scikit-network 0.31.0__tar.gz → 0.32.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (271) hide show
  1. {scikit-network-0.31.0 → scikit-network-0.32.0}/AUTHORS.rst +3 -0
  2. {scikit-network-0.31.0 → scikit-network-0.32.0}/HISTORY.rst +10 -0
  3. {scikit-network-0.31.0 → scikit-network-0.32.0}/PKG-INFO +11 -4
  4. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/clustering.rst +11 -0
  5. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/embedding.rst +0 -4
  6. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/topology.rst +6 -0
  7. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/visualization.rst +2 -2
  8. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/clustering/index.rst +2 -1
  9. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/embedding/index.rst +0 -1
  10. {scikit-network-0.31.0 → scikit-network-0.32.0}/scikit_network.egg-info/PKG-INFO +11 -4
  11. {scikit-network-0.31.0 → scikit-network-0.32.0}/scikit_network.egg-info/SOURCES.txt +9 -3
  12. {scikit-network-0.31.0 → scikit-network-0.32.0}/setup.cfg +1 -1
  13. {scikit-network-0.31.0 → scikit-network-0.32.0}/setup.py +1 -1
  14. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/__init__.py +1 -1
  15. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/base.py +1 -1
  16. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/base_rank.py +3 -3
  17. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/diffusion.py +21 -13
  18. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/knn.py +19 -13
  19. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/metrics.py +1 -1
  20. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/pagerank.py +12 -8
  21. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/propagation.py +22 -15
  22. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/test_diffusion.py +10 -0
  23. scikit-network-0.31.0/sknetwork/clustering/louvain_core.cpp → scikit-network-0.32.0/sknetwork/classification/vote.cpp +12968 -11092
  24. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/__init__.py +3 -1
  25. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/base.py +1 -1
  26. scikit-network-0.32.0/sknetwork/clustering/kcenters.py +253 -0
  27. scikit-network-0.32.0/sknetwork/clustering/leiden.py +241 -0
  28. scikit-network-0.32.0/sknetwork/clustering/leiden_core.cpp +31531 -0
  29. scikit-network-0.32.0/sknetwork/clustering/leiden_core.pyx +124 -0
  30. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/louvain.py +118 -83
  31. scikit-network-0.32.0/sknetwork/clustering/louvain_core.cpp +31176 -0
  32. scikit-network-0.32.0/sknetwork/clustering/louvain_core.pyx +124 -0
  33. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/postprocess.py +2 -2
  34. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/propagation_clustering.py +4 -4
  35. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/tests/test_API.py +7 -3
  36. scikit-network-0.32.0/sknetwork/clustering/tests/test_kcenters.py +92 -0
  37. scikit-network-0.32.0/sknetwork/clustering/tests/test_leiden.py +34 -0
  38. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/tests/test_louvain.py +2 -3
  39. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/load.py +2 -4
  40. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/parse.py +41 -20
  41. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_parse.py +9 -12
  42. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/__init__.py +0 -1
  43. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/base.py +20 -19
  44. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/force_atlas.py +3 -2
  45. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/louvain_embedding.py +1 -1
  46. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/random_projection.py +5 -3
  47. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/spectral.py +0 -73
  48. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_API.py +4 -28
  49. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_louvain_embedding.py +4 -9
  50. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_spectral.py +2 -5
  51. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_svd.py +1 -1
  52. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/base_layer.py +3 -3
  53. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/gnn_classifier.py +40 -86
  54. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/layer.py +1 -1
  55. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/loss.py +1 -1
  56. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/optimizer.py +4 -3
  57. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_base_layer.py +4 -4
  58. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_gnn_classifier.py +12 -39
  59. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/utils.py +8 -8
  60. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/base.py +27 -0
  61. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/louvain_hierarchy.py +45 -41
  62. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/paris.cpp +27346 -20632
  63. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/paris.pyx +7 -7
  64. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/postprocess.py +16 -16
  65. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/tests/test_algos.py +5 -0
  66. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/__init__.py +1 -1
  67. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/diteration.cpp +13927 -8097
  68. scikit-network-0.31.0/sknetwork/linalg/normalization.py → scikit-network-0.32.0/sknetwork/linalg/normalizer.py +17 -14
  69. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/operators.py +1 -1
  70. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/ppr_solver.py +1 -1
  71. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/push.cpp +23093 -16922
  72. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_normalization.py +3 -7
  73. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_operators.py +2 -6
  74. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_ppr.py +1 -1
  75. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linkpred/base.py +12 -1
  76. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linkpred/nn.py +6 -6
  77. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/distances.py +11 -4
  78. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/shortest_path.py +1 -1
  79. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/tests/test_distances.py +7 -0
  80. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/tests/test_search.py +2 -2
  81. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/base.py +11 -6
  82. scikit-network-0.32.0/sknetwork/ranking/betweenness.cpp +9668 -0
  83. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/pagerank.py +13 -12
  84. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/test_API.py +0 -2
  85. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/test_betweenness.py +1 -1
  86. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/test_pagerank.py +11 -5
  87. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/regression/base.py +18 -1
  88. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/regression/diffusion.py +24 -10
  89. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/regression/tests/test_diffusion.py +8 -0
  90. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/__init__.py +3 -1
  91. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/cliques.cpp +23502 -16858
