schubmult 1.3.9__tar.gz → 1.4.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {schubmult-1.3.9 → schubmult-1.4.0}/PKG-INFO +5 -5
- {schubmult-1.3.9 → schubmult-1.4.0}/README.md +4 -4
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/perm_lib.py +82 -1
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q/schubmult_q.py +96 -2
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q_double/schubmult_q_double.py +9 -2
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q_yz/schubmult_q_yz.py +112 -9
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult.egg-info/PKG-INFO +5 -5
- {schubmult-1.3.9 → schubmult-1.4.0}/setup.py +1 -1
- {schubmult-1.3.9 → schubmult-1.4.0}/LICENSE +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_double/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_double/__main__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_double/schubmult_double.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_py/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_py/__main__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_py/schubmult_py.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q/__main__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q_double/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q_double/__main__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q_yz/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_q_yz/__main__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_yz/__init__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_yz/__main__.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult/schubmult_yz/schubmult_yz.py +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult.egg-info/SOURCES.txt +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult.egg-info/dependency_links.txt +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult.egg-info/entry_points.txt +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult.egg-info/requires.txt +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/schubmult.egg-info/top_level.txt +0 -0
- {schubmult-1.3.9 → schubmult-1.4.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: schubmult
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.4.0
|
4
4
|
Summary: Computing Littlewood-Richardson coefficients of Schubert polynomials
|
5
5
|
Home-page: https://github.com/matthematics/schubmult
|
6
6
|
Author: Matt Samuel
|
@@ -15,7 +15,7 @@ License-File: LICENSE
|
|
15
15
|
|
16
16
|
## Program and package for computing Littlewood-Richardson coefficients of Schubert polynomials
|
17
17
|
|
18
|
-
This is a set of python scripts written by Matt Samuel for computing Littlewood-Richardson coefficients of (ordinary or double) Schubert polynomials.
|
18
|
+
This is a set of python scripts written by Matt Samuel for computing (equivariant, Molev-Sagan) Littlewood-Richardson coefficients of (ordinary or double) Schubert polynomials. It also handles (double) quantum Schubert polynomials, if double then either in the same set or different sets of coefficient variables; that is to say it compute the (equivariant/mixed) Gromov-Witten invariants of the complete flag variety. It has the same command line syntax as the program "schubmult" in lrcalc by Anders Buch. Example:
|
19
19
|
|
20
20
|
```
|
21
21
|
schubmult_py 1 2 4 9 11 6 8 12 3 5 7 10 - 6 8 1 2 3 4 7 10 12 14 5 9 11 13
|
@@ -50,7 +50,7 @@ schubmult_double -code -coprod 0 1 2 3 - 2 4
|
|
50
50
|
schubmult_yz -code -coprod 0 1 2 3 - 2 4 --display-positive
|
51
51
|
```
|
52
52
|
|
53
|
-
|
53
|
+
schubmult_q_yz has a feature for displaying the coefficients of the divided difference operators in the evaluation of the quantum double Schubert polynomials on the commuting difference operators of Fomin, Gelfand, and Postnikov. It is necessary to cap the value of n in the group S_n we are working in because as n increases the expression does not stabilize.
|
54
54
|
```
|
55
55
|
schubmult_q_yz -nil-hecke 6 -code 2 2 --display-positive
|
56
56
|
```
|
@@ -59,7 +59,7 @@ Runtime will vary tremendously by case. The general problem is #P-hard. Though t
|
|
59
59
|
|
60
60
|
schubmult_py is for multiplying ordinary Schubert polynomials. schubmult_yz is for multiplying double Schubert polynomials in different sets of coefficient variables (labeled y and z), and schubmult_double is for multiplying double Schubert polynomials in the same set of coefficient variables. Similarly, schubmult_q is for multiplying quantum Schubert polynomials, schubmult_q_double is for multiplying quantum double Schubert polynomials in the same set of coefficient variables, and schubmult_q_yz is for multiplying quantum double Schubert polynomials in different sets of coefficient variables, or in other words it computes the Gromov-Witten invariants, equivariant Gromov-Witten invariants, and (mixed?) equivariant Gromov-Witten invariants of the complete flag variety. All have the same command line syntax as schubmult, except when using the -code option. schubmult_double/schubmult_q_double display the result with nonnegative coefficients in terms of the negative simple roots (and the q variables), and schubmult_yz and schubmult_q_yz optionally display the result positively in terms of y_i-z_j (and q) with the --display-positive option.
|
61
61
|
|
62
|
-
|
62
|
+
schubmult_xx -coprod allows you to split (double) Schubert polynomials along certain indices (not available for quantum). It takes one permutation as an argument, followed by a dash -, then the set of indices you would like to split on. These coefficients are always nonnegative since they occur as product coefficients (this is actually how they are computed).
|
63
63
|
|
64
64
|
When imported as a python package, the relevant packages are schubmult.perm_lib, which has various permutation manipulation functions, and three modules that have functions of the same name (function name is "schubmult"): schubmult.schubmult_py, schubmult.schubmult_yz, schubmult.schubmult_double. Function takes a permutation dictionary (keys are tuples of ints, which must be trimmed permutations, and values are either integers or symengine values, which can also be integers) as well as a permutation as its second argument, which is the (double) Schubert polynomial to multiply by. Returns a dictionary of the same form with the coefficients.
|
65
65
|
|
@@ -76,7 +76,7 @@ from schubmult.schubmult_py import schubmult
|
|
76
76
|
coeff_dict = schubmult({(1,3,4,6,2,5): 1},(2,1,5,7,3,4,6))
|
77
77
|
```
|
78
78
|
|
79
|
-
|
79
|
+
The command line argument --display-positive is available in schubmult_yz and schubmult_q_yz, which displays the result positively (if possible, this is still only always possible conjecturally). It will fail and print out the offending case if it finds a counterexample. This is highly processor intensive.
