scib-metrics 0.5.3__tar.gz → 0.5.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.pre-commit-config.yaml +1 -1
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/CHANGELOG.md +24 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/PKG-INFO +1 -1
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/api.md +1 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/references.bib +10 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/pyproject.toml +1 -1
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/__init__.py +2 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/benchmark/_core.py +2 -2
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/__init__.py +2 -1
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/_kbet.py +47 -46
- scib_metrics-0.5.5/src/scib_metrics/metrics/_silhouette.py +162 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_dist.py +23 -3
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_silhouette.py +62 -13
- scib_metrics-0.5.5/tests/test_BRAS_metric.py +347 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/test_benchmarker.py +14 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/test_metrics.py +6 -0
- scib_metrics-0.5.3/src/scib_metrics/metrics/_silhouette.py +0 -86
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.codecov.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.cruft.json +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.editorconfig +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/ISSUE_TEMPLATE/bug_report.yml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/ISSUE_TEMPLATE/feature_request.yml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/build.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/release.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/test_linux.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/test_linux_cuda.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/test_linux_pre.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/test_macos.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/test_macos_m1.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.github/workflows/test_windows.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.gitignore +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/.readthedocs.yaml +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/LICENSE +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/README.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/Makefile +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/_static/.gitkeep +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/_static/css/custom.css +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/_templates/.gitkeep +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/_templates/autosummary/class.rst +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/_templates/class_no_inherited.rst +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/changelog.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/conf.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/contributing.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/extensions/.gitkeep +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/extensions/typed_returns.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/index.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/notebooks/large_scale.ipynb +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/notebooks/lung_example.ipynb +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/references.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/template_usage.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/docs/tutorials.md +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/setup.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/_settings.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/_types.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/benchmark/__init__.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/_graph_connectivity.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/_isolated_labels.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/_lisi.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/_nmi_ari.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/metrics/_pcr_comparison.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/nearest_neighbors/__init__.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/nearest_neighbors/_dataclass.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/nearest_neighbors/_jax.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/nearest_neighbors/_pynndescent.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/__init__.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_diffusion_nn.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_kmeans.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_lisi.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_pca.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_pcr.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/src/scib_metrics/utils/_utils.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/__init__.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/test_neighbors.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/test_pcr_comparison.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/utils/__init__.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/utils/data.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/utils/sampling.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/utils/test_pca.py +0 -0
- {scib_metrics-0.5.3 → scib_metrics-0.5.5}/tests/utils/test_pcr.py +0 -0
|
@@ -10,6 +10,30 @@ and this project adheres to [Semantic Versioning][].
|
|
|
10
10
|
|
|
11
11
|
## 0.6.0 (unreleased)
|
|
12
12
|
|
|
13
|
+
## 0.5.5 (2025-06-03)
|
|
14
|
+
|
|
15
|
+
### Added
|
|
16
|
+
|
|
17
|
+
- Add batch removal adapted silhouette (BRAS) metric ({func}`scib_metrics.metrics.bras`) {pr}`197`, which addresses limitations of silhouette for scoring batch effect removal.
|
|
18
|
+
- Add cosine distance implementation required for BRAS.
|
|
19
|
+
|
|
20
|
+
### Changed
|
|
21
|
+
|
|
22
|
+
- Changed {func}`scib_metrics.utils.cdist` to support cosine distance.
|
|
23
|
+
- Changed silhouette-related functions to be compatible with adaptions required for BRAS.
|
|
24
|
+
|
|
25
|
+
## 0.5.4 (2025-04-23)
|
|
26
|
+
|
|
27
|
+
### Fixed
|
|
28
|
+
|
|
29
|
+
- Apply default values for benchmarker metrics {pr}`203`.
|
|
30
|
+
|
|
31
|
+
## 0.5.3 (2025-02-17)
|
|
32
|
+
|
|
33
|
+
### Removed
|
|
34
|
+
|
|
35
|
+
- Reverted a change that was needed for scib-autotune in scvi-tools {pr}`189`.