  92. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/core.cpp +22743 -16511
  93. scikit-network-0.32.0/sknetwork/topology/cycles.py +243 -0
  94. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/minheap.cpp +19468 -13478
  95. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/structure.py +2 -42
  96. scikit-network-0.32.0/sknetwork/topology/tests/test_cycles.py +65 -0
  97. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/tests/test_structure.py +2 -16
  98. scikit-network-0.32.0/sknetwork/topology/triangles.cpp +8856 -0
  99. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/triangles.pyx +7 -4
  100. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/weisfeiler_lehman_core.cpp +14754 -8924
  101. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/format.py +1 -1
  102. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/membership.py +2 -2
  103. scikit-network-0.32.0/sknetwork/visualization/__init__.py +4 -0
  104. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/visualization/dendrograms.py +55 -7
  105. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/visualization/graphs.py +261 -44
  106. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/visualization/tests/test_dendrograms.py +9 -9
  107. scikit-network-0.32.0/sknetwork/visualization/tests/test_graphs.py +176 -0
  108. scikit-network-0.31.0/sknetwork/classification/vote.cpp +0 -21699
  109. scikit-network-0.31.0/sknetwork/clustering/louvain_core.pyx +0 -132
  110. scikit-network-0.31.0/sknetwork/embedding/louvain_hierarchy.py +0 -142
  111. scikit-network-0.31.0/sknetwork/embedding/tests/test_louvain_hierarchy.py +0 -19
  112. scikit-network-0.31.0/sknetwork/ranking/betweenness.cpp +0 -6638
  113. scikit-network-0.31.0/sknetwork/topology/triangles.cpp +0 -5006
  114. scikit-network-0.31.0/sknetwork/visualization/__init__.py +0 -4
  115. scikit-network-0.31.0/sknetwork/visualization/tests/test_graphs.py +0 -170
  116. {scikit-network-0.31.0 → scikit-network-0.32.0}/CONTRIBUTING.rst +0 -0
  117. {scikit-network-0.31.0 → scikit-network-0.32.0}/LICENSE +0 -0
  118. {scikit-network-0.31.0 → scikit-network-0.32.0}/MANIFEST.in +0 -0
  119. {scikit-network-0.31.0 → scikit-network-0.32.0}/README.rst +0 -0
  120. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/Makefile +0 -0
  121. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/authors.rst +0 -0
  122. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/conf.py +0 -0
  123. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/contributing.rst +0 -0
  124. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/first_steps.rst +0 -0
  125. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/genindex.rst +0 -0
  126. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/glossary.rst +0 -0
  127. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/history.rst +0 -0
  128. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/index.rst +0 -0
  129. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/make.bat +0 -0
  130. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/readme.rst +0 -0
  131. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/classification.rst +0 -0
  132. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/data.rst +0 -0
  133. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/gnn.rst +0 -0
  134. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/hierarchy.rst +0 -0
  135. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/linalg.rst +0 -0
  136. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/linkpred.rst +0 -0
  137. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/path.rst +0 -0
  138. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/ranking.rst +0 -0
  139. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/regression.rst +0 -0
  140. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/reference/utils.rst +0 -0
  141. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/classification/index.rst +0 -0
  142. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/data/index.rst +0 -0
  143. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/gnn/index.rst +0 -0
  144. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/hierarchy/index.rst +0 -0
  145. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/linkpred/index.rst +0 -0
  146. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/overview/index.rst +0 -0
  147. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/path/index.rst +0 -0
  148. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/ranking/index.rst +0 -0
  149. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/regression/index.rst +0 -0
  150. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/topology/index.rst +0 -0
  151. {scikit-network-0.31.0 → scikit-network-0.32.0}/docs/tutorials/visualization/index.rst +0 -0
  152. {scikit-network-0.31.0 → scikit-network-0.32.0}/scikit_network.egg-info/dependency_links.txt +0 -0
  153. {scikit-network-0.31.0 → scikit-network-0.32.0}/scikit_network.egg-info/not-zip-safe +0 -0
  154. {scikit-network-0.31.0 → scikit-network-0.32.0}/scikit_network.egg-info/requires.txt +0 -0
  155. {scikit-network-0.31.0 → scikit-network-0.32.0}/scikit_network.egg-info/top_level.txt +0 -0
  156. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/base.py +0 -0
  157. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/__init__.py +0 -0
  158. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/__init__.py +0 -0
  159. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/test_API.py +0 -0
  160. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/test_knn.py +0 -0
  161. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/test_metrics.py +0 -0
  162. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/test_pagerank.py +0 -0
  163. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/tests/test_propagation.py +0 -0
  164. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/classification/vote.pyx +0 -0
  165. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/metrics.py +0 -0
  166. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/tests/__init__.py +0 -0
  167. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/tests/test_metrics.py +0 -0
  168. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/clustering/tests/test_postprocess.py +0 -0
  169. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/__init__.py +0 -0
  170. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/base.py +0 -0
  171. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/models.py +0 -0
  172. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/test_graphs.py +0 -0
  173. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/__init__.py +0 -0
  174. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_API.py +0 -0
  175. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_base.py +0 -0
  176. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_load.py +0 -0
  177. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_models.py +0 -0
  178. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_test_graphs.py +0 -0
  179. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/tests/test_toy_graphs.py +0 -0
  180. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/timeout.py +0 -0
  181. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/data/toy_graphs.py +0 -0
  182. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/spring.py +0 -0
  183. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/svd.py +0 -0
