm9+uqrWLx4MebPn4+XXnoJixYtQnFxMSIjI7FixQqlyyOF3PtqvkWLFqGoqKhZvppv9uzZ0otBFi9ejGvXriE8PJyvYCPS6XTi2rVrQggh0tPThZubm1izZo0QouEOKKgvd0Z5FxcXi44dO4rCwkIhhBDXr19vdq/mowp8NV8FvoKNyAiDwYAOHToAAPr27YukpCQkJCRgyZIlzW42KLVajRYtWqBdu3bo378/OnXqBABo27Zts3sdHVXgq/kqNMZXsPFPLplFz549kZKSIi136NABe/bswZUrV/Dzzz8rV5gCWrVqhevXrwMAfvjhB2l9YWEhw7QZu/NqPnd3d+Tl5eHChQsA0Cxfzffhhx/i8OHD6N+/P1JTUzF06FDY2Nhg7ty5fAUbNW96vR5qtRo9e/assu3bb7/Fgw8+qEBVyrh58yZat25dZf2VK1eQk5MDZ2dnBaqihqo5vprvDr6CjYiIqBnhNSUiIiKZGKZEREQyMUyJmrGkpCR89913SpdhFrt27Wp2z2uS+fCeKVEjc/v27Tp7VCIiIgIdOnTA888/Xyf7a6jqss+IqsMzU2qWMjIyYG9vjzlz5kCn02HGjBk4cOAAHnzwQdja2iI5ORkAUFxcjNmzZ8PDwwODBg1CfHy89PkRI0Zg8ODBGDx4sHR2l5SUBG9vbzz66KOwt7fHjBkzqn2swdvbG8888wyGDRsGnU5n8nhbtmzB1KlT8fDDD8PX1xdFRUWYNWsWnJ2d4eLigh07dgAAvv76awwdOhSDBw/G1KlTUVRUBKD82d7ly5dj8ODBcHZ2xtmzZ5GRkYENGzZg9erVcHV1xZEjR7B7924MGTIEgwYNwtixY3Hx4kUA5S9n8PHxweDBgzFv3jz06dMHV65cAQB8/PHH8PT0hKurK+bNmweDwVDl+37//fcYNmwYBg4cCE9PT1y7dg0GgwEvvPACPDw84OLigg8++MBkH4aHh8PR0REuLi7SPwD++usvjBkzBi4uLhgzZgzOnz8PAJg5cyaWLFmC0aNH48UXX8SWLVuwYMECaduiRYswbNgw2NjY4PPPPwdQ/qzn008/DScnJwQEBMDf31/aRlQjhSaLIFJUenq6aNGihTh9+rQwGAxi8ODBYtasWaKsrEx8+eWXYuLEiUIIIV566SWxbds2IYQQ+fn5wtbWVhQVFYni4mJx48YNIYQQ586dE25ubkIIIQ4dOiQ6deokMjMzhcFgEF5eXuLIkSNVjj9q1CgxZ84cIYQQhw8fll7JZ+x4mzdvFr179xa5ublCCCGWLl0qFi9eLO0vLy9PXL58WYwYMUIUFRUJIYSIjIwUr776qhBCiD59+oi1a9cKIYRYv369eOqpp4QQQixfvly8+eablfZTVlYmhBBi48aNYsmSJUIIIcLCwsTrr78uhBAiISFBABCXL18WqampIiAgQJSWlgohhJg/f76IiYmp9F1v3rwp+vXrJ5KTk4UQQhQWFopbt26JDz74QPzv//6vEEKIkpIS4ebmJv7880+jfZibmysGDBgg1Zefny+EECIgIEBs2bJFCCHEpk2bpP/vgoODxYQJE6R3Cm/evFmEhYVJ2x599FFhMBjEr7/+Kvr37y+EEGL79u1i/PjxwmAwiJycHNG5c2fpXZpENeF1D2q2+vXrJz3T6eTkhDFjxkClUsHZ2RkZGRkAys/0du3ahbfeegsAUFJSgvPnz6NXr15YsGABUlJS0KJFC5w7d07ar6enJzQaDQDA1dUVGRkZGD58eJXjT58+HQAwcuRIXL16FQUFBUaPBwA+Pj7Sq/sOHDiAuLg4aV8PPPAA9uzZg9TUVOmZ3dLSUgwdOlRqM3nyZACAm5sbvvjii2r7RK/X47HHHkNOTg5KS0ulZxuPHj2KnTt3AgDGjRuHBx54AABw8OBB/PDDD/Dw8AAA3LhxA927d6+0z99++w1WVlZSmzszPn399dc4ffq0dOZXWFiItLQ0tGrVqto+9PLyQps2bTBnzhxMmDABAQEBAIBjx45J3+eJJ57A0qVLpWNPnTrV6Cu7HnnkEVhYWMDR0VE6Az969CimTp0KCwsL9OzZE6NHj672s0T3YphSs3X3xAkWFhbSsoWFhfROTSEEduzYATs7u0qfjYiIQI8ePfDTTz+hrKwMbdq0qXa/LVq0MPp+znvf56pSqYwe78SJE9LE33fquvfzQgj4+PggNja2xu9bU00LFy7EkiVLEBgYiKSkJEREREj7ro4QAsHBwVi5cmW1243Vemf9unXr4OfnV2l9UlJStX2oVquRnJyMgwcPIi4uDlFRUfjmm2+q7PfuY93dZ/e6+xh3vp+x70lkCu+ZEtXAz88P69atk/6S/fHHHwGUn0VZWVnBwsIC27Ztq/Y+oSmfffYZgPKzIUtLS1haWho93r18fX0RFRUlLefn58PLywvffvstfv/9dwDlM+fcfcZcnY4dO+LatWvScmFhIXr37g0AiImJkdYPHz4c//nPfwCUn1Hm5+cDAMaMGYPPP/8cly5dAgDk5eXhr7/+qnQMe3t7ZGdn4/vvvwdQPqvN7du34efnh/fffx+3bt0CUD7vanFxsdFai4qKUFhYCH9/f6xZs0aannLYsGHSWfonn3xS7VWA2ho+fDh27NiBsrIyXLx4EUlJSX97X9S8MEyJarBs2TLcunULLi4u0Ol0WLZsGQDg6aefRkxMDLy8vHDu3Lkaz4CMeeCBBzBs2DCEhoZi06ZNNR7vXq+88gry8/Oh0+kwcOBAHDp0CN26dcOWLVswffp0uLi4wMvLC2fPnq2xhocffhg7d+6UBiBFRERg6tSpGDFiBLp27Sq1W758Ob7++msMHjwYCQkJsLKyQseOHeHo6IjXXnsNvr6+cHFxgY+PD3Jyciodo1WrVvjss8+wcOFCDBw4ED4+PigpKcGcOXPg6OiIwYMHQ6fTYd68eUbPmIHyEA4ICICLiwtGjRqF1atXAyh/vd/mzZvh4uKCbdu24d13361V/1dnypQp0Gg0Uj1DhgxpkO/OpIaHj8YQKcDb2xtvvfUW3N3dlS6lVm7evIkWLVpArVbj2LFjmD9/fqUXFzQlRUVF6NChA3Jzc+Hp6Ylvv/222jmlie7Ge6ZEZNL58+cxbdo0lJWVoVWrVti4caPSJdWbgIAAFBQUoLS0FMuWLWOQUq3wzJSIiEgm3jMlIiKSiWFKREQkE8OUiIhIJoYpERGRTAxTIiIimRimREREMv1/pnaIcuQrn44AAAAASUVORK5CYII=",
|
|
276
276
|
"text/plain": [
|
|
277
277
|
"<Figure size 518.4x345.6 with 1 Axes>"
|
|
278
278
|
]
|
|
@@ -304,7 +304,7 @@
|
|
|
304
304
|
"outputs": [
|
|
305
305
|
{
|
|
306
306
|
"data": {
|
|
307
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFLCAYAAACNy2aDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAArnklEQVR4nO3de5xVdb3/8ddbEMEbKOiIYkIGKqlhTl7RJjUUKy+VR60M7UKUeI6UJ+l4Hkc8eTpm1vHGCdEMKo90McsLZerPIS0vQKGAoJKiTuIlFbxfgM/vj7WG2Qx7NntYs/eaPfv9fDz2Y9b6ru9a67O/Mn5mrfVd368iAjMzM9t0m+UdgJmZWa1zMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLqHfeAVTToEGDYujQoXmHYWZmNWr+/Pn/iIgd2pfXVTIdOnQo8+bNyzsMMzOrUZKeLFbu27xmZmYZOZmamZll5GRqZmaWUV09MzUz66neffddWlpaeOutt/IOpUfo27cvQ4YMYfPNNy+rvpOpmVkP0NLSwjbbbMPQoUORlHc4NS0iePHFF2lpaWHYsGFl7ePbvGZmPcBbb73FwIEDnUi7gCQGDhzYqat8J1Mzsx7CibTrdLYtnUzNzKxLbL311uutz5gxg4kTJ1bkXIXHnjJlCjNmzCh73wceeIDDDz+cPfbYgz333JMvfelLvPHGG5ni8TNTM7MeaOjkW7v0eMsv+liXHq+Y1atX07t37w7Xu8Jzzz3HSSedxKxZszj44IOJCG644QZeffVVttxyy00+rpOpmZlV3M0338yFF17IO++8w8CBA7nuuutoaGhgypQpPPPMMyxfvpxBgwYxYsSI9dYvu+wyJkyYwFNPPQXApZdeyqGHHrresbfeemv69esHwOWXX860adPo3bs3I0eOZNasWevVnTp1KuPGjePggw8Gktu5n/70pzN/PydTMzPrEm+++SajRo1at/7SSy9x3HHHATB69Gjuu+8+JHHNNddw8cUX8/3vfx+A+fPnc88999CvXz+mTJmy3vpnPvMZJk2axOjRo3nqqac4+uijWbJkyXrnPeecc9YtX3TRRTzxxBNsscUWrFy5coMYFy1axLhx47r8uzuZmplZl+jXrx8LFixYtz5jxox146G3tLRw8skns2LFCt555531Xjk57rjj1l1Ztl+/4447ePjhh9dte+WVV3j11Vc7jGHffffls5/9LCeccAInnHBCF32zjXMHJDMzq7izzjqLiRMnsnDhQq666qr1XjvZaqut1qtbuL527VruvfdeFixYwIIFC/j73//ONtts0+F5br31Vs4880zmz5/P/vvvz+rVq9fb/v73v5/58+d30bdqk2sylXSMpEckLZM0uch2Sbo83f6QpA+m5X0lPSDpQUmLJV1Q/ejNzKxcq1atYpdddgFg5syZZe83ZswYrrzyynXrhVe+7a1du5ann36aj3zkI1x88cWsXLmS1157bb06EydOZObMmdx///3ryn72s5/x7LPPlh1TMbklU0m9gKnAWGAkcKqkke2qjQWGp5/xwA/T8reBIyLiA8Ao4BhJB1UjbjMz67wpU6Zw0kkncdhhhzFo0KCy97v88suZN28e++67LyNHjmTatGkd1l2zZg2f+9zn2Geffdhvv/2YNGkSAwYMWK9OQ0MDs2bN4pxzzmGPPfZgr7324u6772bbbbfd1K8GgCIi0wE2+cTSwcCUiDg6Xf8WQET8d0Gdq4DmiLg+XX8EaIqIFQV1tgTuAb4aEfdTQmNjY3g+UzPriZYsWcJee+2Vdxg9SrE2lTQ/Ihrb182zA9IuwNMF6y3AgWXU2QVYkV7ZzgfeB0ztKJFKGk9yVUtDQwPNzc1dEryZWXfSv3//kh1zrPPeeuutsnNGnsm02FhN7S+TO6wTEWuAUZIGADdK2jsiFm1QOWI6MB2SK9OmpqYsMZuZdUtLliwp2THHOq9v377st99+ZdXNswNSC7BrwfoQ4JnO1omIlUAzcEyXR2hmZlaGPJPpXGC4pGGS+gCnADe1q3MT8Pm0V+9BwKqIWCFph/SKFEn9gKOApVWM3czMbJ3cbvNGxGpJE4HbgF7AtRGxWNKEdPs0YDZwLLAMeAM4I919MDAzfW66GfCLiLil2t/BzMwMch4BKSJmkyTMwrJpBcsBnFlkv4eA8m5km5mZVZhHQDIzs8yWL1/O3nvvvV7ZlClTuOSSSzbpeM3NzZx++ull13/22Wc55ZRT2H333Rk5ciTHHnssjz766Cade1N4bF4zs55oSv8uPt6qrj1eF4oITjzxRMaNG7dulpgFCxbw3HPPMWLEiKrE4CtTMzOruKamJs4991wOOOAARowYwd133w0k73KeccYZ60YtuuuuuwDo06cP/fsnfxDMmTOHUaNGMWrUKPbbb78N3qe966672HzzzZkwYcK6slGjRnHYYYdV6dv5ytTMzKpk9erVPPDAA8yePZsLLriAO+64g6lTpwKwcOFCli5dypgxY3j00Uc55JBDOOSQQwC45JJLmDp1KoceeiivvfYaffv2Xe+4ixYtYv/996/69ynkK1MzM8tMKjbGzvrln/zkJwHYf//9Wb58OQD33HMPp512GgB77rknu+222wbPOg899FC+/vWvc/nll7Ny5Up69+5+14FOpmZmltnAgQN5+eWX1yt76aWX1hvUfosttgCgV69e66ZGK2d8+MmTJ3PNNdfw5ptvctBBB7F06frDClRqWrXOcDI1M7PMtt56awYPHsydd94JJIn097//PaNHjy653+GHH851110HwKOPPspTTz3FHnvssV6dv/3tb+yzzz6ce+65NDY2bpBMjzjiCN5++22uvvrqdWVz585lzpw5XfHVyuJkamZmXeInP/kJF154IaNGjeKII47g/PPPZ/fddy+5z9e+9jXWrFnDPvvsw8knn8yMGTPWXcG2uvTSS9l77735wAc+QL9+/Rg7dux62yVx4403cvvtt7P77rvz/ve/nylTprDzzjt3+XfsSG5TsOXBU7CZWU/lKdi6XmemYPOVqZmZWUZOpmZmZhk5mZqZmWXkZGpm1kPUUx+YSutsWzqZmpn1AH379uXFF190Qu0CEcGLL764wUhLpXS/YSTMzKzThgwZQktLCy+88ELeofQIffv2ZciQIWXXdzI1M+sBNt98c4YNG5Z3GHXLt3nNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMck2mko6R9IikZZImF9kuSZen2x+S9MG0fFdJd0laImmxpH+pfvRmZmaJ3JKppF7AVGAsMBI4VdLIdtXGAsPTz3jgh2n5auAbEbEXcBBwZpF9zczMqiLPK9MDgGUR8XhEvAPMAo5vV+d44CeRuA8YIGlwRKyIiL8ARMSrwBJgl2oGb2Zm1irPZLoL8HTBegsbJsSN1pE0FNgPuL/rQzQzM9u4PCcHV5Gy6EwdSVsDNwBnR8QrRU8ijSe5RUxDQwPNzc2bFKyZmVlH8kymLcCuBetDgGfKrSNpc5JEel1E/Lqjk0TEdGA6QGNjYzQ1NWUO3MzMrFCet3nnAsMlDZPUBzgFuKldnZuAz6e9eg8CVkXECkkCfgQsiYgfVDdsMzOz9eV2ZRoRqyVNBG4DegHXRsRiSRPS7dOA2cCxwDLgDeCMdPdDgdOAhZIWpGX/FhGzq/gVzMzMAFBE+8eUPVdjY2PMmzcv7zDMzKxGSZofEY3tyz0CkpmZWUZOpmZmZhk5mZqZmWXkZGpmZpaRk6mZmVlGTqZmZmYZOZmamZll5GRqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmlpGTqZmZWUZOpmZmZhk5mZqZmWXUYTKVtIOkkUXK3y9ph8qGZWZmVjtKXZleARRLmkOAyyoTjpmZWe0plUz3iYg57Qsj4jZg38qFZGZmVltKJdPNN3GbmZlZXSmVTB+TdGz7QkljgccrF5KZmVlt6V1i2yTgFkn/BMxPyxqBg4GPVzowMzOzWtHhlWlEPArsA8wBhqafOcC+6TYzMzOj9JUpEfE28OMqxWJmZlaTPGiDmZlZRk6mZmZmGTmZmpmZZdThM1NJC4HoaHtEeOAGMzMzSndAan395cz050/Tn58F3qhYRGZmZjWm1KsxT0bEk8ChEfHNiFiYfiYDR3fFySUdI+kRScskTS6yXZIuT7c/JOmDBduulfS8pEVdEYuZmdmmKueZ6VaSRreuSDoE2CrriSX1AqYCY4GRwKlFZqkZCwxPP+OBHxZsmwEckzUOMzOzrEq+Z5r6InCtpP4kz1BXAV/ognMfACyLiMcBJM0CjgceLqhzPPCTiAjgPkkDJA2OiBUR8UdJQ7sgDjMzs0w2mkwjYj7wAUnbAoqIVV107l2ApwvWW4ADy6izC7Cii2IwMzPLbKPJVFID8B1g54gYm96KPTgifpTx3CpS1r73cDl1Sp9EGk9yi5iGhgaam5s7s7uZmdlGlXObdwbJkILnpeuPAj8HsibTFmDXgvUhwDObUKekiJgOTAdobGyMpqamTgdqZmZWSjkdkAZFxC+AtQARsRpY0wXnngsMlzRMUh/gFOCmdnVuAj6f9uo9CFgVEb7Fa2Zm3Uo5yfR1SQNJb6+2JrWsJ06T8kTgNmAJ8IuIWCxpgqQJabXZJHOnLgOuBr7Wur+k64F7gT0ktUj6YtaYzMzMNoWSjrIlKiTvdl4B7A0sAnYAToqIBysfXtdqbGyMefPm5R2GmZnVKEnzI6KxfXk5z0wXAx8G9iDpEPQIHtPXzMxsnXKS4r0RsToiFkfEooh4l+T2qpmZmVF6oPudSN7p7CdpP9peU9kW2LIKsZmZmdWEUrd5jwZOJ3kd5QcF5a8C/1bBmMzMzGpKh8k0ImYCMyV9KiJuqGJMZmZmNaWc4QRvkPQx4P1A34Ly/6xkYGZmZrViox2QJE0DTgbOInluehKwW4XjMjMzqxnl9OY9JCI+D7wcERcAB7P+EH9mVmFNTU14KMyE28K6o3KS6Zvpzzck7Qy8CwyrXEhmZma1pZxBG26RNAD4HvAXkmEFr6lkUGZmZp3Rercir5nByumA9O108QZJtwB9u3BOUzMz20R5JxBrU858pr2AjwFDW+tLIiJ+UGo/MzOzelHObd6bgbeAhaTTsJmZmVmbcpLpkIjYt+KRmJmZ1ahyevP+TtKYikdi1o5fgTCzWlHOlel9wI2SNiN5LUZARMS2FY3MzMysRpSTTL9PMlDDwtjYTOJmZmZ1qJzbvI8Bi5xIzTaNb1eb9XzlXJmuAJol/Q54u7XQr8aYmZklykmmT6SfPunHzMzMCpQzAtIF1QjEzMysVnWYTCVdGhFnS7qZZDze9UTEcRWNzMzMrEaUujL9afrzkmoEYmY9n8eStWJ6wr+LDpNpRMxPF0dFxGWF2yT9CzCnkoFZHZjSv/T25a9vvN4Uz7lgZvkrpwPSOOCydmWnFymzLtAT/kKDnvM9qsZ/WJjVtFLPTE8FPgMMk3RTwaZtgRcrHZiZmVmtKHVl+meSd0wHkYyC1OpV4KFKBmVmdcxX6VaDSj0zfRJ4UtJRwJsRsVbSCGBPkunYzMzMjPKemf4ROEzSdsCdwDzgZOCzlQysFpX1nNB/dZuZ9TjljM2riHgD+CRwRUScCIzsipNLOkbSI5KWSZpcZLskXZ5uf0jSB8vd18zMrFrKSqaSDia5Er01LSvninZjB+0FTAXGkiTnUyW1T9JjgeHpZzzww07sa2bWbXkChJ5FG5sMRtLhwDnAnyLiu5LeC5wdEf+c6cRJgp4SEUen698CiIj/LqhzFdAcEden648ATcDQje1bzLBhw+L888/PEnZJCxYsAGDUqFEdV1p+T+ljPLsmOcZOvTquNHR0JyOrvq5oi7LUSVv430XBMeqpLapwjO6gltrijDPOmB8Rje3Lyxmb948kz01b1x+X9PUuiGkX4OmC9RbgwDLq7FLmvgBIGk9yVcvgwYNZuXJlpqBff3t1h9veefddAP7+3D86rLPVgL1LHn/1P5YBsHLA+zqulPE7dJVKt0VZ6qQt/O+iTV21hd4qefzV7yYTea18vqXjSn22LnmMaijVDtAz2qLUe6b3RMTodPmnEXFaweYHgA8W37NsKlLW/jK5ozrl7JsURkwHpgM0NjbG2Wef3YkQO6f1ls3/Tp1asXPUinpri6GTb+1w27M3zwRgp88c22Gd5Rd9rOTxW9vzyiuv7HxwVea2aFO1tpj6w84HV0Wl2gHKbIu+nyl5jKZbk86bV56+VceVvpm98+akSZOKlpe6Mi2MqP2fisWSWWe1ALsWrA8BnimzTp8y9jUzM6uKUsk0Olgutr4p5gLDJQ0D/g6cQjLiUqGbgImSZpHcxl0VESskvVDGvmZVU+oKoum+7wHQvJGrDDOrXaWS6QBJJ5L0+B0g6ZNpuYCNvCy5cRGxWtJE4DagF3BtRCyWNCHdPg2YDRwLLAPeAM4otW/WmMzMrJva2Pv1zU1pveZKR1JUqWQ6BziuYPkTBdv+uGH1zouI2SQJs7BsWsFyAGeWu6+ZmVkeSg0neEY1A+kJPEOKmVl9KmfQBjMzMysh80hGZlZ5vuth1r35ytTMzCyjTl2ZSpoeEeMrFYz1HL6Sql9+TcjqUWevTDcYj9DMzKzedTaZPl+RKMzMzGpYp27zRsQxlQrEzKwcfoRg3ZE7IJmZmWXkZGpmZpaRk6mZmVlGHSZTSRe3DjrfrnySpO9WNiwzM7PaUerK9OOkk2q3cxngl8TMzMxSJeczjYi1RQrXSuqKycHNzHo0D2CRKNUO0DPaotSV6RuShrcvTMverFxIZmZmtaXUlel/AL+TdCEwPy1rBL4FnF3huMzMzGpGqflMfyfpBOBfgbPS4kXApyJiYRViM+sRPMiAWc9XcgSkiFgEjKtSLGZmZjXJ85mamdUo3/XoPjxog5mZWUZOpmZmZhl1eJtX0hVAdLQ9Iv65IhGZmZnVmFLPTOdVLQozM7MaVurVmJnVDMTMzKxWbbQ3r6QdgHOBkUDf1vKIOKKCcZlZD+Tep9ZTlfNqzHXAz0kGt59A8t7pC5UMyszMrDPy/kOtnN68AyPiR8C7ETEnIr4AHFThuMzMzGpGOVem76Y/V0j6GPAMMKRyIZmZmdWWcq5ML5TUH/gGcA5wDTApy0klbS/pdkmPpT+366DeMZIekbRM0uSC8pMkLZa0VlJjlljMzMyy2mgyjYhbImJVRCyKiI9ExP4RcVPG804G7oyI4cCd6fp6JPUCpgJjSTo/nSppZLp5EfBJ4I8Z4zAzM8usnN68P6bI4A3ps9NNdTzQlC7PBJpJegwXOgBYFhGPp3HMSvd7OCKWpGUZQjAzM+sa5TwzvaVguS9wIslz0ywaImIFQESskLRjkTq7AE8XrLcAB