|
|
36
|
+
|
|
13
37
|
## 0.5.2 (2025-02-13)
|
|
14
38
|
|
|
15
39
|
### Added
|
|
@@ -36,3 +36,13 @@
|
|
|
36
36
|
pages = {43--49},
|
|
37
37
|
publisher = {Springer Science and Business Media {LLC}}
|
|
38
38
|
}
|
|
39
|
+
|
|
40
|
+
@article{rautenstrauch2025,
|
|
41
|
+
title = {Metrics Matter: Why We Need to Stop Using Silhouette in Single-Cell Benchmarking},
|
|
42
|
+
author = {Pia Rautenstrauch and Uwe Ohler},
|
|
43
|
+
doi = {10.1101/2025.01.21.634098},
|
|
44
|
+
year = {2025},
|
|
45
|
+
month = jan,
|
|
46
|
+
journal = {bioRxiv},
|
|
47
|
+
publisher = {Cold Spring Harbor Laboratory}
|
|
48
|
+
}
|
|
@@ -15,6 +15,7 @@ from .metrics import (
|
|
|
15
15
|
pcr_comparison,
|
|
16
16
|
silhouette_batch,
|
|
17
17
|
silhouette_label,
|
|
18
|
+
bras,
|
|
18
19
|
)
|
|
19
20
|
from ._settings import settings
|
|
20
21
|
|
|
@@ -25,6 +26,7 @@ __all__ = [
|
|
|
25
26
|
"pcr_comparison",
|
|
26
27
|
"silhouette_label",
|
|
27
28
|
"silhouette_batch",
|
|
29
|
+
"bras",
|
|
28
30
|
"ilisi_knn",
|
|
29
31
|
"clisi_knn",
|
|
30
32
|
"lisi_knn",
|
|
@@ -136,8 +136,8 @@ class Benchmarker:
|
|
|
136
136
|
batch_key: str,
|
|
137
137
|
label_key: str,
|
|
138
138
|
embedding_obsm_keys: list[str],
|
|
139
|
-
bio_conservation_metrics: BioConservation | None,
|
|
140
|
-
batch_correction_metrics: BatchCorrection | None,
|
|
139
|
+
bio_conservation_metrics: BioConservation | None = BioConservation(),
|
|
140
|
+
batch_correction_metrics: BatchCorrection | None = BatchCorrection(),
|
|
141
141
|
pre_integrated_embedding_obsm_key: str | None = None,
|
|
142
142
|
n_jobs: int = 1,
|
|
143
143
|
progress_bar: bool = True,
|
|
@@ -4,13 +4,14 @@ from ._kbet import kbet, kbet_per_label
|
|
|
4
4
|
from ._lisi import clisi_knn, ilisi_knn, lisi_knn
|
|
5
5
|
from ._nmi_ari import nmi_ari_cluster_labels_kmeans, nmi_ari_cluster_labels_leiden
|
|
6
6
|
from ._pcr_comparison import pcr_comparison
|
|
7
|
-
from ._silhouette import silhouette_batch, silhouette_label
|
|
7
|
+
from ._silhouette import bras, silhouette_batch, silhouette_label
|
|
8
8
|
|
|
9
9
|
__all__ = [
|
|
10
10
|
"isolated_labels",
|
|
11
11
|
"pcr_comparison",
|
|
12
12
|
"silhouette_label",
|
|
13
13
|
"silhouette_batch",
|
|
14
|
+
"bras",
|
|
14
15
|
"ilisi_knn",
|
|
15
16
|
"clisi_knn",
|
|
16
17
|
"lisi_knn",
|
|
@@ -138,8 +138,14 @@ def kbet_per_label(
|
|
|
138
138
|
conn_graph = X.knn_graph_connectivities
|
|
139
139
|
|
|
140
140
|
# prepare call of kBET per cluster
|
|
141
|
-
|
|
142
|
-
|
|
141
|
+
clusters = []
|
|
142
|
+
clusters, counts = np.unique(labels, return_counts=True)
|
|
143
|
+
skipped = clusters[counts > 10]
|
|
144
|
+
clusters = clusters[counts <= 10]
|
|
145
|
+
kbet_scores = {"cluster": list(skipped), "kBET": [np.nan] * len(skipped)}
|
|
146
|
+
logger.info(f"{len(skipped)} clusters consist of a single batch or are too small. Skip.")