  184. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/__init__.py +0 -0
  185. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_force_atlas.py +0 -0
  186. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_random_projection.py +0 -0
  187. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/embedding/tests/test_spring.py +0 -0
  188. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/__init__.py +0 -0
  189. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/activation.py +0 -0
  190. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/base.py +0 -0
  191. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/base_activation.py +0 -0
  192. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/neighbor_sampler.py +0 -0
  193. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/__init__.py +0 -0
  194. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_activation.py +0 -0
  195. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_base.py +0 -0
  196. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_layers.py +0 -0
  197. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_loss.py +0 -0
  198. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_neigh_sampler.py +0 -0
  199. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_optimizer.py +0 -0
  200. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/gnn/tests/test_utils.py +0 -0
  201. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/__init__.py +0 -0
  202. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/metrics.py +0 -0
  203. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/tests/__init__.py +0 -0
  204. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/tests/test_API.py +0 -0
  205. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/tests/test_metrics.py +0 -0
  206. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/hierarchy/tests/test_postprocess.py +0 -0
  207. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/basics.py +0 -0
  208. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/diteration.pyx +0 -0
  209. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/eig_solver.py +0 -0
  210. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/laplacian.py +0 -0
  211. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/polynome.py +0 -0
  212. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/push.pyx +0 -0
  213. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/sparse_lowrank.py +0 -0
  214. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/svd_solver.py +0 -0
  215. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/__init__.py +0 -0
  216. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_eig.py +0 -0
  217. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_laplacian.py +0 -0
  218. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_polynome.py +0 -0
  219. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_sparse_lowrank.py +0 -0
  220. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linalg/tests/test_svd.py +0 -0
  221. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linkpred/__init__.py +0 -0
  222. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linkpred/tests/__init__.py +0 -0
  223. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/linkpred/tests/test_nn.py +0 -0
  224. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/log.py +0 -0
  225. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/__init__.py +0 -0
  226. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/dag.py +0 -0
  227. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/search.py +0 -0
  228. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/tests/__init__.py +0 -0
  229. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/tests/test_dag.py +0 -0
  230. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/path/tests/test_shortest_path.py +0 -0
  231. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/__init__.py +0 -0
  232. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/betweenness.pyx +0 -0
  233. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/closeness.py +0 -0
  234. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/hits.py +0 -0
  235. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/katz.py +0 -0
  236. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/postprocess.py +0 -0
  237. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/__init__.py +0 -0
  238. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/test_closeness.py +0 -0
  239. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/test_hits.py +0 -0
  240. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/ranking/tests/test_postprocess.py +0 -0
  241. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/regression/__init__.py +0 -0
  242. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/regression/tests/__init__.py +0 -0
  243. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/regression/tests/test_API.py +0 -0
  244. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/sknetwork.py +0 -0
  245. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/test_base.py +0 -0
  246. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/test_log.py +0 -0
  247. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/cliques.pyx +0 -0
  248. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/core.pyx +0 -0
  249. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/minheap.pxd +0 -0
  250. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/minheap.pyx +0 -0
  251. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/tests/__init__.py +0 -0
  252. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/tests/test_cliques.py +0 -0
  253. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/tests/test_core.py +0 -0
  254. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/tests/test_triangles.py +0 -0
  255. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/tests/test_wl.py +0 -0
  256. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/weisfeiler_lehman.py +0 -0
  257. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/topology/weisfeiler_lehman_core.pyx +0 -0
  258. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/__init__.py +0 -0
  259. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/check.py +0 -0
  260. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/neighbors.py +0 -0
  261. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/__init__.py +0 -0
  262. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/test_check.py +0 -0
  263. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/test_format.py +0 -0
  264. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/test_membership.py +0 -0
  265. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/test_neighbors.py +0 -0
  266. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/test_tfidf.py +0 -0
  267. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tests/test_values.py +0 -0
  268. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/tfidf.py +0 -0
  269. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/utils/values.py +0 -0
  270. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/visualization/colors.py +0 -0
  271. {scikit-network-0.31.0 → scikit-network-0.32.0}/sknetwork/visualization/tests/__init__.py +0 -0
@@ -39,3 +39,6 @@ Contributors
39
39
  * Flávio Juvenal
40
40
  * Wenzhuo Zhao
41
41
  * Henry Carscadden
42
+ * Yiwen Peng
43
+ * Ahmed Zaiou
44
+ * Laurène David
@@ -2,6 +2,16 @@
2
2
  History
3
3
  =======
4
4
 