3b2RJLGA+MBGhoacu/xZWYGsHLlSiD/XqjdQU9oi40m04i4oXBd0vXAHRvbT9IdwE5FNp1XZmzFLjs7HN6wIxExHZgO0NjYGE1NTZ09hJlZlxswYAAA/n9Sz2iLTZmCbTjwno1VioijOtom6TlJg9Or0sHA80WqtQC7FqwPIfsVsZmZWZfbaAckSa9KeqX1A9zMhs83O+sm2iYdHwf8tkiducBwScMk9QFOSfczMzPrVsq5zbtNBc57EfALSV8EngJOApC0M3BNRBwbEaslTQRuA3oB10bE4rTeicAVwA7ArZIWRMTRFYjTzKwiavn5oG2onN68d0bEkRsr64yIeBHYYP+IeAY4tmB9NjC7SL0bgRs39fxmZmZdqdR8pn2BLYFB6aAKrR2CtgV2rkJsZmZmNaHUlelXgLNJEud82pLpKySDKZiZmRml5zO9DLhM0lkRcUUVYzIzM6sp5YzNu1bSgNYVSdtJ+lrlQjIzM6st5STTL0fEytaViHgZ+HLFIjIzM6sx5STTzVQwCG46AH2fyoVkZmZWW8oZAek2kndCp5EM5zcB+H1FozIzs7rRE965LSeZnksyUPxXSXr0/gG4upJBmZmZ1ZJy5jNdGxHTIuLTEfEpYDHJ6ENmZmZGmQPdSxoFnAqcDDwB/LqCMZmZmdWUUiMgjSAZXP5U4EXg54Ai4iNVis3MzKwmlLoyXQrcDXwiIpYBSJpUlajMzMxqSKlnpp8CngXuknS1pCMpPmG3mZlZXeswmUbEjRFxMrAn0AxMAhok/VDSmCrFZ2Zm1u2V05v39Yi4LiI+DgwBFgCTKx2YmZlZrShnBKR1IuKliLgqIo6oVEBmZma1plPJ1MzMzDbkZGpmZpaRk6mZmVlGTqZmZmYZOZmamZll5GRqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmlpGTqZmZWUZOpmZmZhnlkkwlbS/pdkmPpT+366DeMZIekbRM0uSC8u9JWirpIUk3ShpQteDNzMzayevKdDJwZ0QMB+6kyJRuknoBU4GxwEjgVEkj0823A3tHxL7Ao8C3qhK1mZlZEXkl0+OBmenyTOCEInUOAJZFxOMR8Q4wK92PiPhDRKxO691HMs+qmZlZLvJKpg0RsQIg/bljkTq7AE8XrLekZe19Afhdl0doZmZWpt6VOrCkO4Cdimw6r9xDFCmLduc4D1gNXFcijvHAeICGhgaam5vLPL2ZmVl5KpZMI+KojrZJek7S4IhYIWkw8HyRai3ArgXrQ4BnCo4xDvg4cGREBB2IiOnAdIDGxsZoamrq1PcwMzPbmLxu894EjEuXxwG/LVJnLjBc0jBJfYBT0v2QdAxwLnBcRLxRhXjNzMw6lFcyvQj4qKTHgI+m60jaWdJsgLSD0UTgNmAJ8IuIWJzufyWwDXC7pAWSplX7C5iZmbWq2G3eUiLiReDIIuXPAMcWrM8GZhep976KBmhmZtYJHgHJzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzy8jJ1MzMLCMnUzMzs4ycTM3MzDJyMjUzM8vIydTMzCwjJ1MzM7OMnEzNzMwycjI1MzPLyMnUzMwsIydTMzOzjJxMzczMMnIyNTMzyyiXZCppe0m3S3os/bldB/WOkfSIpGWSJheUf1vSQ5IWSPqDpJ2rF72Zmdn68roynQzcGRHDgTvT9fVI6gVMBcYCI4FTJY1MN38vIvaNiFHALcB/VCVqMzOzIvJKpscDM9PlmcAJReocACyLiMcj4h1gVrofEfFKQb2tgKhcqGZmZqX1zum8DRGxAiAiVkjasUidXYCnC9ZbgANbVyT9F/B5YBXwkQrGamZmVlLFkqmkO4Cdimw6r9xDFClbdwUaEecB50n6FjAROL+DOMYD4wEaGhpobm4u8/RmZmblqVgyjYijOtom6TlJg9Or0sHA80WqtQC7FqwPAZ4pUu//gFvpIJlGxHRgOkBjY2M0NTWV9wXMzMzKlNcz05uAcenyOOC3RerMBYZLGiapD3BKuh+ShhfUOw5YWsFYzczMSsrrmelFwC8kfRF4CjgJIH3F5ZqIODYiVkuaCNwG9AKujYjFrftL2gNYCzwJTKj6NzAzM0spon46wjY2Nsa8efPyDsPMzGqUpPkR0di+3CMgmZmZZeRkamZmlpGTqZmZWUZOpmZmZhk5mZqZmWXkZGpmZpaRk6mZmVlGTqZmZmYZOZmamZll5GRqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmllFdTcEm6QWS+U/zNAj4R84xdBduizZuizZuizZuizbdpS12i4gd2hfWVTLtDiTNKzYXXj1yW7RxW7RxW7RxW7Tp7m3h27xmZmYZOZmamZll5GRafdPzDqAbcVu0cVu0cVu0cVu06dZt4WemZmZmGfnK1MzMLCMnUzMzs4ycTM3MzDLqnXcA9UbSjhHxfN5xdCeS9oyIpXnHUW2SGoFdgdXAY3XaBn2AdyPtvCHpI8AHgYcj4ne5BldlkvaNiIfyjqM7qaXfEXdAqiBJ27cvAuYD+5G0/UvVj6r7kfRURLwn7ziqRdKHge8DK4H9gT8B2wHvAqdFxNP5RVddkh4EmiLiZUn/CpwIzAY+DMyLiG/lGmAVSVoDPAFcD1wfEQ/nHFJuavF3xMm0giStZcPhC4cALUBExHurH1U+JF3e0SZgXERsW8148iTpr8CYiHhB0jDgBxFxoqSPAv8aEWNyDrFqJC2KiL3T5XnAYRHxpqTewF8iYt98I6ye9N/FacCpwMnA6ySJdVZELM8xtKqrxd8RPzOtrG8CjwDHRcSwiBgGtKTLdZNIU2cAi0iuzAs/84B3cowrD70i4oV0+SlgN4CIuB3YJbeo8vGKpL3T5X8AfdPl3tTf/58iIhZFxHkR8T7gy8COwN2S/pxzbNVWc78jfmZaQRFxiaRZwP9Ieho4H6jXWwFzgUURscH/FCRNqX44uZon6UfAncDxQDOApC2BXjnGlYcJwHXp7d7nSdpmDrAv8J1cI6s+Fa5ExAPAA5K+ARyeT0i5qbnfEd/mrRJJnwDOA4ZGxE55x1Nt6fPjtyLijbxjyZukzUmuOkYCDwLXRsQaSf2AHSMi75mNqkpSL2AMMILkD/wW4LaIWJlnXNUm6TMR8X95x9Ed1OLviJNpFaX/EHaPiEV5x2JmVkskDYyIF/OOoyP19kwiVxHxZmsilXRG3vFUk6StJf2npMWSVkl6QdJ9kk7PO7Zqk9Qo6S5JP5O0q6Tb0zaZK2m/vOPrLiTV26sx/SVdJGmppBfTz5K0bEDe8VVT+p0HpcuNkh4H7pf0ZNrTt9vxlWlO6vB1kN8CNwJ3AP8EbAXMAv4d+HtE/FuO4VWVpAdInp8PAC4GJkXEryQdCVwYEQfnGV81SfpgR5uAWyJicDXjyZOk24D/B8yMiGfTsp2AccBREfHRPOOrJkkLI2KfdPku4JsRMVfSCOD/uuO8pk6mFSSpoxewBYyIiC2qGU+eJD0YER8oWJ8bER+StBnJC/p75hheVUn6a0Tsly6v90dV4bZ6kL5bOYd2nW9SB0VEvyqHlBtJj0TEHp3d1hNJWgrsHRGrJd0XEQcVbFuXaLsT9+atrAbgaODlduUC6q2r++uSRkfEPWlnrJcAImKtpGL/I+3J3pI0BugPhKQTIuI36e2rNTnHVm1LgK9ExGPtN6Q94OvJk5K+SXJl+hyApAbgdKDe2mIqMFvSRcDvJV0K/Bo4EliQY1wdcjKtrFuArSNiQfsNkpqrHk2+JgDXpLdpFgFfBJC0A8kvTj2ZQHJ7dy3JH1tflTQD+DswPse48jCFjvtunFXFOLqDk4HJwBxJO6ZlzwE3kTwaqRsRcYWkhcBXaevlPQL4DXBhjqF1yLd5zczMMnJv3gpLh0VrXd467ZnWfszeHk/SgZK2TZf7SbpA0s2Sviupf97xVZukPSUdKWnrduXH5BVTXtwWbQraYqt25XXXFh3prm9COJlWUPrax3OSHpU0FngI+C7woKRTcw2u+q4FWgdsuIzkeeF307If5xVUHiT9M/BbktuYiyQdX7C5rkb9cVu0adcWi+u5LTbigrwDKMbPTCvrG8AewDYko3jsFxF/SzsV3E4yiHW92CwiVqfLjRHR+krEPZIW5BRTXr4M7B8Rr0kaCvxK0tCIuIzivVp7MrdFG7dFaiNvQjRUM5ZyOZlW1pqI+AfwD0mvRcTfACLiufrrwMoiSWdExI9JrswbI2Je2iHp3byDq7JeEfEaQEQsl9RE8j/O3aiz/2nitijktmhTc29C+DZvZT0l6b8lXQkslfR9SYdKOh9YkXdwVfYl4MOS/kYy3ua96agmV6fb6smzkka1rqT/A/04MAjodu/PVZjboo3bok3rmxBPtvssJx30vrtxb94KSjvcnEkyU8yVJH9pnUEyx+mFEVFvCRVJ2wDvJR3QvPV9unoiaQiwunWUm3bbDo2IP+UQVi7cFm3cFrXNydTMzCwj3+bNiaR6ezm/Q5JuyTuG7sJt0cZt0cZt0aa7toWvTHMi6SsRcVXecXQHkgbX4y3vYtwWbdwWbdwWbbprWziZVpik3YETgV2B1cBjwPURsSrXwLoBSTtGxPN5x2FmlpVv81ZQ+hL2NKAv8CGgH0lSvTft9l43JG3f7jMQeEDSdvU2IpQ8t+s6bos2bos2tdgWvjKtICUDNY+KiDWStgRmR0STpPcAv62zqbbWkvRiLjQEaAEiIt5b/ajyIc/tuo7boo3bok0ttoWTaQWlybQxIt6WtB1wR0Tsn25bFBF75xth9Ug6BzgK+NeIWJiWPRERw/KNrPrkuV3XcVu0cVu0qcW28G3eyroGmCtpOnAvybumrdOOvZRnYNUWEZeQDM7wH5J+kL5vWq9/yb0uaTSA2s3tSv2NdOO2aOO2aFNzbeHhBCsoIi6TdAewF/CDiFialr8AHJ5rcDmIiBbgpPSX43Zgy5xDystXgavVNrfrF6Bu53ZtbYs9gIXU9zy3/nfRpv38x92+LXyb16pG0p7ALsD9wBpg94hYJOmYiPh9vtFVl6QDgbURMVfSSOAYYGlEzM45tNxJ+klEfD7vOPKWXpkdACyKiD/kHU81pb8fSyNiVdrf5Fzgg8DDwHe649sQTqZWFWnP5jOBJcAo4F8i4rfptr8UzCLT4ykZm3ksyZ2h24EDScYbPQq4LSL+K7/oqkvSTUWKjwD+H0BEHFfdiPIj6YGIOCBd/hIwkaQTzhjg5oi4KM/4qknSYuADEbE6fUz2BvAr4Mi0/JO5BliEk6lVRdoZ6+DC6aWAn6a3wv9aZz2bF5L8QbEF8CwwJCJekdQPuD8i9s0zvmqS9FdgMUn/giB5HnY9cApARMzJL7rqKvw9kDQXODYiXlAyUfh9EVE3g91LWhIRe6XL6/2xLWlBRIzKLbgOuAOSVct600sBTcBYST+gm3YoqKDVEbEmIt4A/hYRrwBExJvA2nxDq7r9gfnAecCqiGgG3oyIOfWUSFObpe9dDyS50HkBICJeJxnwpZ4sknRGuvygpEYAdeMpG51MrVo8vVSbd9LnQJAkEwAk9afOkmlErI2I/yGZTek8JdMV1mvHyP4kf1jMA7aXtBMkAxhQf39w1tyUjb7Na1UhTy+1jqQtIuLtIuWDgMGt7+HWI0kfAw7tji/l5yX9w6shIp7IO5ZqUw1N2ehkamZmlpFv85qZmWXkZGpmZpaRk6lZHZPUJOmQvOOoBknHSZqcdxzWM/mZqVmNkdQ7IrrkVQlJU4DX0rGTe6yubDOzYnxlanVJ0lBJSyVdI2mRpOskHSXpT5Iek9Q6Es1Wkq6VNFfSXyUdX7D/3ZL+kn4OScubJDVL+lV6/OskbfBaQ1rnUkl/Ts+/sfOdLumXkm4G/qBkvscfS1oo6SFJn0rrjZF0bxrTL9PXKpC0XNIFaflCSXumg2dMACZJWiDpMEmfkHR/eu47JDWk++8g6fZ0/6skPZn2PkbS5yQ9kB7jKkm9inzfD6Xf9cG07jaSekn6XvpdH5L0lY21oaSLJD2c1r8kLdtN0p1p2Z1KpjhE0gwlkyrcBXw3bcMrC7Zdnsb0uKRPp+WbSfpfJfNo3iJpdus2s5Iiwh9/6u4DDCV5EX4fkj8q5wPXkrzPdzzwm7Ted4DPpcsDgEdJ5lbcEuiblg8H5qXLTcAqkrlaNyOZLWh0kfM3A1eny4eTjL9a6nynk8z9un267bvApQXH247knd0/AlulZecC/5EuLwfOSpe/BlyTLk8Bzml3nNY7Vl8Cvp8uXwl8K10+hmS0okEkkzjcDGyebvtf4PPtvmsf4HHgQ+n6tiSvOowH/j0t24Lk/cphHbUhsD3wSEF8A9KfNwPj0uUvFPy3mwHcQjJgCGkbXlmw7Zfp8UcCy9LyTwOz0/KdgJeBT+f979Wf7v+p15ejzQCeiLa5VRcDd0ZEKBnub2haZwxwnJL5WAH6Au8BngGuVDIQxRpgRMFxH4hkhhwkLUiPdU+R818PEBF/lLStpAElzgdwe0S0Tt13FOmQe+kxXpb0cZLE8Kf0Qq4PSSJq9ev053ygo7FNhwA/lzQ43b/13cbRwInpuX4v6eW0/EiSgSfmpufsBzzf7ph7ACsiYm66/yuQXEUD+xZc+fUn+cPkHYq34X3AWySzidxKkigBDi74Pj8FLi449y8jYk0H3/U3kUzp9XDrFXj6PX+Zlj+bXtWabZSTqdWzwoET1hasr6Xtd0PApyLikcIdlTxrfA74AMlVzFsdHHcNHf+ete+w0Do2bbHzHQi8XlhUZH+RJNxTOzhfa1ylYrqCZLrAmyQ1kVy5th67GAEzI+JbHWzvKNbW8rMi4rb1CpPzbtCGkQx6fgBJAj+FZCD4I4oct/BcrxfZ3qrwHGr306xT/MzUrLTbgLMKntm1Dsjfn+Rqay1wGrDBc8IynJweczTJuLSrSpyvvT+QJBPSetuRXLkdKul9admWSsYyLeVVYJuC9f7A39PlcQXl9wD/lB53DMntYIA7gU9L2jHdtr2k3dqdYymws6QPpXW2kdQ7/a5flbR5Wj5CyaDuRaXPf/tHMk3d2SSTBQD8mbar9M9S/C5Aue4BPpU+O20gueVstlFOpmalfRvYHHhI0qJ0HZJng+Mk3Udyi7fUFVBHXpb0Z2Aa6aTYJc7X3oXAdko6Lz0IfCSSgdFPB66X9BBJct1zIzHcDJzY2gGJ5Er0l5LuBv5RUO8CYIykv5BMH7cCeDUiHgb+naRT1EMkU8oNLjxBRLxD8ofDFWmst5Pcvr6GZH7Kv6Tf9SpK3y3bBrglPc8cYFJa/s/AGWn5acC/bOQ7l3IDybPp1njuJ3l+a1aSX40xy4GkZpKOP/PyjqUckrYA1qS3Wg8GfhjdcBqsriBp60imChwIPEAyVvAGY0qbFfIzUzMrx3uAX0jajKSD0JdzjqeSbkk7g/UBvu1EauXwlamZmVlGfmZqZmaWkZOpmZlZRk6mZmZmGTmZmpmZZeRkamZmlpGTqZmZWUb/H+ZNLEqIpHcfAAAAAElFTkSuQmCC",
|
|
307
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFQCAYAAADk2pTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAAA38klEQVR4nO3deVgVZf8/8PcB3HBBH1fsmBvKjsgmrmAIJBKm5paP4RZqaJqZ8VQ+Ut9MbHPDUtQErcTMFDfIJfFJUwkNzXChguQAIiIoqIgc7t8f/DyIcAAdOMOB9+u6ui5m5j4zn7k7+Ga2exRCCAEiIiJ6agZyF0BERKTvGKZEREQSMUyJiIgkYpgSERFJxDAlIiKSiGFKREQkkZHcBehSu3bt0K1bN7nLICIiPZWSkoIbN26Um9+gwrRbt26Ij4+XuwwiItJTTk5OFc7naV4iIiKJGKZEREQSMUyJiIgkalDXTImI6qsHDx5ApVKhoKBA7lLqhaZNm0KpVKJRo0bVas8wJSKqB1QqFVq2bIlu3bpBoVDIXY5eE0IgOzsbKpUK3bt3r9ZneJqXiKgeKCgoQNu2bRmkNUChUKBt27ZPdJTPMCUiqicYpDXnSfuSYUpERDWiRYsWZabDw8MxZ86cWtnWo+sODg5GeHh4tT8bFxeHIUOGwNzcHBYWFpgxYwbu3r0rqR5eMyUiqoe6Be2v0fWlhIyo0fVVpKioCEZGRlqna0JmZibGjh2LyMhI9O/fH0II7Ny5E3l5eTA2Nn7q9TJMiYio1u3duxcffvghCgsL0bZtW3zzzTfo2LEjgoODkZ6ejpSUFLRr1w69e/cuM71q1SrMmjULV69eBQCsXLkSAwcOLLPuFi1aoFmzZgCA1atXY926dTAyMoKVlRUiIyPLtF27di38/f3Rv39/ACWnc1966SXJ+8cwJSKiGnHv3j3Y29trpm/evAk/Pz8AwKBBg3Dq1CkoFAps3LgRH3/8MT777DMAwJkzZ3D8+HE0a9YMwcHBZaZffvllvPHGGxg0aBCuXr0Kb29vXLx4scx2Fy5cqPk5JCQEycnJaNKkCXJzc8vVeOHCBfj7+9f4vjNMiYioRjRr1gwJCQma6fDwcM146CqVCuPHj0dGRgYKCwvLPHLi5+enObJ8fPrw4cNITEzULLt9+zby8vK01mBnZ4dJkybhxRdfxIsvvlhDe1Y13oBERES1bu7cuZgzZw5+//13rF+/vsxjJ82bNy/T9tHp4uJinDx5EgkJCUhISEBaWhpatmypdTv79+9HYGAgzpw5A0dHRxQVFZVZbm1tjTNnztTQXpWSNUxjYmJgbm4OMzMzhISElFsuhMDrr78OMzMz2NnZ4ezZswBKnqdycXFBnz59YG1tjSVLlui6dCIiegK3bt3CM888AwCIiIio9ue8vLwQGhqqmX70yPdxxcXFSE1NxdChQ/Hxxx8jNzcX+fn5ZdrMmTMHEREROH36tGbe119/jWvXrlW7porIFqZqtRqBgYGIjo5GYmIitm3bVuZQHgCio6ORlJSEpKQkhIWFYfbs2QCAJk2a4KeffsK5c+eQkJCAmJgYnDp1So7dICKiaggODsbYsWMxePBgtGvXrtqfW716NeLj42FnZwcrKyusW7dOa1u1Wo1///vfsLW1Rd++ffHGG2+gdevWZdp07NgRkZGRWLhwIczNzWFpaYmff/4ZrVq1etpdAwAohBBC0hqe0smTJxEcHIwff/wRALBs2TIAwH/+8x9Nm5kzZ8Ld3R0TJ04EAJibmyM2NhampqaaNnfv3sWgQYPw5Zdfol+/fpVu08nJie8zJaJ66eLFi7C0tJS7jHqloj7VliOyHZmmpaWhS5cummmlUom0tLRqt1Gr1bC3t0eHDh3g6elZZZASERHVFtnu5q3ogPjx4Zsqa2NoaIiEhATk5uZi1KhRuHDhAmxsbMq1DwsLQ1hYGICSu8liY2NroHoiorrFxMSk0rtc6ckVFBRUOzNkC1OlUonU1FTNtEqlQufOnZ+4TevWreHu7o6YmJgKwzQgIAABAQEASg7P3d3da3AviIjqhosXL1Z6lys9uaZNm6Jv377VaivbaV5nZ2ckJSUhOTkZhYWFiIyM1Dzc+5Cfnx+2bNkCIQROnToFExMTmJqaIisrS/Mw7r1793D48GFYWFjIsBdEREQyHpkaGRkhNDQU3t7eUKvVmDZtGqytrTV3as2aNQs+Pj44cOAAzMzMYGxsjM2bNwMAMjIy4O/vD7VajeLiYowbNw6+vr5y7QoRETVwst3NKwfezUtE9RXv5q15enE3LxER1R8pKSnl7lsJDg7Gp59++lTri42NxZQpU6rd/tq1a5gwYQJ69uwJKysr+Pj44MqVK0+17afBsXmJiOqjYJMaXt+tml1fDRJCYNSoUfD399e8JSYhIQGZmZno3bu3TmrgkSkREdU6d3d3vP3223BxcUHv3r3x888/Ayh5/GTq1KmaUYuOHj0KAGjcuDFMTEr+IDh27Bjs7e1hb2+Pvn37lnsE6OjRo2jUqBFmzZqlmWdvb4/BgwfraO94ZEpERDpSVFSEuLg4HDhwAO+//z4OHz6MtWvXAgB+//13XLp0CV5eXrhy5QoGDBiAAQMGAAA+/fRTrF27FgMHDkR+fj6aNm1aZr0XLlyAo6OjzvfnUTwyJSIiyR4fdKei+aNHjwYAODo6IiUlBQBw/PhxTJ48GQBgYWGBrl27lrvWOXDgQCxYsACrV69Gbm4ujIzq3nEgw5SIiCRr27YtcnJyysy7efNmmUHtmzRpAqBkBLuHr0arzgMlQUFB2LhxI+7duwdXV1dcunSpzPLaeq3ak2CYEhGRZC1atICpqSmOHDkCoCRIY2JiMGjQoEo/N2TIEHzzzTcAgCtXruDq1aswNzcv0+avv/6Cra0t3n77bTg5OZUL0+eeew7379/Hhg0bNPN+/fVXHDt2rCZ2rVoYpkREVCO2bNmCDz/8EPb29njuueewZMkS9OzZs9LPvPbaa1Cr1bC1tcX48eMRHh6uOYJ9aOXKlbCxsUGfPn3QrFkzDB8+vMxyhUKBXbt24dChQ+jZsyesra0RHBxcbvjZ2sRBG4iI6gEO2lDzOGgDERGRDjFMiYiIJGKYEhERScQwJSKqJxrQLTC17kn7kmFKRFQPNG3aFNnZ2QzUGiCEQHZ2drmRlipT94aRICKiJ6ZUKqFSqZCVlSV3KfVC06ZNoVQqq92eYUpEVA80atQI3bt3l7uMBouneYmIiCRimBIREUnEMCUiIpKIYUpERCQRw5SIiEgihikREZFEDFMiIiKJGKZEREQSMUyJiIgkYpgSERFJxDAlIiKSiGFKREQkEcOUiIhIIlnDNCYmBubm5jAzM0NISEi55UIIvP766zAzM4OdnR3Onj0LAEhNTcXQoUNhaWkJa2trrFq1StelExERacgWpmq1GoGBgYiOjkZiYiK2bduGxMTEMm2io6ORlJSEpKQkhIWFYfbs2QAAIyMjfPbZZ7h48SJOnTqFtWvXlvssERGRrsgWpnFxcTAzM0OPHj3QuHFjTJgwAVFRUWXaREVF4ZVXXoFCoYCrqytyc3ORkZEBU1NTODg4AABatmwJS0tLpKWlybEbRERE8oVpWloaunTpoplWKpXlArE6bVJSUvDbb7+hX79+tVswERGRFkZybVgIUW6eQqF4ojb5+fkYM2YMVq5ciVatWlW4nbCwMISFhQEAVCoVYmNjJVRNRERUnmxhqlQqkZqaqplWqVTo3Llztds8ePAAY8aMwaRJkzB69Git2wkICEBAQAAAwMnJCe7u7jW4F0RERDKe5nV2dkZSUhKSk5NRWFiIyMhI+Pn5lWnj5+eHLVu2QAiBU6dOwcTEBKamphBCYPr06bC0tMSCBQtk2gMiIqISsh2ZGhkZITQ0FN7e3lCr1Zg2bRqsra2xbt06AMCsWbPg4+ODAwcOwMzMDMbGxti8eTMA4MSJE9i6dStsbW1hb28PAPjoo4/g4+Mj1+4QEVEDphAVXZisp5ycnBAfHy93GUREpKe05QhHQCIiIpKIYUpERCQRw5SIiEgihikREZFEDFMiIiKJGKZEREQSMUyJiIgkYpgSERFJxDAlIiKSiGFKREQkEcOUiIhIIoYpERGRRAxTIiIiiRimREREEjFMiYiIJGKYEhERSaQ1TLOyspCYmFhu/h9//IGsrKxaLYqIiEifaA3TuXPnVhiaKpUK8+bNq9WiiIiI9InWMP3999/h5uZWbr63tzfOnz9fq0URERHpE61h+uDBA60fqmwZERFRQ6M1THv16oUDBw6Umx8dHY0ePXrUalFERET6xEjbghUrVsDX1xffffcdHB0dAQDx8fE4efIk9u3bp7MCiYiI6jqtR6a9e/fWXDdNSUlBSkoK3NzccP78efTu3VuXNRIREdVpWo9MAaBJkyaYOnWqrmohIiLSSxy0gYiISCKGKRERkUQMUyIiIom0XjO1tbWFQqHQ+kEO3EBERFRCa5g+fPxl7dq1AIDJkycDAL755hsYGxvroDQiIiL9oPU0b9euXdG1a1ecOHECH3/8MWxtbWFra4uQkBD8+OOPNbLxmJgYmJubw8zMDCEhIeWWCyHw+uuvw8zMDHZ2djh79qxm2bRp09ChQwfY2NjUSC1ERERPq8prpnfu3MHx48c107/88gvu3LkjecNqtRqBgYGIjo5GYmIitm3bVu4tNdHR0UhKSkJSUhLCwsIwe/ZszbIpU6YgJiZGch1ERERSVfqcKQBs2rQJ06ZNw61bt6BQKGBiYoKvvvpK8obj4uJgZmamGZpwwoQJiIqKgpWVlaZNVFQUXnnlFSgUCri6uiI3NxcZGRkwNTXFkCFDkJKSIrkOIiIiqaoMU0dHR5w7dw63b9+GEAImJiY1suG0tDR06dJFM61UKnH69Okq26SlpcHU1LRGaiAiIqoJVYZpZmYm3nnnHaSnp2tOyZ48eRLTp0+XtGEhRLl5j989XJ02VQkLC0NYWBiAknexxsbGPtHniYiIqlJlmE6ZMgVTp07F0qVLAZSM2Tt+/HjJYapUKpGamqqZVqlU6Ny58xO3qUpAQAACAgIAAE5OTnB3d3/6oomIiCpQ5Q1IN27cwLhx42BgUNLUyMgIhoaGkjfs7OyMpKQkJCcno7CwEJGRkfDz8yvTxs/PD1u2bIEQAqdOnYKJiQlP8RIRUZ1TZZg2b94c2dnZmtOrD0NNKiMjI4SGhsLb2xuWlpYYN24crK2tsW7dOqxbtw4A4OPjgx49esDMzAyvvvoqvvjiC83nJ06ciP79++Py5ctQKpXYtGmT5JqIiIiehkJUdGHyEWfPnsXcuXNx4cIF2NjYICsrCzt27ECfPn10VWONcXJyQnx8vNxlEBGRntKWI1VeM7W2tsaxY8dw+fJlCCFgbm6O4uLiWimSiIhIH1V5mrd///4wMjKCtbU1bGxs0KhRI/Tv318XtREREekFrUem165dQ1paGu7du4fffvtN85jK7du3cffuXZ0VSEREVNdpDdMff/wR4eHhUKlUWLBggWZ+y5Yt8dFHH+mkOCIiIn2gNUz9/f3h7++PnTt3YsyYMbqsiYiISK9UeQPSmDFjsH//fvzxxx8oKCjQzP/vf/9bq4URERHpiypvQJo1axa2b9+ONWvWQAiBHTt24J9//tFFbURERHqhyjD95ZdfsGXLFrRp0wZLlizByZMnywzxR0S1z93dnUNhEtVhVYZps2bNAADGxsZIT09Ho0aNkJycXOuFERER6Ysqr5n6+voiNzcXb731FhwcHKBQKDBjxgxd1EZERJV4eLaCb8OSX5VhunjxYgAlNyL5+vqioKCgxt5pSkREVB9UGaZqtRr79+9HSkoKioqKNPMfffaUiIioIasyTF944QU0bdoUtra2mtewERHJhac2qS6qMkxVKhXOnz+vi1qIiIj0UpWHmsOHD8fBgwd1UQsREZFeqvLI1NXVFaNGjUJxcTEaNWoEIQQUCgVu376ti/qIiIjqvCrD9M0338TJkydha2sLhUKhi5qIiIieiNzX0qs8zdurVy/Y2NgwSEnnOOoPEemLKo9MTU1N4e7ujuHDh6NJkyaa+Xw0hoiIqESVYdq9e3d0794dhYWFKCws1EVNREREeqXKMF2yZIku6iAiItJbWsN0/vz5WLlyJV544YUKr5fu2bOnVgsjqi+qdWNEcBVDdKbcqbpd8K0nqouIao7WMJ08eTIAYOHChTorhoiISB9pDVNHR0cAQEJCAubNm1dm2apVq+Dm5la7lREREemJKh+NiYiIKDcvPDy8Nmoh8HEQIiJ9pPXIdNu2bfj222+RnJwMPz8/zfzbt2+jbdu2OimO6jleJ2xw5H6wnqi2aA3TAQMGwNTUFDdu3MCbb76pmd+yZUvY2dnppDgiIiJ9oDVMu3btiq5du+Lw4cNo1qwZDAwMcOXKFVy6dAm2tra6rJH0EI9A6KnxjAXpoSqvmQ4ZMgQFBQVIS0uDh4cHNm/ejClTpuigNP3D651ERA1TlYM2CCFgbGyMTZs2Ye7cuVi0aBH69u1bIxuPiYnBvHnzoFarMWPGDAQFBZXb9rx583DgwAEYGxsjPDwcDg4O1fpsncW/uokIPHtT31R5ZCqEwMmTJ/HNN99gxIgRAICioiLJG1ar1QgMDER0dDQSExOxbds2JCYmlmkTHR2NpKQkJCUlISwsDLNnz672Z4mIiHSlyjBdtWoVli1bhlGjRsHa2hp///03hg4dKnnDcXFxMDMzQ48ePdC4cWNMmDABUVFRZdpERUXhlVdegUKhgKurK3Jzc5GRkVGtzxIREelKlad5hwwZgiFDhmime/Togc8//1zyhtPS0tClSxfNtFKpxOnTp6tsk5aWVq3PViQ7O7tWn5G1t7cHUNVzuGMrX8fz6pJ1wFB7Iz14zpd9UYp9UYp9UapafZFyvPJ1WHQvWUfwDO2Nug16wsp0LyEhAUBpnzyN6n23ao/WMB00aBCOHy/5Hzl58mRs3bpVs8zFxQVnz56VtGEhRLl5j48BrK1NdT77UFhYGMLCwgAA9+/fR25u7lNUWz0PT39Xuo3WNpWv48afJetobaa9US3uw5O4c1/76f7CBw8AAGmZN7S2ac6+0GBflGJflKovfVFZPwDV7AtFQaXrKHpwHwCQe12lvVHjFpWuQwqtYXrnzh3NzxcuXCizrKIwe1JKpRKpqamaaZVKhc6dO1erTWFhYZWffSggIAABAQEAACcnJ8yfP19y7do8vKEgNDRU1nXoSreg/VqXXdtbMnJWp5d9tLZJCRlR4zXJpbb7gt+LUuyLUvrSF5X1A1DNvmj6cqXrcN9fklmhU5prb7RI+s2bX3/9dYXztV4zffRI7/GjPm1HgU/C2dkZSUlJSE5ORmFhISIjI8uMtAQAfn5+2LJlC4QQOHXqFExMTGBqalqtz+qr2NhY3t1H5fB7QVS3aT0yzc3Nxa5du1BcXIzc3Fz88MMPAEqOSm/dkp7uRkZGCA0Nhbe3N9RqNaZNmwZra2usW7cOADBr1iz4+PjgwIEDMDMzg7GxMTZv3lzpZ0m3Kvur2f3UJwCA2Hp09ElEpI3WMHVzc9O8s9TNzQ179+7VLHv0hiQpfHx84ONT9rB+1qxZmp8VCgXWrl1b7c8SyYV/WBA1bFrD9OFRIBEREVWuykdjqPp4TYuIqGGqctAGIiIiqhzDlIiISKInCtOHz2sSERFRqSe6ZhofH19bdRBRPVHbdzbz3gSqi57oyLRDhw61VQcREZHeeqIj05iYmNqqg+oZHj0QUUPCG5CIiIgk4nOmRERU9wVXMYxtrPv/bxdb25VUiEemREREEmkN00WLFmkGnX/UihUr8Pbbb9dqUURERPpEa5ju27evwudK582bh/37K383HRERUUOi9ZqpQqGAgUH5rDUwMKiRl4MTEdV3fJtQw6H1yNTY2BhJSUnl5iclJaFZs2a1WhQREZE+0Xpk+sEHH2D48OF477334OjoCKBkBKRly5Zh5cqVuqqPSO/xmVui+k9rmA4fPhy7d+/GJ598gjVr1gAAbGxssHPnTtja2uqsQCIiorqu0udMbWxsEBERoataiIiI9BIHbSAi0lO8hFB3cNAGIiIiiRimREREEmk9zTt37lwoFAqtH1y9enWtFERERKRvtIapk5OTLusgIiLSW1rD1N/fX5d1EFEDwBtmqL6q8m7erKwsLF++HImJiSgoKNDM/+mnn2q1MCIiIn1RZZhOmjQJ48ePx/79+7Fu3TpERESgffv2uqiNiIjqgcrGKAbqxzjFVd7Nm52djenTp6NRo0Zwc3PDV199hVOnTumiNiIiIr1Q5ZFpo0aNAACmpqbYv38/OnfuDJVKVeuFERER6Ysqw/S9997DrVu38Nlnn2Hu3Lm4ffs2VqxYoYvaiIiI9EKVp3l9fX1hYmICGxsbHD16FGfOnIGfn5+kjd68eROenp7o1asXPD09kZOTU2G7mJgYmJubw8zMDCEhIZr5O3bsgLW1NQwMDBAfHy+pFiIiIqmqPDKdOnVqhYM3fPXVV0+90ZCQEHh4eCAoKAghISEICQnB8uXLy7RRq9UIDAzEoUOHoFQq4ezsDD8/P1hZWcHGxgY//PADZs6c+dQ1EBER1ZQqw9TX11fzc0FBAXbt2oXOnTtL2mhUVJTmeTN/f3+4u7uXC9O4uDiYmZmhR48eAIAJEyYgKioKVlZWsLS0lLR9IiKimlRlmI4ZM6bM9MSJEzFs2DBJG83MzISpqSmAkhubrl+/Xq5NWloaunTpoplWKpU4ffq0pO0SERHVhid+BVtSUhKuXr1aZbthw4bh2rVr5eYvXbq0WtsRQpSbV9lYwdqEhYUhLCwMAKBSqTgCCxHVCbm5uQA4KhRQM30hd39WGaYtW7YsE2KdOnUqd0q2IocPH9a6rGPHjsjIyICpqSkyMjLQoUOHcm2USiVSU1M10yqV6qlOLwcEBCAgIABAyXjD7u7uT7wOIqKalpCQIHcJdUbr1q0BQNK/zzWxDimqDNO8vLwa36ifnx8iIiIQFBSEiIgIjBw5slwbZ2dnJCUlITk5Gc888wwiIyPx7bff1ngtREREUlX5aIyHh0e15j2JoKAgHDp0CL169cKhQ4cQFBQEAEhPT4ePjw8AwMjICKGhofD29oalpSXGjRsHa2trAMCuXbugVCpx8uRJjBgxAt7e3pLqISIikkLrkWlBQQHu3r2LGzduICcnR3MN8/bt20hPT5e00bZt2+LIkSPl5nfu3BkHDhzQTPv4+GjC9VGjRo3CqFGjJNVARERUU7SG6fr167Fy5Uqkp6fD0dFRE6atWrVCYGCgzgokIiKq67SG6bx58zBv3jysWbMGc+fO1WVNREREeqXKa6YGBgaaW44BICcnB1988UVt1kRERPREYmNjZX3MqMow3bBhg+aWYwBo06YNNmzYUJs1ERER6ZUqw7S4uLjMAApqtRqFhYW1WhQREZE+qfI5U29vb4wbNw6zZs2CQqHAunXr8Pzzz+uiNiIiIr1QZZguX74cYWFh+PLLLyGEgJeXF1599VVd1EZERKQXqnUD0qxZs/D9999j586dsLa25t29REREj6jWQPcJCQnYtm0btm/fju7du2P06NG1XRcREZHe0BqmV65cQWRkJLZt24a2bdti/PjxEELg6NGjuqyPiIioztMaphYWFhg8eDD27t0LMzMzAMCKFSt0VhgREZG+0HrNdOfOnejUqROGDh2KV199FUeOHKnwHaNEREQNndYwHTVqFLZv345Lly7B3d0dK1asQGZmJmbPno2DBw/qskYiIqI6rcq7eZs3b45JkyZh3759UKlUsLe3R0hIiC5qIyIi0gtVhumj/vWvf2HmzJn46aefaqseIiIivfNEYUpERETlMUyJiIgkYpgSERFJxDAlIiKSqFrDCRIREdUWOV/qXVN4ZEpERCQRw5SIiEgihikREZFEDFMiIiKJGKZEREQSMUyJiIgkYpgSERFJxDAlIiKSiGFKREQkkSxhevPmTXh6eqJXr17w9PRETk5Ohe1iYmJgbm4OMzOzMu9Qfeutt2BhYQE7OzuMGjUKubm5OqqciIioPFnCNCQkBB4eHkhKSoKHh0eFLxtXq9UIDAxEdHQ0EhMTsW3bNiQmJgIAPD09ceHCBZw/fx69e/fGsmXLdL0LREREGrKEaVRUFPz9/QEA/v7+2L17d7k2cXFxMDMzQ48ePdC4cWNMmDABUVFRAAAvLy8YGZUMK+zq6gqVSqWz2omIiB4nS5hmZmbC1NQUAGBqaorr16+Xa5OWloYuXbpoppVKJdLS0sq1++qrrzB8+PDaK5aIiKgKtfbWmGHDhuHatWvl5i9durRanxdClJunUCjKrcvIyAiTJk3Sup6wsDCEhYUBAFQqVb14OwEREdUttRamhw8f1rqsY8eOyMjIgKmpKTIyMtChQ4dybZRKJVJTUzXTKpUKnTt31kxHRERg3759OHLkSLmQfVRAQAACAgIAAE5OTnB3d3+KvSEiItJOltO8fn5+iIiIAFASiiNHjizXxtnZGUlJSUhOTkZhYSEiIyPh5+cHoOQu3+XLl2PPnj0wNjbWae1ERESPkyVMg4KCcOjQIfTq1QuHDh1CUFAQACA9PR0+Pj4AACMjI4SGhsLb2xuWlpYYN24crK2tAQBz5sxBXl4ePD09YW9vj1mzZsmxG0RERAAAhajo4mQ95eTkhPj4eLnLICIiPaUtRzgCEhERkUQMUyIiIokYpkRERBIxTImIiCRimBIREUnEMCUiIpKIYUpERCQRw5SIiEgihikREZFEDFMiIiKJGKZEREQSMUyJiIgkYpgSERFJxDAlIiKSiGFKREQkEcOUiIhIIoYpERGRRAxTIiIiiRimREREEjFMiYiIJGKYEhERScQwJSIikohhSkREJBHDlIiISCKGKRERkUQMUyIiIokYpkRERBIxTImIiCRimBIREUkkS5jevHkTnp6e6NWrFzw9PZGTk1Nhu5iYGJibm8PMzAwhISGa+YsXL4adnR3s7e3h5eWF9PR0XZVORERUjixhGhISAg8PDyQlJcHDw6NMUD6kVqsRGBiI6OhoJCYmYtu2bUhMTAQAvPXWWzh//jwSEhLg6+uLDz74QNe7QEREpCFLmEZFRcHf3x8A4O/vj927d5drExcXBzMzM/To0QONGzfGhAkTEBUVBQBo1aqVpt2dO3egUCh0UjcREVFFjOTYaGZmJkxNTQEApqamuH79erk2aWlp6NKli2ZaqVTi9OnTmul3330XW7ZsgYmJCY4ePVr7RRMREWlRa2E6bNgwXLt2rdz8pUuXVuvzQohy8x49Al26dCmWLl2KZcuWITQ0FO+//36F6wkLC0NYWBgAQKVSITY2tlrbJyIiqq5aC9PDhw9rXdaxY0dkZGTA1NQUGRkZ6NChQ7k2SqUSqampmmmVSoXOnTuXa/fyyy9jxIgRWsM0ICAAAQEBAAAnJye4u7s/4Z4QERFVTpZrpn5+foiIiAAAREREYOTIkeXaODs7IykpCcnJySgsLERkZCT8/PwAAElJSZp2e/bsgYWFhW4KJyIiqoAs10yDgoIwbtw4bNq0Cc8++yx27NgBAEhPT8eMGTNw4MABGBkZITQ0FN7e3lCr1Zg2bRqsra01n798+TIMDAzQtWtXrFu3To7dICIiAgAoREUXJ+spJycnxMfHy10GERHpKW05whGQiIiIJGKYEhERScQwJSIikohhSkREJBHDlIiISCKGKRERkUQMUyIiIokYpkRERBIxTImIiCRimBIREUnEMCUiIpKIYUpERCQRw5SIiEgihikREZFEDeoVbO3atUO3bt1krSErKwvt27eXtYa6gn1Rin1Rin1Rin1Rqq70RUpKCm7cuFFufoMK07qA71Qtxb4oxb4oxb4oxb4oVdf7gqd5iYiIJGKYEhERScQw1bGAgAC5S6gz2Bel2Bel2Bel2Bel6npf8JopERGRRDwyJSIikohhSkREJBHDlIiISCKGKelUfHw8du3ahb179+LSpUtylyOL8+fPy11CnfbFF1/IXYIs+L3QLj8/H2fPnkVubq7cpWhlJHcB9dnq1asxatQodOnSRe5SZHfs2DG8+eabaN26Nc6cOYOBAwciJycHjRo1wtatWxtUH/Xt2xfdu3fHxIkTMXHiRFhZWcldkmw+//zzMtNCCCxbtgwFBQUAgAULFshRliz4vSj12muvaf6oOn78OF5++WX07NkTf/75J9avXw8fHx+ZKyyPR6a1aPHixejXrx8GDx6ML774AllZWXKXJJv58+cjOjoahw8fxtmzZ9GoUSOcOHEC7777LqZPny53eTplZ2eH3bt3o7i4GH5+fujTpw9CQkKQkpIid2k6t2TJEpw+fRr5+fnIy8tDfn4+1Go18vLykJeXJ3d5OsXvRalTp05pfl68eDF2796No0eP4tixY/jvf/8rY2WVEFRr7O3thVqtFj/++KOYNm2aaNeunfD29hbh4eHi9u3bcpenU7a2tpqfi4qKRN++fTXTVlZWcpQkm0f3XQghTp8+Ld544w2hVCpF//79ZapKHv/8848YM2aMWLRokbhz544QQoju3bvLXJU8+L0o9WhfODg4lFlmb2+v63Kqhad5a5FCoYCBgQG8vLzg5eWFBw8eIDo6Gtu2bcPChQsb1JGqk5MTpk+fDg8PD0RFRcHd3R0AcPfuXajVanmL0zHx2KPdLi4ucHFxwWeffYb//e9/MlUlj2effRbff/89oqKi4OnpiTfeeEPukmTD70WpS5cuwc7ODkIIpKSkICcnB23atEFxcTEePHggd3kV4qANtahv37747bffKlx27949NGvWTMcVyefBgwfYsGEDEhMT0adPH0ybNg2Ghoa4d+8erl+/jq5du8pdos58++23ePnll+Uuo865e/eu5rRvQwsPgN+LR/3zzz9lpk1NTdG4cWPcuHED//vf/zB69GiZKtOOYVqLrly5gt69e8tdRp2VnZ2Ntm3byl0GEZFkvAGpFlUUpDdv3pShEvkFBQVp3gEYHx+PHj16oF+/fujatSuOHTsmc3W6de3aNcyePRuBgYHIzs5GcHAwbG1tMW7cOGRkZMhdnk7FxMRofs7NzcWMGTNgZ2eHl19+GZmZmTJWVrcMHz5c7hJ0Sh9/RximtejDDz/U/JyYmIjevXvD0dER3bp1w+nTp2WsTPf279+Pdu3aAQDeeustbN++HX/++ScOHTqEN998U+bqdGvKlCmwsrJCly5dMHToUDRr1gz79+/H4MGDMWvWLLnL06l33nlH8/PChQvRqVMn7N27F87Ozpg5c6aMlene2bNnK/zvzJkzSEhIkLs8ndLH3xGe5q1FDg4OOHv2LABgxIgRmDNnDoYPH464uDjMnz8fv/zyi8wV6o6FhQUuXLgAIyMjuLq6lrn13dbWFr///ruM1enWo9fSn332WVy9elWzzN7evkH9w/no78jj+97Q+sLQ0BBubm7lbkQCSh4VuXfvngxVyUMff0d4N6+OpKena07VuLi4NKhfDAAIDAyEj48PgoKC8Pzzz2P+/PkYPXo0jhw5Ant7e7nL06ni4mLNz6+88orWZQ3B9evX8fnnn0MIgdu3b0MIAYVCAaDh9YWlpSXWr1+PXr16lVvWkAY1AfTzd4RhWov+/vtv+Pn5QQgBlUqFu3fvwtjYGADq7O3dtWXu3LmwsbHBunXrcOXKFRQVFeHy5ct48cUX8d5778ldnk6NHDkS+fn5aNGiRZlLAX/++WeDu2Ht1Vdf1QzO4O/vjxs3bqB9+/a4du1ag/sjKzg4WGtQrFmzRsfVyEsff0d4mrcWPX5jjaOjI1q0aIHMzEx8//33CAwMlKkyIiKqSQxT0pm4uDgoFAo4OzsjMTERMTExsLCwqJPjbMpl8+bNmDp1qtxl6Mzq1asxevRoKJVKuUupEy5duoSoqCikpaVBoVCgc+fO8PPzg6Wlpdyl6Zy+9QXDVCZhYWEICAiQuwydef/99xEdHY2ioiJ4enri9OnTcHd3x+HDh+Ht7Y13331X7hLrhMdvtqjvTExM0Lx5c/Ts2RMTJ07E2LFj0b59e7nLksXy5cuxbds2TJgwQfPHhUqlQmRkJCZMmICgoCCZK9QdfewLhqlM1q9f36Bu/be1tUVCQgLu37+PTp06QaVSoVWrVrh37x769evXoF4/ZWdnV+F8IQSuXLmC+/fv67gi+fTt2xdnzpzB4cOHsX37duzZsweOjo6YOHEiRo8ejZYtW8pdos707t0bf/zxBxo1alRmfmFhIaytrZGUlCRTZbqnj33BG5Bq2V9//YVdu3YhNTUVRkZG6NWrFyZOnNigghQAjIyMYGhoCGNjY/Ts2ROtWrUCADRr1gwGBg3rcefMzEz8+OOPaNOmTZn5QggMGDBApqrkwfGrSxkYGCA9Pb3c0JoZGRkN7ndEH/uCYVqLVq9ejb1798LNzQ2//vor7O3tkZqaiv79++OLL77QDPbeEDRu3FhzN/OZM2c082/dulVnfzlqi6+vL/Lz8yu8W7UhfSeA8oO7N2rUCH5+fvDz82twj4+tXLkSHh4e6NWrl+ZRmKtXr+LPP/9EaGiozNXplj72BU/z1qKHpzYNDQ1x9+5d+Pj4IDY2FlevXsXIkSO1DoJfH92/fx9NmjQpN//GjRvIyMiAra2tDFWR3Dh+dVnFxcWIi4tDWloahBBQKpVwdnaGoaGh3KXpnL71BY9Ma1lRUREMDQ1x//59zfN0zz77bIN7zrSiIAWAdu3aaYYZpIaHQVqWgYEBXF1d5S6jTtC3vmhY59d0bMaMGXB2dkZAQAD69++POXPmAACysrLwr3/9S+bq6g5fX1+5S6gz2Bel2Bel2Bel6mpf8DRvLfvjjz9w8eJF2NjYwMLCQu5y6qSMjAyYmprKXUadwL4oxb4oxb4oVVf7gmFKsrl+/To6dOggdxlERJLxNC/pxM2bN8v8l52dDRcXF+Tk5DS4d7zm5+fjv//9L6ytrWFiYoL27dvD1dUV4eHhcpemc/Hx8Rg6dCj+/e9/IzU1FZ6enjAxMYGzs3ODukEP4PfiUfrYFzwyJZ0wMDAo98yYSqWCUqmEQqHA33//LVNlujdy5EiMGjUKw4YNw3fffYc7d+5gwoQJ+PDDD/HMM8/go48+krtEnXFxccH777+P3NxcLFq0CCtWrMBLL72EI0eO4L333sPJkyflLlFn+L0opZd9IYh04JNPPhHe3t7i/PnzmnndunWTsSL52NnZlZl2cnISQgihVquFubm5HCXJxt7eXvNzly5dtC5rCPi9KKWPfcHTvKQTCxcuxMaNG/HBBx9gwYIFyMvL07y3sqFp3rw5jh8/DgDYu3ev5s5uAwODCl8MXZ81bdoUBw8exI4dO6BQKLB7924AJW9cqqvPE9YWfi9K6WVfyBzm1ADt2bNH9OvXT3Ts2FHuUmSRkJAgnJ2dhYmJiRg4cKC4fPmyEEKI69evi1WrVslcnW799ttvwsvLSzz//PPi4sWL4vXXXxetW7cWVlZW4vjx43KXp1P8XpQ6d+6c3vUFr5mSzly6dAlpaWno168fDA0N8ddff8HGxgYxMTF4/vnn5S5Pp06fPg0DAwO+jq4CkydPxtatW+UuQ3bHjx9HXFwcbGxs4OXlJXc5OnX69GlYWFjAxMQEd+/exfLly3H27FlYWVnhnXfegYmJidwllsMwJZ1YvXo11q5dC0tLSyQkJGDVqlUYOXIkAMDBwQFnz56VuULd4evoSvn5+ZWb99NPP+G5554DAOzZs0fXJcnGxcUFcXFxAICNGzciNDQUo0aNwsGDB/HCCy/UydeO1RZra2ucO3cORkZGCAgIgLGxsebGtHPnzuGHH36Qu8Ty5D0wpobCxsZG5OXlCSGESE5OFo6OjmLlypVCiIZ3o4mNjY0oKioSd+7cES1bthS3bt0SQghx9+5dYWtrK3N1umVvby8mTZokjh49KmJjY8XRo0dFp06dRGxsrIiNjZW7PJ169PfAyclJXL9+XQghRH5+vrCxsZGrLFlYWFhofu7bt2+ZZX369NFxNdXDG5BIJ9RqNVq0aAEA6NatG2JjYxEdHY0FCxbU3RsKaglfR1fqzJkzcHR0xNKlS2FiYgJ3d3c0a9YMbm5ucHNzk7s8nSouLkZOTg6ys7MhhNC8JL158+YwMmpYw6jb2Nhg8+bNAIA+ffogPj4eQMmLER5/x2ld0bB+c0k2nTp1QkJCgma6RYsW2LdvH27cuIHff/9dvsJk8PB1dAAa/OvoDAwM8MYbb2Dz5s1YunQp5syZg6KiIrnLksWtW7fg6OgIJycn3Lx5E9euXQNQMoBBQ/uDc+PGjTh27Bh69uyJxMRE9O/fHz169MCrr76KjRs3yl1ehXjNlHRCpVLByMgInTp1KrfsxIkTGDhwoAxVyYOvo9Nu//79OHHiRN18KF8md+/eRWZmJrp37y53KTqXl5eHv//+G0VFRVAqlejYsaPcJWnFMCUiIpKoYZ1TIiIiqgUMUyIiIokYpkQNWGxsLH755Re5y9CJPXv2ICQkRO4yqJ7iNVMiPVNUVFRjj0oEBwejRYsWWLhwYY2sr66qyT4jqgiPTKlBSklJgYWFBWbMmAEbGxtMmjQJhw8fxsCBA9GrVy/NSDR37tzBtGnT4OzsjL59+yIqKkrz+cGDB8PBwQEODg6ao7vY2Fi4u7vjpZdegoWFBSZNmlThYw3u7u6YP38+BgwYABsbmyq3Fx4ejrFjx+KFF16Al5cX8vPzMXXqVNja2sLOzg47d+4EABw8eBD9+/eHg4MDxo4di/z8fAAlz/YuWbIEDg4OsLW1xaVLl5CSkoJ169ZhxYoVsLe3x88//4y9e/eiX79+6Nu3L4YNG4bMzEwAQFZWFjw9PeHg4ICZM2eia9euuHHjBgDg66+/houLC+zt7TFz5kyo1epy+/vrr79iwIAB6NOnD1xcXJCXlwe1Wo233noLzs7OsLOzw/r166vsw6CgIFhZWcHOzk7zB8A///wDDw8P2NnZwcPDA1evXgUATJkyBQsWLMDQoUPx9ttvIzw8HHPmzNEse/311zFgwAD06NED33//PYCSZz1fe+01WFtbw9fXFz4+PpplRJWSabAIIlklJycLQ0NDcf78eaFWq4WDg4OYOnWqKC4uFrt37xYjR44UQgjxn//8R2zdulUIIUROTo7o1auXyM/PF3fu3BH37t0TQghx5coV4ejoKIQQ4ujRo6JVq1YiNTVVqNVq4erqKn7++edy23dzcxMzZswQQghx7NgxYW1tXen2Nm/eLJ555hmRnZ0thBBi0aJFYt68eZr13bx5U2RlZYnBgweL/Px8IYQQISEh4v333xdCCNG1a1exevVqIYQQa9euFdOnTxdCCLFkyRLxySeflFlPcXGxEEKIDRs2iAULFgghhAgMDBQfffSREEKI6OhoAUBkZWWJxMRE4evrKwoLC4UQQsyePVtERESU2df79++L7t27i7i4OCGEELdu3RIPHjwQ69evF//3f/8nhBCioKBAODo6ir///ltrH2ZnZ4vevXtr6svJyRFCCOHr6yvCw8OFEEJs2rRJ8//O399fjBgxQhQVFQkhhNi8ebMIDAzULHvppZeEWq0Wf/zxh+jZs6cQQogdO3aI4cOHC7VaLTIyMkTr1q3Fjh07yv3/I3ocz3tQg9W9e3fNM53W1tbw8PCAQqGAra0tUlJSAJQc6e3ZsweffvopAKCgoABXr15F586dMWfOHCQkJMDQ0BBXrlzRrNfFxQVKpRIAYG9vj5SUFAwaNKjc9idOnAgAGDJkCG7fvo3c3Fyt2wMAT09PzauoDh8+jMjISM262rRpg3379iExMVHzzG5hYSH69++vaTN69GgAgKOjo9axTVUqFcaPH4+MjAwUFhZqnm08fvw4du3aBQB4/vnn0aZNGwDAkSNHcObMGTg7OwMA7t27hw4dOpRZ5+XLl2Fqaqpp83DEp4MHD+L8+fOaI79bt24hKSkJjRs3rrAPXV1d0bRpU8yYMQMjRoyAr68vAODkyZOa/Zk8eTIWLVqk2fbYsWO1vsrtxRdfhIGBAaysrDRH4MePH8fYsWNhYGCATp06YejQoRV+luhxDFNqsB4dOMHAwEAzbWBgoBmFRwiBnTt3wtzcvMxng4OD0bFjR5w7dw7FxcVo2rRphes1NDTUOqLP4+9zVSgUWrd3+vRpNG/eXDMthCj3eSEEPD09sW3btkr3t7Ka5s6diwULFsDPzw+xsbEIDg7WrLsiQgj4+/tj2bJlFS7XVuvD+WvWrIG3t3eZ+bGxsRX2oZGREeLi4nDkyBFERkYiNDQUP/30U7n1PrqtR/vscY9u4+H+adtPoqrwmilRJby9vbFmzRrNP7K//fYbgJKjKFNTUxgYGGDr1q0VXiesyvbt2wGUHA2ZmJjAxMRE6/Ye5+XlhdDQUM10Tk4OXF1dceLECfz5558ASkbOefSIuSItW7ZEXl6eZvrWrVt45plnAAARERGa+YMGDcJ3330HoOSIMicnBwDg4eGB77//HtevXwcA3Lx5E//880+ZbVhYWCA9PR2//vorgJJRbYqKiuDt7Y0vv/wSDx48AFAy7uqdO3e01pqfn49bt27Bx8cHK1eu1AxPOWDAAM1R+jfffFPhWYDqGjRoEHbu3Ini4mJkZmYiNjb2qddFDQvDlKgSixcvxoMHD2BnZwcbGxssXrwYAPDaa68hIiICrq6uuHLlSqVHQNq0adMGAwYMwKxZs7Bp06ZKt/e49957Dzk5ObCxsUGfPn1w9OhRtG/fHuHh4Zg4cSLs7Ozg6uqKS5cuVVrDCy+8gF27dmluQAoODsbYsWMxePBgtGvXTtNuyZIlOHjwIBwcHBAdHQ1TU1O0bNkSVlZW+PDDD+Hl5QU7Ozt4enoiIyOjzDYaN26M7du3Y+7cuejTpw88PT1RUFCAGTNmwMrKCg4ODrCxscHMmTMrHZc3Ly8Pvr6+sLOzg5ubG1asWAGg5PV+mzdvhp2dHbZu3YpVq1ZVq/8rMmbMGCiVSk09/fr1q5PvzqS6h4/GEMnA3d0dn376KZycnOQupVru378PQ0NDGBkZ4eTJk5g9e3aZFxfUJ/n5+WjRogWys7Ph4uKCEydOVDimNNGjeM2UiKp09epVjBs3DsXFxWjcuDE2bNggd0m1xtfXF7m5uSgsLMTixYsZpFQtPDIlIiKSiNdMiYiIJGKYEhERScQwJSIikohhSkREJBHDlIiISCKGKRERkUT/D+qxOU6QM1BaAAAAAElFTkSuQmCC",
|
|
308
308
|
"text/plain": [
|
|
309
309
|
"<Figure size 518.4x345.6 with 1 Axes>"
|
|
310
310
|
]
|
{scikit_survival-0.25.0 → scikit_survival-0.26.0}/doc/user_guide/random-survival-forest.ipynb
RENAMED
|
@@ -67,7 +67,7 @@
|
|
|
67
67
|
"source": [
|
|
68
68
|
"X, y = load_gbsg2()\n",
|
|
69
69
|
"\n",
|
|
70
|
-
"grade_str = X.loc[:, \"tgrade\"].