|
|
147
|
+
|
|
148
|
+
for clus in clusters:
|
|
143
149
|
# subset by label
|
|
144
150
|
mask = labels == clus
|
|
145
151
|
conn_graph_sub = conn_graph[mask, :][:, mask]
|
|
@@ -147,60 +153,55 @@ def kbet_per_label(
|
|
|
147
153
|
n_obs = conn_graph_sub.shape[0]
|
|
148
154
|
batches_sub = batches[mask]
|
|
149
155
|
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
156
|
+
quarter_mean = np.floor(np.mean(pd.Series(batches_sub).value_counts()) / 4).astype("int")
|
|
157
|
+
k0 = np.min([70, np.max([10, quarter_mean])])
|
|
158
|
+
# check k0 for reasonability
|
|
159
|
+
if k0 * n_obs >= size_max:
|
|
160
|
+
k0 = np.floor(size_max / n_obs).astype("int")
|
|
161
|
+
|
|
162
|
+
n_comp, labs = scipy.sparse.csgraph.connected_components(conn_graph_sub, connection="strong")
|
|
163
|
+
|
|
164
|
+
if n_comp == 1: # a single component to compute kBET on
|
|
165
|
+
try:
|
|
166
|
+
diffusion_n_comps = np.min([diffusion_n_comps, n_obs - 1])
|
|
167
|
+
nn_graph_sub = diffusion_nn(conn_graph_sub, k=k0, n_comps=diffusion_n_comps)
|
|
168
|
+
# call kBET
|
|
169
|
+
score, _, _ = kbet(
|
|
170
|
+
nn_graph_sub,
|
|
171
|
+
batches=batches_sub,
|
|
172
|
+
alpha=alpha,
|
|
173
|
+
)
|
|
174
|
+
except ValueError:
|
|
175
|
+
logger.info("Diffusion distance failed. Skip.")
|
|
176
|
+
score = 0 # i.e. 100% rejection
|
|
160
177
|
|
|
161
|
-
|
|
178
|
+
else:
|
|
179
|
+
# check the number of components where kBET can be computed upon
|
|
180
|
+
comp_size = pd.Series(labs).value_counts()
|
|
181
|
+
# check which components are small
|
|
182
|
+
comp_size_thresh = 3 * k0
|
|
183
|
+
idx_nonan = np.flatnonzero(np.in1d(labs, comp_size[comp_size >= comp_size_thresh].index))
|
|
184
|
+
|
|
185
|
+
# check if 75% of all cells can be used for kBET run
|
|
186
|
+
if len(idx_nonan) / len(labs) >= 0.75:
|
|
187
|
+
# create another subset of components, assume they are not visited in a diffusion process
|
|
188
|
+
conn_graph_sub_sub = conn_graph_sub[idx_nonan, :][:, idx_nonan]
|
|
189
|
+
conn_graph_sub_sub.sort_indices()
|
|
162
190
|
|
|
163
|
-
if n_comp == 1: # a single component to compute kBET on
|
|
164
191
|
try:
|
|
165
|
-
diffusion_n_comps = np.min([diffusion_n_comps,
|
|
166
|
-
|
|
192
|
+
diffusion_n_comps = np.min([diffusion_n_comps, conn_graph_sub_sub.shape[0] - 1])
|
|
193
|
+
nn_results_sub_sub = diffusion_nn(conn_graph_sub_sub, k=k0, n_comps=diffusion_n_comps)
|
|
167
194
|
# call kBET
|
|
168
195
|
score, _, _ = kbet(
|
|
169
|
-
|
|
170
|
-
batches=batches_sub,
|
|
196
|
+
nn_results_sub_sub,
|
|
197
|
+
batches=batches_sub[idx_nonan],
|
|
171
198
|
alpha=alpha,
|
|
172
199
|
)
|
|
173
200
|
except ValueError:
|
|
174
201
|
logger.info("Diffusion distance failed. Skip.")
|
|
175
202
|
score = 0 # i.e. 100% rejection
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
# check the number of components where kBET can be computed upon
|
|
179
|
-
comp_size = pd.Series(labs).value_counts()
|
|
180
|
-
# check which components are small
|
|
181
|
-
comp_size_thresh = 3 * k0
|
|
182
|
-
idx_nonan = np.flatnonzero(np.in1d(labs, comp_size[comp_size >= comp_size_thresh].index))
|
|
183
|
-
|
|
184
|
-
# check if 75% of all cells can be used for kBET run
|
|
185
|
-
if len(idx_nonan) / len(labs) >= 0.75:
|
|
186
|
-
# create another subset of components, assume they are not visited in a diffusion process
|
|
187
|
-
conn_graph_sub_sub = conn_graph_sub[idx_nonan, :][:, idx_nonan]
|
|
188
|
-
conn_graph_sub_sub.sort_indices()
|
|
189
|
-
|
|
190
|
-
try:
|
|
191
|
-
diffusion_n_comps = np.min([diffusion_n_comps, conn_graph_sub_sub.shape[0] - 1])
|
|
192
|
-
nn_results_sub_sub = diffusion_nn(conn_graph_sub_sub, k=k0, n_comps=diffusion_n_comps)
|
|
193
|
-
# call kBET
|
|
194
|
-
score, _, _ = kbet(
|
|
195
|
-
nn_results_sub_sub,
|
|
196
|
-
batches=batches_sub[idx_nonan],
|
|
197
|
-
alpha=alpha,
|
|
198
|
-
)
|
|
199
|
-
except ValueError:
|
|
200
|
-
logger.info("Diffusion distance failed. Skip.")