5
+ 0.32.0 (2024-03-28)
6
+ -------------------
7
+
8
+ * Add Leiden clustering algorithm
9
+ * Add k-center clustering algorithm
10
+ * Add functions to detect and break cycles
11
+ * Add damping factor in diffusion
12
+ * Fix F1 scores
13
+ * Remove hierarchical Louvain embedding
14
+ * Get clustering coefficient for directed graphs
5
15
 
6
16
  0.31.0 (2023-05-22)
7
17
  -------------------
@@ -1,13 +1,12 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-network
3
- Version: 0.31.0
3
+ Version: 0.32.0
4
4
  Summary: Graph algorithms
5
5
  Home-page: https://github.com/sknetwork-team/scikit-network
6
6
  Author: Scikit-network team
7
7
  Author-email: bonald@enst.fr
8
8
  License: BSD license
9
9
  Keywords: sknetwork
10
- Platform: UNKNOWN
11
10
  Classifier: Development Status :: 3 - Alpha
12
11
  Classifier: Intended Audience :: Developers
13
12
  Classifier: Intended Audience :: Information Technology
@@ -117,6 +116,16 @@ the `Journal of Machine Learning Research <https://jmlr.org>`_:
117
116
  History
118
117
  =======
119
118
 
119
+ 0.32.0 (2024-03-28)
120
+ -------------------
121
+
122
+ * Add Leiden clustering algorithm
123
+ * Add k-center clustering algorithm
124
+ * Add functions to detect and break cycles
125
+ * Add damping factor in diffusion
126
+ * Fix F1 scores
127
+ * Remove hierarchical Louvain embedding
128
+ * Get clustering coefficient for directed graphs
120
129
 
121
130
  0.31.0 (2023-05-22)
122
131
  -------------------
@@ -492,5 +501,3 @@ History
492
501
  ------------------
493
502
 
494
503
  * First release on PyPI.
495
-
496
-
@@ -49,6 +49,17 @@ When the graph is weighted, the degree of a node is replaced by its weight (sum
49
49
 
50
50
  .. autoclass:: sknetwork.clustering.Louvain
51
51
 
52
+ Leiden
53
+ ------
54
+
55
+ .. autoclass:: sknetwork.clustering.Leiden
56
+
57
+ K-centers
58
+ ---------
59
+
60
+ .. autoclass:: sknetwork.clustering.KCenters
61
+
62
+
52
63
  Propagation
53
64
  -----------
54
65
  .. autoclass:: sknetwork.clustering.PropagationClustering
@@ -37,10 +37,6 @@ Louvain
37
37
 
38
38
  .. autoclass:: sknetwork.embedding.LouvainEmbedding
39
39
 
40
- Hierarchical Louvain
41
- --------------------
42
-
43
- .. autoclass:: sknetwork.embedding.LouvainNE
44
40
 
45
41
  Force Atlas
46
42
  -----------
@@ -19,8 +19,14 @@ Structure
19
19
 
20
20
  .. autofunction:: sknetwork.topology.is_bipartite
21
21
 
22
+ Cycles
23
+ ------
24
+
22
25
  .. autofunction:: sknetwork.topology.is_acyclic
23
26
 
27
+ .. autofunction:: sknetwork.topology.get_cycles
28
+
29
+ .. autofunction:: sknetwork.topology.break_cycles
24
30
 
25
31
  Core decomposition
26
32
  ------------------
@@ -10,9 +10,9 @@ Graphs
10
10
 
11
11
  .. autofunction:: sknetwork.visualization.graphs.svg_graph
12
12
 
13
- .. autofunction:: sknetwork.visualization.graphs.svg_bigraph
13
+ .. autofunction:: sknetwork.visualization.graphs.visualize_bigraph
14
14
 
15
15
  Dendrograms
16
16
  -----------
17
17
 
18
- .. autofunction:: sknetwork.visualization.dendrograms.svg_dendrogram
18
+ .. autofunction:: sknetwork.visualization.dendrograms.visualize_dendrogram
@@ -7,5 +7,6 @@ Clustering
7
7
  .. toctree::
8
8
 
9
9
  louvain
10
+ leiden
11
+ kcenters
10
12
  propagation
11
-
@@ -10,7 +10,6 @@ Embedding
10
10
  pca
11
11
  random_projection
12
12
  louvain_embedding
13
- louvain_hierarchy
14
13
  spring
15
14
  forceatlas
16
15
 
@@ -1,13 +1,12 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-network
3
- Version: 0.31.0
3
+ Version: 0.32.0
4
4
  Summary: Graph algorithms
5
5
  Home-page: https://github.com/sknetwork-team/scikit-network
6
6
  Author: Scikit-network team
7
7
  Author-email: bonald@enst.fr
8
8
  License: BSD license
9
9
  Keywords: sknetwork
10
- Platform: UNKNOWN
11
10
  Classifier: Development Status :: 3 - Alpha
12
11
  Classifier: Intended Audience :: Developers
13
12
  Classifier: Intended Audience :: Information Technology
@@ -117,6 +116,16 @@ the `Journal of Machine Learning Research <https://jmlr.org>`_:
117
116
  History
118
117
  =======
119
118
 
119
+ 0.32.0 (2024-03-28)
120
+ -------------------
121
+
122
+ * Add Leiden clustering algorithm
123
+ * Add k-center clustering algorithm
124
+ * Add functions to detect and break cycles
125
+ * Add damping factor in diffusion
126
+ * Fix F1 scores
127
+ * Remove hierarchical Louvain embedding
128
+ * Get clustering coefficient for directed graphs
120
129
 
121
130
  0.31.0 (2023-05-22)
122
131
  -------------------
@@ -492,5 +501,3 @@ History
492
501
  ------------------
493
502
 