|
|
70
|
+
"grade_str = X.loc[:, \"tgrade\"].to_numpy(dtype=\"str\")[:, np.newaxis]\n",
|
|
71
71
|
"grade_num = OrdinalEncoder(categories=[[\"I\", \"II\", \"III\"]]).fit_transform(grade_str)\n",
|
|
72
72
|
"\n",
|
|
73
73
|
"X_no_grade = X.drop(\"tgrade\", axis=1)\n",
|
|
@@ -9,8 +9,8 @@ requires = [
|
|
|
9
9
|
"numpy>=2.0.0",
|
|
10
10
|
|
|
11
11
|
# scikit-learn requirements
|
|
12
|
-
"scikit-learn~=1.7.0; python_version<='3.
|
|
13
|
-
"scikit-learn; python_version>'3.
|
|
12
|
+
"scikit-learn~=1.7.0; python_version<='3.14'",
|
|
13
|
+
"scikit-learn; python_version>'3.14'",
|
|
14
14
|
]
|
|
15
15
|
build-backend = "setuptools.build_meta"
|
|
16
16
|
|
|
@@ -23,7 +23,7 @@ authors = [
|
|
|
23
23
|
]
|
|
24
24
|
license = "GPL-3.0-or-later"
|
|
25
25
|
license-files = ["COPYING"]
|
|
26
|
-
requires-python = ">=3.
|
|
26
|
+
requires-python = ">=3.11"
|
|
27
27
|
classifiers = [
|
|
28
28
|
"Development Status :: 4 - Beta",
|
|
29
29
|
"Intended Audience :: Science/Research",
|
|
@@ -35,10 +35,10 @@ classifiers = [
|
|
|
35
35
|
"Programming Language :: Cython",
|
|
36
36
|
"Programming Language :: Python",
|
|
37
37
|
"Programming Language :: Python :: 3",
|
|
38
|
-
"Programming Language :: Python :: 3.10",
|
|
39
38
|
"Programming Language :: Python :: 3.11",
|
|
40
39
|
"Programming Language :: Python :: 3.12",
|
|
41
40
|
"Programming Language :: Python :: 3.13",
|
|
41
|
+
"Programming Language :: Python :: 3.14",
|
|
42
42
|
"Topic :: Software Development",
|
|
43
43
|
"Topic :: Scientific/Engineering"
|
|
44
44
|
]
|
|
@@ -47,8 +47,8 @@ dependencies = [
|
|
|
47
47
|
"joblib",
|
|
48
48
|
"numexpr",
|
|
49
49
|
"numpy",
|
|
50
|
-
"osqp >=
|
|
51
|
-
"pandas >=
|
|
50
|
+
"osqp >=1.0.2",
|
|
51
|
+
"pandas >=2.0.0",
|
|
52
52
|
"scipy >=1.3.2",
|
|
53
53
|
"scikit-learn >=1.6.1,<1.8",
|
|
54
54
|
]
|
|
@@ -71,7 +71,7 @@ formatting = [
|
|
|
71
71
|
# See https://docs.readthedocs.io/en/latest/faq.html#i-get-import-errors-on-libraries-that-depend-on-c-modules
|
|
72
72
|
docs = [
|
|
73
73
|
"ipython !=8.7.0",
|
|
74
|
-
"matplotlib~=3.
|
|
74
|
+
"matplotlib ~=3.10.0",
|
|
75
75
|
"nbsphinx>=0.9.2",
|
|
76
76
|
"docutils",
|
|
77
77
|
"setuptools-scm",
|
|
@@ -84,7 +84,7 @@ docs = [
|
|
|
84
84
|
|
|
85
85
|
test = [
|
|
86
86
|
"coverage",
|
|
87
|
-
"pytest",
|
|
87
|
+
"pytest >=9",
|
|
88
88
|
]
|
|
89
89
|
|
|
90
90
|
test-nb = [
|
|
@@ -121,13 +121,13 @@ namespaces = false
|
|
|
121
121
|
[tool.black]
|
|
122
122
|
line-length = 120
|
|
123
123
|
extend-exclude = "sksurv/linear_model/src/eigen"
|
|
124
|
-
target-version = ["
|
|
124
|
+
target-version = ["py311"]
|
|
125
125
|
|
|
126
|
-
[tool.pytest
|
|
127
|
-
minversion = "
|
|
128
|
-
addopts = "--strict-markers"
|
|
129
|
-
doctest_optionflags = "NORMALIZE_WHITESPACE ELLIPSIS"
|
|
130
|
-
norecursedirs = ".* *.egg build dist venv {arch} eigen"
|
|
126
|
+
[tool.pytest]
|
|
127
|
+
minversion = "9.0"
|
|
128
|
+
addopts = ["--strict-markers"]
|
|
129
|
+
doctest_optionflags = ["NORMALIZE_WHITESPACE", "ELLIPSIS"]
|
|
130
|
+
norecursedirs = [".*", "*.egg", "build", "dist", "venv", "{arch}", "eigen"]
|
|
131
131
|
testpaths = ["tests"]
|
|
132
132
|
filterwarnings = [
|
|
133
133
|
# Treat all warnings as errors other than the ignored ones
|
|
@@ -192,7 +192,7 @@ extend-exclude = [
|
|
|
192
192
|
# Group violations by containing file.
|
|
193
193
|
output-format = "grouped"
|
|
194
194
|
line-length = 120
|
|
195
|
-
target-version = "
|
|
195
|
+
target-version = "py311"
|
|
196
196
|
|
|
197
197
|
[tool.ruff.lint]
|
|
198
198
|
ignore = ["A005", "C408"]
|
|
@@ -246,7 +246,7 @@ deps = [
|
|
|
246
246
|
description = "Run linters"
|
|
247
247
|
skip_install = true
|
|
248
248
|
deps = [
|
|
249
|
-
"ruff~=0.
|
|
249
|
+
"ruff~=0.14.0",
|
|
250
250
|
]
|
|
251
251
|
commands = [["ruff", "check", "sksurv/", "tests/", "setup.py"]]
|
|
252
252
|
pass_env = ["RUFF_*"]
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: scikit-survival
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.26.0
|
|
4
4
|
Summary: Survival analysis built on top of scikit-learn
|
|
5
5
|
Author-email: Sebastian Pölsterl <sebp@k-d-w.org>
|
|
6
6
|
License-Expression: GPL-3.0-or-later
|
|
@@ -19,21 +19,21 @@ Classifier: Programming Language :: C++
|
|
|
19
19
|
Classifier: Programming Language :: Cython
|
|
20
20
|
Classifier: Programming Language :: Python
|
|
21
21
|
Classifier: Programming Language :: Python :: 3
|
|
22
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
23
22
|
Classifier: Programming Language :: Python :: 3.11
|
|
24
23
|
Classifier: Programming Language :: Python :: 3.12
|
|
25
24
|
Classifier: Programming Language :: Python :: 3.13
|
|
25
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
26
26
|
Classifier: Topic :: Software Development
|
|
27
27
|
Classifier: Topic :: Scientific/Engineering
|
|
28
|
-
Requires-Python: >=3.
|
|
28
|
+
Requires-Python: >=3.11
|
|
29
29
|
Description-Content-Type: text/x-rst
|
|
30
30
|
License-File: COPYING
|
|
31
31
|
Requires-Dist: ecos
|
|
32
32
|
Requires-Dist: joblib
|
|
33
33
|
Requires-Dist: numexpr
|
|
34
34
|
Requires-Dist: numpy
|
|
35
|
-
Requires-Dist: osqp
|
|
36
|
-
Requires-Dist: pandas>=
|
|
35
|
+
Requires-Dist: osqp>=1.0.2
|
|
36
|
+
Requires-Dist: pandas>=2.0.0
|
|
37
37
|
Requires-Dist: scipy>=1.3.2
|
|
38
38
|
Requires-Dist: scikit-learn<1.8,>=1.6.1
|
|
39
39
|
Dynamic: license-file
|
|
@@ -72,13 +72,13 @@ this unique characteristic of such a dataset into account.
|
|
|
72
72
|
Requirements
|
|
73
73
|
============
|
|
74
74
|
|
|
75
|
-
- Python 3.
|
|
75
|
+
- Python 3.11 or later
|
|
76
76
|
- ecos
|
|
77
77
|
- joblib
|
|
78
78
|
- numexpr
|
|
79
79
|
- numpy
|
|
80
80
|
- osqp
|
|
81
|
-
- pandas
|
|
81
|
+
- pandas 2.0.0 or later
|
|
82
82
|
- scikit-learn 1.6 or 1.7
|
|
83
83
|
- scipy
|
|
84
84
|
- C/C++ compiler
|