|
|
201
|
-
score = 0 # i.e. 100% rejection
|
|
202
|
-
else: # if there are too many too small connected components, set kBET score to 0
|
|
203
|
-
score = 0 # i.e. 100% rejection
|
|
203
|
+
else: # if there are too many too small connected components, set kBET score to 0
|
|
204
|
+
score = 0 # i.e. 100% rejection
|
|
204
205
|
|
|
205
206
|
kbet_scores["cluster"].append(clus)
|
|
206
207
|
kbet_scores["kBET"].append(score)
|
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
from scib_metrics.utils import silhouette_samples
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def silhouette_label(
|
|
10
|
+
X: np.ndarray,
|
|
11
|
+
labels: np.ndarray,
|
|
12
|
+
rescale: bool = True,
|
|
13
|
+
chunk_size: int = 256,
|
|
14
|
+
metric: Literal["euclidean", "cosine"] = "euclidean",
|
|
15
|
+
) -> float:
|
|
16
|
+
"""Average silhouette width (ASW) :cite:p:`luecken2022benchmarking`.
|
|
17
|
+
|
|
18
|
+
Default parameters ('euclidean') match scIB implementation.
|
|
19
|
+
|
|
20
|
+
Parameters
|
|
21
|
+
----------
|
|
22
|
+
X
|
|
23
|
+
Array of shape (n_cells, n_features).
|
|
24
|
+
labels
|
|
25
|
+
Array of shape (n_cells,) representing label values
|
|
26
|
+
rescale
|
|
27
|
+
Scale asw into the range [0, 1].
|
|
28
|
+
chunk_size
|
|
29
|
+
Size of chunks to process at a time for distance computation
|
|
30
|
+
metric
|
|
31
|
+
The distance metric to use. The distance function can be 'euclidean' (default) or 'cosine'.
|
|
32
|
+
|
|
33
|
+
Returns
|
|
34
|
+
-------
|
|
35
|
+
silhouette score
|
|
36
|
+
"""
|
|
37
|
+
asw = np.mean(silhouette_samples(X, labels, chunk_size=chunk_size, metric=metric))
|
|
38
|
+
if rescale:
|
|
39
|
+
asw = (asw + 1) / 2
|
|
40
|
+
return np.mean(asw)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def silhouette_batch(
|
|
44
|
+
X: np.ndarray,
|
|
45
|
+
labels: np.ndarray,
|
|
46
|
+
batch: np.ndarray,
|
|
47
|
+
rescale: bool = True,
|
|
48
|
+
chunk_size: int = 256,
|
|
49
|
+
metric: Literal["euclidean", "cosine"] = "euclidean",
|
|
50
|
+
between_cluster_distances: Literal["nearest", "mean_other", "furthest"] = "nearest",
|
|
51
|
+
) -> float:
|
|
52
|
+
"""Average silhouette width (ASW) with respect to batch ids within each label :cite:p:`luecken2022benchmarking`.
|
|
53
|
+
|
|
54
|
+
Default parameters ('euclidean', 'nearest') match scIB implementation.
|
|
55
|
+
|
|
56
|
+
Additional options enable BRAS compatible usage (see :func:`~scib_metrics.metrics.bras` documentation).
|
|
57
|
+
|
|
58
|
+
Parameters
|
|
59
|
+
----------
|
|
60
|
+
X
|
|
61
|
+
Array of shape (n_cells, n_features).
|
|
62
|
+
labels
|
|
63
|
+
Array of shape (n_cells,) representing label values
|
|
64
|
+
batch
|
|
65
|
+
Array of shape (n_cells,) representing batch values
|
|
66
|
+
rescale
|
|
67
|
+
Scale asw into the range [0, 1]. If True, higher values are better.