494
503
  * First release on PyPI.
495
-
496
-
@@ -7,6 +7,7 @@ README.rst
7
7
  setup.cfg
8
8
  setup.py
9
9
  ./sknetwork/classification/vote.cpp
10
+ ./sknetwork/clustering/leiden_core.cpp
10
11
  ./sknetwork/clustering/louvain_core.cpp
11
12
  ./sknetwork/hierarchy/paris.cpp
12
13
  ./sknetwork/linalg/diteration.cpp
@@ -85,6 +86,9 @@ sknetwork/classification/tests/test_pagerank.py
85
86
  sknetwork/classification/tests/test_propagation.py
86
87
  sknetwork/clustering/__init__.py
87
88
  sknetwork/clustering/base.py
89
+ sknetwork/clustering/kcenters.py
90
+ sknetwork/clustering/leiden.py
91
+ sknetwork/clustering/leiden_core.pyx
88
92
  sknetwork/clustering/louvain.py
89
93
  sknetwork/clustering/louvain_core.pyx
90
94
  sknetwork/clustering/metrics.py
@@ -92,6 +96,8 @@ sknetwork/clustering/postprocess.py
92
96
  sknetwork/clustering/propagation_clustering.py
93
97
  sknetwork/clustering/tests/__init__.py
94
98
  sknetwork/clustering/tests/test_API.py
99
+ sknetwork/clustering/tests/test_kcenters.py
100
+ sknetwork/clustering/tests/test_leiden.py
95
101
  sknetwork/clustering/tests/test_louvain.py
96
102
  sknetwork/clustering/tests/test_metrics.py
97
103
  sknetwork/clustering/tests/test_postprocess.py
@@ -115,7 +121,6 @@ sknetwork/embedding/__init__.py
115
121
  sknetwork/embedding/base.py
116
122
  sknetwork/embedding/force_atlas.py
117
123
  sknetwork/embedding/louvain_embedding.py
118
- sknetwork/embedding/louvain_hierarchy.py
119
124
  sknetwork/embedding/random_projection.py
120
125
  sknetwork/embedding/spectral.py
121
126
  sknetwork/embedding/spring.py
@@ -124,7 +129,6 @@ sknetwork/embedding/tests/__init__.py
124
129
  sknetwork/embedding/tests/test_API.py
125
130
  sknetwork/embedding/tests/test_force_atlas.py
126
131
  sknetwork/embedding/tests/test_louvain_embedding.py
127
- sknetwork/embedding/tests/test_louvain_hierarchy.py
128
132
  sknetwork/embedding/tests/test_random_projection.py
129
133
  sknetwork/embedding/tests/test_spectral.py
130
134
  sknetwork/embedding/tests/test_spring.py
@@ -166,7 +170,7 @@ sknetwork/linalg/basics.py
166
170
  sknetwork/linalg/diteration.pyx
167
171
  sknetwork/linalg/eig_solver.py
168
172
  sknetwork/linalg/laplacian.py
169
- sknetwork/linalg/normalization.py
173
+ sknetwork/linalg/normalizer.py
170
174
  sknetwork/linalg/operators.py
171
175
  sknetwork/linalg/polynome.py
172
176
  sknetwork/linalg/ppr_solver.py
@@ -221,6 +225,7 @@ sknetwork/regression/tests/test_diffusion.py
221
225
  sknetwork/topology/__init__.py
222
226
  sknetwork/topology/cliques.pyx
223
227
  sknetwork/topology/core.pyx
228
+ sknetwork/topology/cycles.py
224
229
  sknetwork/topology/minheap.pxd
225
230
  sknetwork/topology/minheap.pyx
226
231
  sknetwork/topology/structure.py
@@ -230,6 +235,7 @@ sknetwork/topology/weisfeiler_lehman_core.pyx
230
235
  sknetwork/topology/tests/__init__.py
231
236
  sknetwork/topology/tests/test_cliques.py
232
237
  sknetwork/topology/tests/test_core.py
238
+ sknetwork/topology/tests/test_cycles.py
233
239
  sknetwork/topology/tests/test_structure.py
234
240
  sknetwork/topology/tests/test_triangles.py
235
241
  sknetwork/topology/tests/test_wl.py
@@ -1,5 +1,5 @@
1
1
  [bumpversion]
2
- current_version = 0.31.0
2
+ current_version = 0.32.0
3
3
  commit = True
4
4
  tag = True
5
5
 
@@ -153,7 +153,7 @@ setup(
153
153
  test_suite='tests',
154
154
  tests_require=test_requirements,
155
155
  url='https://github.com/sknetwork-team/scikit-network',
156
- version='0.31.0',
156
+ version='0.32.0',
157
157
  zip_safe=False,
158
158
  ext_modules=ext_modules,
159
159
  include_dirs=[numpy.get_include()],
@@ -4,7 +4,7 @@
4
4
 
5
5
  __author__ = """scikit-network team"""
6
6
  __email__ = "thomas.bonald@telecom-paris.fr"
7
- __version__ = '0.31.0'
7
+ __version__ = '0.32.0'
8
8
 
9
9
  import sknetwork.topology
10
10
  import sknetwork.path
@@ -38,7 +38,7 @@ class BaseClassifier(Algorithm, ABC):
38
38
  self.probs_row_ = None
39
39
  self.probs_col_ = None
40
40
 