|
|
68
|
+
chunk_size
|
|
69
|
+
Size of chunks to process at a time for distance computation.
|
|
70
|
+
metric
|
|
71
|
+
The distance metric to use. The distance function can be 'euclidean' (default) or 'cosine'.
|
|
72
|
+
between_cluster_distances
|
|
73
|
+
Method for computing inter-cluster distances.
|
|
74
|
+
- 'nearest': Standard silhouette (distance to nearest cluster)
|
|
75
|
+
- 'mean_other': BRAS-specific (mean distance to all other clusters)
|
|
76
|
+
- 'furthest': BRAS-specific (distance to furthest cluster)
|
|
77
|
+
|
|
78
|
+
Returns
|
|
79
|
+
-------
|
|
80
|
+
silhouette score
|
|
81
|
+
"""
|
|
82
|
+
sil_dfs = []
|
|
83
|
+
unique_labels = np.unique(labels)
|
|
84
|
+
for group in unique_labels:
|
|
85
|
+
labels_mask = labels == group
|
|
86
|
+
X_subset = X[labels_mask]
|
|
87
|
+
batch_subset = batch[labels_mask]
|
|
88
|
+
n_batches = len(np.unique(batch_subset))
|
|
89
|
+
|
|
90
|
+
if (n_batches == 1) or (n_batches == X_subset.shape[0]):
|
|
91
|
+
continue
|
|
92
|
+
|
|
93
|
+
sil_per_group = silhouette_samples(
|
|
94
|
+
X_subset,
|
|
95
|
+
batch_subset,
|
|
96
|
+
chunk_size=chunk_size,
|
|
97
|
+
metric=metric,
|
|
98
|
+
between_cluster_distances=between_cluster_distances,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# take only absolute value
|
|
102
|
+
sil_per_group = np.abs(sil_per_group)
|
|
103
|
+
|
|
104
|
+
if rescale:
|
|
105
|
+
# scale s.t. highest number is optimal
|
|
106
|
+
sil_per_group = 1 - sil_per_group
|
|
107
|
+
|
|
108
|
+
sil_dfs.append(
|
|
109
|
+
pd.DataFrame(
|
|
110
|
+
{
|
|
111
|
+
"group": [group] * len(sil_per_group),
|
|
112
|
+
"silhouette_score": sil_per_group,
|
|
113
|
+
}
|
|
114
|
+
)
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
sil_df = pd.concat(sil_dfs).reset_index(drop=True)
|
|
118
|
+
sil_means = sil_df.groupby("group").mean()
|
|
119
|
+
asw = sil_means["silhouette_score"].mean()
|
|
120
|
+
|
|
121
|
+
return asw
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def bras(
|
|
125
|
+
X: np.ndarray,
|
|
126
|
+
labels: np.ndarray,
|
|
127
|
+
batch: np.ndarray,
|
|
128
|
+
chunk_size: int = 256,
|
|
129
|
+
metric: Literal["euclidean", "cosine"] = "cosine",
|
|
130
|
+
between_cluster_distances: Literal["mean_other", "furthest"] = "mean_other",
|
|
131
|
+
) -> float:
|
|
132
|
+
"""Batch removal adapted silhouette (BRAS) for single-cell data integration assessment :cite:p:`rautenstrauch2025`.
|
|
133
|
+
|
|
134
|
+
BRAS evaluates batch effect removal with respect to batch ids within each label (cell type cluster),
|
|
135
|
+
using a modified silhouette score that accounts for nested batch effects. Unlike standard silhouette,
|
|
136
|
+
BRAS computes between-cluster distances using the `between_cluster_distances` method rather than
|
|
137
|
+
nearest-cluster approach. A higher scores indicates better batch mixing.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
X
|
|
142
|
+
Array of shape (n_cells, n_features).
|
|
143
|
+
labels
|
|
144
|
+
Array of shape (n_cells,) representing label values
|
|
145
|
+
batch
|
|
146
|
+
Array of shape (n_cells,) representing batch values
|
|
147
|
+
rescale
|
|
148
|
+
Scale asw into the range [0, 1]. If True, higher values are better.
|
|
149
|
+
chunk_size
|
|
150
|
+
Size of chunks to process at a time for distance computation.
|
|
151
|
+
metric
|
|
152
|
+
The distance metric to use. The distance function can be 'euclidean' (default) or 'cosine'.