41
- def predict(self, columns=False) -> np.ndarray:
41
+ def predict(self, columns: bool = False) -> np.ndarray:
42
42
  """Return the labels predicted by the algorithm.
43
43
 
44
44
  Parameters
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python3
2
2
  # -*- coding: utf-8 -*-
3
3
  """
4
- Created on March 2020
4
+ Created in March 2020
5
5
  @author: Nathan de Lara <nathan.delara@polytechnique.org>
6
6
  """
7
7
  from functools import partial
@@ -12,7 +12,7 @@ import numpy as np
12
12
  from scipy import sparse
13
13
 
14
14
  from sknetwork.classification.base import BaseClassifier
15
- from sknetwork.linalg.normalization import normalize
15
+ from sknetwork.linalg.normalizer import normalize
16
16
  from sknetwork.ranking.base import BaseRanking
17
17
  from sknetwork.utils.check import check_labels, check_n_jobs
18
18
  from sknetwork.utils.format import get_adjacency_values
@@ -114,7 +114,7 @@ class RankClassifier(BaseClassifier):
114
114
  seeds_labels = seeds_labels.astype(int)
115
115
  labels_unique, n_classes = check_labels(seeds_labels)
116
116
  seeds_all = self._process_labels(seeds_labels)
117
- local_function = partial(self.algorithm.fit_transform, adjacency)
117
+ local_function = partial(self.algorithm.fit_predict, adjacency)
118
118
  with Pool(self.n_jobs) as pool:
119
119
  scores = np.array(pool.map(local_function, seeds_all))
120
120
  scores = scores.T
@@ -11,7 +11,7 @@ from scipy import sparse
11
11
 
12
12
  from sknetwork.classification.base import BaseClassifier
13
13
  from sknetwork.path.distances import get_distances
14
- from sknetwork.linalg.normalization import normalize
14
+ from sknetwork.linalg.normalizer import normalize
15
15
  from sknetwork.utils.format import get_adjacency_values
16
16
  from sknetwork.utils.membership import get_membership
17
17
  from sknetwork.utils.neighbors import get_degrees
@@ -38,11 +38,14 @@ class DiffusionClassifier(BaseClassifier):
38
38
  Labels of nodes.
39
39
  probs_ : sparse.csr_matrix, shape (n_row, n_labels)
40
40
  Probability distribution over labels.
41
- labels_row_, labels_col_ : np.ndarray
42
- Labels of rows and columns, for bipartite graphs.
43
- probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
44
- Probability distributions over labels for rows and columns (for bipartite graphs).
45
-
41
+ labels_row_ : np.ndarray
42
+ Labels of rows, for bipartite graphs.
43
+ labels_col_ : np.ndarray
44
+ Labels of columns, for bipartite graphs.
45
+ probs_row_ : sparse.csr_matrix, shape (n_row, n_labels)
46
+ Probability distributions over labels of rows, for bipartite graphs.
47
+ probs_col_ : sparse.csr_matrix, shape (n_col, n_labels)
48
+ Probability distributions over labels of columns, for bipartite graphs.
46
49
  Example
47
50
  -------
48
51
  >>> from sknetwork.data import karate_club
@@ -78,13 +81,15 @@ class DiffusionClassifier(BaseClassifier):
78
81
 
79
82
  Parameters
80
83
  ----------
81
- input_matrix :
84
+ input_matrix : sparse.csr_matrix, np.ndarray
82
85
  Adjacency matrix or biadjacency matrix of the graph.
83
- labels :
86
+ labels : dict, np.ndarray
84
87
  Known labels (dictionary or vector of int). Negative values ignored.
85
- labels_row, labels_col :
86
- Labels of rows and columns for bipartite graphs. Negative values ignored.
87
- force_bipartite :
88
+ labels_row : dict, np.ndarray
89
+ Labels of rows for bipartite graphs. Negative values ignored.
90
+ labels_col : dict, np.ndarray
91
+ Labels of columns for bipartite graphs. Negative values ignored.
92
+ force_bipartite : bool
88
93
  If ``True``, consider the input matrix as a biadjacency matrix (default = ``False``).
89
94
 
90
95
  Returns
@@ -98,7 +103,10 @@ class DiffusionClassifier(BaseClassifier):
98
103
  labels = values.astype(int)
99
104
  if (labels < 0).all():
100
105
  raise ValueError('At least one node must be given a non-negative label.')
101
- temperatures = get_membership(labels).toarray()
106
+ labels_reindex = labels.copy()
107
+ labels_unique, inverse = np.unique(labels[labels >= 0], return_inverse=True)
108
+ labels_reindex[labels >= 0] = inverse
109
+ temperatures = get_membership(labels_reindex).toarray()
102
110
  temperatures_seeds = temperatures[labels >= 0]
103
111
  temperatures[labels < 0] = 0.5
104
112
  diffusion = normalize(adjacency)
@@ -107,7 +115,7 @@ class DiffusionClassifier(BaseClassifier):
107
115
  temperatures[labels >= 0] = temperatures_seeds
108
116
  if self.centering:
109
117
  temperatures -= temperatures.mean(axis=0)
110
- labels_ = temperatures.argmax(axis=1)
118
+ labels_ = labels_unique[temperatures.argmax(axis=1)]
111
119
 