|
|
153
|
+
between_cluster_distances
|
|
154
|
+
Method for computing inter-cluster distances.
|
|
155
|
+
- 'mean_other': Mean distance to all cells in other clusters (default)
|
|
156
|
+
- 'furthest': Distance to furthest cluster (conservative estimate)
|
|
157
|
+
|
|
158
|
+
Returns
|
|
159
|
+
-------
|
|
160
|
+
BRAS score
|
|
161
|
+
"""
|
|
162
|
+
return silhouette_batch(X, labels, batch, True, chunk_size, metric, between_cluster_distances)
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
from functools import partial
|
|
2
|
+
from typing import Literal
|
|
3
|
+
|
|
1
4
|
import jax
|
|
2
5
|
import jax.numpy as jnp
|
|
3
6
|
import numpy as np
|
|
@@ -10,10 +13,20 @@ def _euclidean_distance(x: np.array, y: np.array) -> float:
|
|
|
10
13
|
|
|
11
14
|
|
|
12
15
|
@jax.jit
|
|
13
|
-
def
|
|
16
|
+
def _cosine_distance(x: np.array, y: np.array) -> float:
|
|
17
|
+
xy = jnp.dot(x, y)
|
|
18
|
+
xx = jnp.dot(x, x)
|
|
19
|
+
yy = jnp.dot(y, y)
|
|
20
|
+
dist = 1.0 - xy / jnp.sqrt(xx * yy)
|
|
21
|
+
# Clip the result to avoid rounding error
|
|
22
|
+
return jnp.clip(dist, 0.0, 2.0)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@partial(jax.jit, static_argnames=["metric"])
|
|
26
|
+
def cdist(x: np.ndarray, y: np.ndarray, metric: Literal["euclidean", "cosine"] = "euclidean") -> jnp.ndarray:
|
|
14
27
|
"""Jax implementation of :func:`scipy.spatial.distance.cdist`.
|
|
15
28
|
|
|
16
|
-
Uses euclidean distance.
|
|
29
|
+
Uses euclidean distance by default, cosine distance is also available.
|
|
17
30
|
|
|
18
31
|
Parameters
|
|
19
32
|
----------
|
|
@@ -21,13 +34,20 @@ def cdist(x: np.ndarray, y: np.ndarray) -> jnp.ndarray:
|
|
|
21
34
|
Array of shape (n_cells_a, n_features)
|
|
22
35
|
y
|
|
23
36
|
Array of shape (n_cells_b, n_features)
|
|
37
|
+
metric
|
|
38
|
+
The distance metric to use. The distance function can be 'euclidean' (default) or 'cosine'.
|
|
24
39
|
|
|
25
40
|
Returns
|
|
26
41
|
-------
|
|
27
42
|
dist
|
|
28
43
|
Array of shape (n_cells_a, n_cells_b)
|
|
29
44
|
"""
|
|
30
|
-
|
|
45
|
+
if metric not in ["euclidean", "cosine"]:
|
|
46
|
+
raise ValueError("Invalid metric choice, must be one of ['euclidean' or 'cosine'].")
|
|
47
|
+
if metric == "cosine":
|
|
48
|
+
return jax.vmap(lambda x1: jax.vmap(lambda y1: _cosine_distance(x1, y1))(y))(x)
|
|
49
|
+
else:
|
|
50
|
+
return jax.vmap(lambda x1: jax.vmap(lambda y1: _euclidean_distance(x1, y1))(y))(x)
|
|
31
51
|
|
|
32
52
|
|
|
33
53
|
@jax.jit
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from functools import partial
|
|
2
|
+
from typing import Literal
|
|
2
3
|
|
|
3
4
|
import jax
|
|
4
5
|
import jax.numpy as jnp
|
|
@@ -9,13 +10,21 @@ from ._dist import cdist
|
|
|
9
10
|
from ._utils import get_ndarray
|
|
10
11
|
|
|
11
12
|
|
|
12
|
-
@jax.jit
|
|
13
|
+
@partial(jax.jit, static_argnames=["between_cluster_distances"])
|
|
13
14
|
def _silhouette_reduce(
|
|
14
|
-
D_chunk: jnp.ndarray,
|
|
15
|
+
D_chunk: jnp.ndarray,
|
|
16
|
+
start: int,
|
|
17
|
+
labels: jnp.ndarray,
|
|
18
|
+
label_freqs: jnp.ndarray,
|
|
19
|
+
between_cluster_distances: Literal["nearest", "mean_other", "furthest"] = "nearest",
|
|
15
20
|
) -> tuple[jnp.ndarray, jnp.ndarray]:
|
|
16
21
|
"""Accumulate silhouette statistics for vertical chunk of X.