112
120
  # softmax
113
121
  if self.centering:
@@ -12,7 +12,7 @@ from scipy import sparse
12
12
 
13
13
  from sknetwork.classification.base import BaseClassifier
14
14
  from sknetwork.embedding.base import BaseEmbedding
15
- from sknetwork.linalg.normalization import get_norms, normalize
15
+ from sknetwork.linalg.normalizer import get_norms, normalize
16
16
  from sknetwork.utils.check import check_n_neighbors
17
17
  from sknetwork.utils.format import get_adjacency_values
18
18
 
@@ -22,12 +22,12 @@ class NNClassifier(BaseClassifier):
22
22
 
23
23
  Parameters
24
24
  ----------
25
- n_neighbors :
25
+ n_neighbors : int
26
26
  Number of nearest neighbors .
27
- embedding_method :
27
+ embedding_method : :class:`BaseEmbedding`
28
28
  Embedding method used to represent nodes in vector space.
29
29
  If ``None`` (default), use identity.
30
- normalize :
30
+ normalize : bool
31
31
  If ``True``, apply normalization so that all vectors have norm 1 in the embedding space.
32
32
 
33
33
  Attributes
@@ -36,10 +36,14 @@ class NNClassifier(BaseClassifier):
36
36
  Labels of nodes.
37
37
  probs_ : sparse.csr_matrix, shape (n_row, n_labels)
38
38
  Probability distribution over labels.
39
- labels_row_, labels_col_ : np.ndarray
40
- Labels of rows and columns, for bipartite graphs.
41
- probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
42
- Probability distributions over labels for rows and columns (for bipartite graphs).
39
+ labels_row_ : np.ndarray
40
+ Labels of rows, for bipartite graphs.
41
+ labels_col_ : np.ndarray
42
+ Labels of columns, for bipartite graphs.
43
+ probs_row_ : sparse.csr_matrix, shape (n_row, n_labels)
44
+ Probability distributions over labels of rows, for bipartite graphs.
45
+ probs_col_ : sparse.csr_matrix, shape (n_col, n_labels)
46
+ Probability distributions over labels of columns, for bipartite graphs.
43
47
 
44
48
  Example
45
49
  -------
@@ -99,12 +103,14 @@ class NNClassifier(BaseClassifier):
99
103
 
100
104
  Parameters
101
105
  ----------
102
- input_matrix :
106
+ input_matrix : sparse.csr_matrix, np.ndarray
103
107
  Adjacency matrix or biadjacency matrix of the graph.
104
- labels :
105
- Known labels (dictionary or array). Negative values ignored.
106
- labels_row, labels_col :
107
- Known labels of rows and columns (for bipartite graphs).
108
+ labels : np.ndarray, dict
109
+ Known labels. Negative values ignored.
110
+ labels_row : np.ndarray, dict
111
+ Known labels of rows, for bipartite graphs.
112
+ labels_col : np.ndarray, dict
113
+ Known labels of columns, for bipartite graphs.
108
114
 
109
115
  Returns
110
116
  -------
@@ -158,7 +158,7 @@ def get_f1_scores(labels_true: np.ndarray, labels_pred: np.ndarray, return_preci
158
158
  mask = counts_pred > 0
159
159
  precisions[mask] = counts_correct[mask] / counts_pred[mask]
160
160
  f1_scores = np.zeros(n_labels)
161
- mask = (counts_true > 0) & (counts_pred > 0)
161
+ mask = (precisions > 0) & (recalls > 0)
162
162
  f1_scores[mask] = 2 / (1 / precisions[mask] + 1 / recalls[mask])
163
163
  if return_precision_recall:
164
164
  return f1_scores, precisions, recalls
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python3
2
2
  # -*- coding: utf-8 -*-
3
3
  """
4
- Created on March 2020
4
+ Created in March 2020
5
5
  @author: Nathan de Lara <nathan.delara@polytechnique.org>
6
6
  """
7
7
  from typing import Optional
@@ -17,9 +17,9 @@ class PageRankClassifier(RankClassifier):
17
17
 
18
18
  Parameters
19
19
  ----------
20
- damping_factor:
20
+ damping_factor: float
21
21
  Probability to continue the random walk.
22
- solver : :obj:`str`
22
+ solver : str
23
23
  Which solver to use: 'piteration', 'diteration', 'bicgstab', 'lanczos'.
24
24
  n_iter : int
25
25
  Number of iterations for some solvers such as ``'piteration'`` or ``'diteration'``.
@@ -29,13 +29,17 @@ class PageRankClassifier(RankClassifier):
29
29
  Attributes
30
30
  ----------
31
31
  labels_ : np.ndarray, shape (n_labels,)
32
- Label of each node.
32
+ Labels of nodes.
33
33
  probs_ : sparse.csr_matrix, shape (n_row, n_labels)
34
34
  Probability distribution over labels.
35
- labels_row_, labels_col_ : np.ndarray
36
- Labels of rows and columns, for bipartite graphs.
37
- probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
38
- Probability distributions over labels for rows and columns (for bipartite graphs).
35
+ labels_row_ : np.ndarray
36
+ Labels of rows, for bipartite graphs.
37
+ labels_col_ : np.ndarray
38
+ Labels of columns, for bipartite graphs.
39
+ probs_row_ : sparse.csr_matrix, shape (n_row, n_labels)
40
+ Probability distributions over labels of rows, for bipartite graphs.
41
+ probs_col_ : sparse.csr_matrix, shape (n_col, n_labels)
42
+ Probability distributions over labels of columns, for bipartite graphs.
39
43
 