|
|
17
22
|
|
|
18
|
-
Follows scikit-learn implementation.
|
|
23
|
+
Follows scikit-learn implementation with default parameter usage ('nearest').
|
|
24
|
+
|
|
25
|
+
Additional options enable BRAS compatible usage, addressing specific limitations of using silhouette in the context
|
|
26
|
+
of evaluating data integration (see :func:`~scib_metrics.metrics.bras` documentation).
|
|
27
|
+
|
|
19
28
|
|
|
20
29
|
Parameters
|
|
21
30
|
----------
|
|
@@ -29,6 +38,12 @@ def _silhouette_reduce(
|
|
|
29
38
|
Corresponding cluster labels, encoded as {0, ..., n_clusters-1}.
|
|
30
39
|
label_freqs
|
|
31
40
|
Distribution of cluster labels in ``labels``.
|
|
41
|
+
between_cluster_distances
|
|
42
|
+
Method for computing inter-cluster distances.
|
|
43
|
+
- 'nearest': Standard silhouette (distance to nearest cluster)
|
|
44
|
+
- 'mean_other': BRAS-specific (mean distance to all other clusters)
|
|
45
|
+
- 'furthest': BRAS-specific (distance to furthest cluster)
|
|
46
|
+
|
|
32
47
|
"""
|
|
33
48
|
# accumulate distances from each sample to each cluster
|
|
34
49
|
D_chunk_len = D_chunk.shape[0]
|
|
@@ -43,21 +58,36 @@ def _silhouette_reduce(
|
|
|
43
58
|
# clust_dists = jax.lax.fori_loop(
|
|
44
59
|
# 0, D_chunk_len, lambda i, _data: _bincount(i, _data), (clust_dists, D_chunk, labels, label_freqs)
|
|
45
60
|
# )[0]
|
|
46
|
-
|
|
47
61
|
clust_dists = jax.vmap(partial(jnp.bincount, length=label_freqs.shape[0]), in_axes=(None, 0))(labels, D_chunk)
|
|
48
62
|
|
|
49
63
|
# intra_index selects intra-cluster distances within clust_dists
|
|
50
64
|
intra_index = (jnp.arange(D_chunk_len), jax.lax.dynamic_slice(labels, (start,), (D_chunk_len,)))
|
|
51
65
|
# intra_clust_dists are averaged over cluster size outside this function
|
|
52
66
|
intra_clust_dists = clust_dists[intra_index]
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
67
|
+
|
|
68
|
+
if between_cluster_distances == "furthest":
|
|
69
|
+
# of the remaining distances we normalise and extract the maximum
|
|
70
|
+
clust_dists = clust_dists.at[intra_index].set(-jnp.inf)
|
|
71
|
+
clust_dists /= label_freqs
|
|
72
|
+
inter_clust_dists = clust_dists.max(axis=1)
|
|
73
|
+
elif between_cluster_distances == "mean_other":
|
|
74
|
+
clust_dists = clust_dists.at[intra_index].set(jnp.nan)
|
|
75
|
+
total_other_dists = jnp.nansum(clust_dists, axis=1)
|
|
76
|
+
total_other_count = jnp.sum(label_freqs) - label_freqs[jax.lax.dynamic_slice(labels, (start,), (D_chunk_len,))]
|
|
77
|
+
inter_clust_dists = total_other_dists / total_other_count
|
|
78
|
+
elif between_cluster_distances == "nearest":
|
|
79
|
+
# of the remaining distances we normalise and extract the minimum
|
|
80
|
+
clust_dists = clust_dists.at[intra_index].set(jnp.inf)
|
|
81
|
+
clust_dists /= label_freqs
|
|
82
|
+
inter_clust_dists = clust_dists.min(axis=1)
|
|
83
|
+
else:
|
|
84
|
+
raise ValueError("Parameter 'between_cluster_distances' must be one of ['nearest', 'mean_other', 'furthest'].")
|
|
57
85
|
return intra_clust_dists, inter_clust_dists
|
|
58
86
|
|
|
59
87
|
|
|
60
|
-
def _pairwise_distances_chunked(
|
|
88
|
+
def _pairwise_distances_chunked(
|
|
89
|
+
X: jnp.ndarray, chunk_size: int, reduce_fn: callable, metric: Literal["euclidean", "cosine"] = "euclidean"
|
|
90
|
+
) -> jnp.ndarray:
|
|
61
91
|
"""Compute pairwise distances in chunks to reduce memory usage."""
|
|
62
92
|
n_samples = X.shape[0]
|
|
63
93
|
n_chunks = jnp.ceil(n_samples / chunk_size).astype(int)
|
|
@@ -66,17 +96,27 @@ def _pairwise_distances_chunked(X: jnp.ndarray, chunk_size: int, reduce_fn: call
|
|
|
66
96
|
for i in range(n_chunks):
|
|
67
97
|
start = i * chunk_size
|
|
68
98
|
end = min((i + 1) * chunk_size, n_samples)
|
|
69
|
-
intra_cluster_dists, inter_cluster_dists = reduce_fn(cdist(X[start:end], X), start=start)
|
|
99
|
+
intra_cluster_dists, inter_cluster_dists = reduce_fn(cdist(X[start:end], X, metric=metric), start=start)
|
|
70
100
|
intra_dists_all.append(intra_cluster_dists)
|
|
71
101
|
inter_dists_all.append(inter_cluster_dists)
|
|
72
102
|
return jnp.concatenate(intra_dists_all), jnp.concatenate(inter_dists_all)
|
|
73
103
|
|
|
74
104
|
|
|
75
|
-
def silhouette_samples(
|
|
105
|
+
def silhouette_samples(
|
|
106
|
+
X: np.ndarray,
|
|
107
|
+
labels: np.ndarray,
|
|
108
|
+
chunk_size: int = 256,
|
|
109
|
+
metric: Literal["euclidean", "cosine"] = "euclidean",
|
|
110
|
+
between_cluster_distances: Literal["nearest", "mean_other", "furthest"] = "nearest",
|
|
111
|
+
) -> np.ndarray:
|
|
76
112
|
"""Compute the Silhouette Coefficient for each observation.
|
|
77
113
|
|
|
78
114
|
Implements :func:`sklearn.metrics.silhouette_samples`.
|
|
79
115
|
|
|
116
|
+
Default parameters ('euclidean', 'nearest') match scIB implementation.
|
|
117
|
+
|
|
118
|
+
Additional options enable BRAS compatible usage (see `bras()` documentation).
|
|
119
|
+
|
|
80
120
|
Parameters
|
|
81
121
|
----------
|
|
82
122
|
X
|
|
@@ -87,6 +127,13 @@ def silhouette_samples(X: np.ndarray, labels: np.ndarray, chunk_size: int = 256)
|
|
|
87
127
|
for each observation.
|
|
88
128
|
chunk_size
|
|
89
129
|
Number of samples to process at a time for distance computation.
|
|
130
|
+
metric
|
|
131
|
+
The distance metric to use. The distance function can be 'euclidean' (default) or 'cosine'.
|
|
132
|
+
between_cluster_distances
|
|
133
|
+
Method for computing inter-cluster distances.
|
|
134
|
+
- 'nearest': Standard silhouette (distance to nearest cluster)
|
|
135
|
+
- 'mean_other': BRAS-specific (mean distance to all other clusters)
|
|
136
|
+
- 'furthest': BRAS-specific (distance to furthest cluster)
|
|
90
137
|
|
|
91
138
|
Returns
|
|
92
139
|
-------
|
|
@@ -97,8 +144,10 @@ def silhouette_samples(X: np.ndarray, labels: np.ndarray, chunk_size: int = 256)
|
|
|
97
144
|
labels = pd.Categorical(labels).codes
|
|
98
145
|
labels = jnp.asarray(labels)
|
|
99
146
|
label_freqs = jnp.bincount(labels)
|
|
100
|
-
reduce_fn = partial(
|
|
101
|
-
|
|
147
|
+
reduce_fn = partial(
|
|
148
|
+
_silhouette_reduce, labels=labels, label_freqs=label_freqs, between_cluster_distances=between_cluster_distances
|
|
149
|
+
)
|
|
150
|
+
results = _pairwise_distances_chunked(X, chunk_size=chunk_size, reduce_fn=reduce_fn, metric=metric)
|
|
102
151
|
intra_clust_dists, inter_clust_dists = results
|
|
103
152
|
|
|
104
153
|
denom = jnp.take(label_freqs - 1, labels, mode="clip")
|