40
44
  Example
41
45
  -------
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python3
2
2
  # coding: utf-8
3
3
  """
4
- Created on April 2020
4
+ Created in April 2020
5
5
  @author: Thomas Bonald <tbonald@enst.fr>
6
6
  """
7
7
 
@@ -12,7 +12,7 @@ from scipy import sparse
12
12
 
13
13
  from sknetwork.classification.base import BaseClassifier
14
14
  from sknetwork.classification.vote import vote_update
15
- from sknetwork.linalg.normalization import normalize
15
+ from sknetwork.linalg.normalizer import normalize
16
16
  from sknetwork.utils.format import get_adjacency_values
17
17
  from sknetwork.utils.membership import get_membership
18
18
 
@@ -25,9 +25,9 @@ class Propagation(BaseClassifier):
25
25
  n_iter : float
26
26
  Maximum number of iterations (-1 for infinity).
27
27
  node_order : str
28
- * `'random'`: node labels are updated in random order.
29
- * `'increasing'`: node labels are updated by increasing order of (in-)weight.
30
- * `'decreasing'`: node labels are updated by decreasing order of (in-)weight.
28
+ * ``'random'``: node labels are updated in random order.
29
+ * ``'increasing'``: node labels are updated by increasing order of (in-) weight.
30
+ * ``'decreasing'``: node labels are updated by decreasing order of (in-) weight.
31
31
  * Otherwise, node labels are updated by index order.
32
32
  weighted : bool
33
33
  If ``True``, the vote of each neighbor is proportional to the edge weight.
@@ -36,13 +36,17 @@ class Propagation(BaseClassifier):
36
36
  Attributes
37
37
  ----------
38
38
  labels_ : np.ndarray, shape (n_labels,)
39
- Label of each node.
39
+ Labels of nodes.
40
40
  probs_ : sparse.csr_matrix, shape (n_row, n_labels)
41
41
  Probability distribution over labels.
42
- labels_row_, labels_col_ : np.ndarray
43
- Labels of rows and columns, for bipartite graphs.
44
- probs_row_, probs_col_ : sparse.csr_matrix, shape (n_row, n_labels)
45
- Probability distributions over labels for rows and columns (for bipartite graphs).
42
+ labels_row_ : np.ndarray
43
+ Labels of rows, for bipartite graphs.
44
+ labels_col_ : np.ndarray
45
+ Labels of columns, for bipartite graphs.
46
+ probs_row_ : sparse.csr_matrix, shape (n_row, n_labels)
47
+ Probability distributions over labels of rows, for bipartite graphs.
48
+ probs_col_ : sparse.csr_matrix, shape (n_col, n_labels)
49
+ Probability distributions over labels of columns, for bipartite graphs.
46
50
 
47
51
  Example
48
52
  -------
@@ -93,12 +97,15 @@ class Propagation(BaseClassifier):
93
97
 
94
98
  Parameters
95
99
  ----------
96
- input_matrix :
100
+ input_matrix : sparse.csr_matrix, np.ndarray
97
101
  Adjacency matrix or biadjacency matrix of the graph.
98
- labels :
99
- Known labels (dictionary or array). Negative values ignored.
100
- labels_row, labels_col :
101
- Known labels of rows and columns (for bipartite graphs).
102
+ labels : np.ndarray, dict
103
+ Known labels. Negative values ignored.
104
+ labels_row : np.ndarray, dict
105
+ Known labels of rows, for bipartite graphs.
106
+ labels_col : np.ndarray, dict
107
+ Known labels of columns, for bipartite graphs.
108
+
102
109
  Returns
103
110
  -------
104
111
  self: :class:`Propagation`
@@ -36,6 +36,7 @@ class TestDiffusionClassifier(unittest.TestCase):
36
36
  algo.fit(biadjacency, labels_row=labels_row, labels_col=labels_col)
37
37
  self.assertTrue(len(algo.labels_row_) == n_row)
38
38
  self.assertTrue(len(algo.labels_col_) == n_col)
39
+ self.assertTrue(all(algo.labels_col_ == algo.predict(columns=True)))
39
40
 
40
41
  def test_predict(self):
41
42
  adjacency = test_graph()
@@ -65,3 +66,12 @@ class TestDiffusionClassifier(unittest.TestCase):
65
66
  self.assertTrue(membership.shape == (n_row, 2))
66
67
  membership = algo.transform(columns=True)
67
68
  self.assertTrue(membership.shape == (n_col, 2))
69
+
70
+ def test_reindex_label(self):
71
+ adjacency = test_graph()
72
+ n_nodes = adjacency.shape[0]
73
+ labels = {0: 0, 1: 2, 2: 3}
74
+ algo = DiffusionClassifier()
75
+ labels_pred = algo.fit_predict(adjacency, labels=labels)
76
+ self.assertTrue(len(labels_pred) == n_nodes)
77
+ self.assertTrue(set(list(labels_pred)) == {0, 2, 3})