|
80
80
|
|
81
81
|

|
82
82
|
|
@@ -2,7 +2,7 @@
|
|
2
2
|
|
3
3
|
## Program and package for computing Littlewood-Richardson coefficients of Schubert polynomials
|
4
4
|
|
5
|
-
This is a set of python scripts written by Matt Samuel for computing Littlewood-Richardson coefficients of (ordinary or double) Schubert polynomials.
|
5
|
+
This is a set of python scripts written by Matt Samuel for computing (equivariant, Molev-Sagan) Littlewood-Richardson coefficients of (ordinary or double) Schubert polynomials. It also handles (double) quantum Schubert polynomials, if double then either in the same set or different sets of coefficient variables; that is to say it compute the (equivariant/mixed) Gromov-Witten invariants of the complete flag variety. It has the same command line syntax as the program "schubmult" in lrcalc by Anders Buch. Example:
|
6
6
|
|
7
7
|
```
|
8
8
|
schubmult_py 1 2 4 9 11 6 8 12 3 5 7 10 - 6 8 1 2 3 4 7 10 12 14 5 9 11 13
|
@@ -37,7 +37,7 @@ schubmult_double -code -coprod 0 1 2 3 - 2 4
|
|
37
37
|
schubmult_yz -code -coprod 0 1 2 3 - 2 4 --display-positive
|
38
38
|
```
|
39
39
|
|
40
|
-
|
40
|
+
schubmult_q_yz has a feature for displaying the coefficients of the divided difference operators in the evaluation of the quantum double Schubert polynomials on the commuting difference operators of Fomin, Gelfand, and Postnikov. It is necessary to cap the value of n in the group S_n we are working in because as n increases the expression does not stabilize.
|
41
41
|
```
|
42
42
|
schubmult_q_yz -nil-hecke 6 -code 2 2 --display-positive
|
43
43
|
```
|
@@ -46,7 +46,7 @@ Runtime will vary tremendously by case. The general problem is #P-hard. Though t
|
|
46
46
|
|
47
47
|
schubmult_py is for multiplying ordinary Schubert polynomials. schubmult_yz is for multiplying double Schubert polynomials in different sets of coefficient variables (labeled y and z), and schubmult_double is for multiplying double Schubert polynomials in the same set of coefficient variables. Similarly, schubmult_q is for multiplying quantum Schubert polynomials, schubmult_q_double is for multiplying quantum double Schubert polynomials in the same set of coefficient variables, and schubmult_q_yz is for multiplying quantum double Schubert polynomials in different sets of coefficient variables, or in other words it computes the Gromov-Witten invariants, equivariant Gromov-Witten invariants, and (mixed?) equivariant Gromov-Witten invariants of the complete flag variety. All have the same command line syntax as schubmult, except when using the -code option. schubmult_double/schubmult_q_double display the result with nonnegative coefficients in terms of the negative simple roots (and the q variables), and schubmult_yz and schubmult_q_yz optionally display the result positively in terms of y_i-z_j (and q) with the --display-positive option.
|
48
48
|
|
49
|
-
|
49
|
+
schubmult_xx -coprod allows you to split (double) Schubert polynomials along certain indices (not available for quantum). It takes one permutation as an argument, followed by a dash -, then the set of indices you would like to split on. These coefficients are always nonnegative since they occur as product coefficients (this is actually how they are computed).
|
50
50
|
|
51
51
|
When imported as a python package, the relevant packages are schubmult.perm_lib, which has various permutation manipulation functions, and three modules that have functions of the same name (function name is "schubmult"): schubmult.schubmult_py, schubmult.schubmult_yz, schubmult.schubmult_double. Function takes a permutation dictionary (keys are tuples of ints, which must be trimmed permutations, and values are either integers or symengine values, which can also be integers) as well as a permutation as its second argument, which is the (double) Schubert polynomial to multiply by. Returns a dictionary of the same form with the coefficients.
|
52
52
|
|
@@ -63,7 +63,7 @@ from schubmult.schubmult_py import schubmult
|
|
63
63
|
coeff_dict = schubmult({(1,3,4,6,2,5): 1},(2,1,5,7,3,4,6))
|
64
64
|
```
|
65
65
|
|
66
|
-
|
66
|
+
The command line argument --display-positive is available in schubmult_yz and schubmult_q_yz, which displays the result positively (if possible, this is still only always possible conjecturally). It will fail and print out the offending case if it finds a counterexample. This is highly processor intensive.
|
67
67
|
|
68
68
|

|
69
69
|
|
@@ -8,6 +8,11 @@ n = 100
|
|
8
8
|
|
9
9
|
q_var = symarray("q",n)
|
10
10
|
|
11
|
+
def getpermval(perm,index):
|
12
|
+
if index<len(perm):
|
13
|
+
return perm[index]
|
14
|
+
return index+1
|
15
|
+
|
11
16
|
def inv(perm):
|
12
17
|
L = len(perm)
|
13
18
|
v = [i for i in range(1,L+1)]
|
@@ -663,4 +668,80 @@ def pull_out_var(vnum,v):
|
|
663
668
|
vpm2.pop(vnum-1)
|
664
669
|
vp = permtrim(vpm2)
|
665
670
|
ret_list += [[[v[i] for i in range(vnum,len(v)) if ((i>len(vp) and v[i]==i) or (i<=len(vp) and v[i]==vp[i-1]))],vp]]
|
666
|
-
return ret_list
|
671
|
+
return ret_list
|
672
|
+
|
673
|
+
def get_cycles(perm):
|
674
|
+
cycle_set = []
|
675
|
+
done_vals = set()
|
676
|
+
for i in range(len(perm)):
|
677
|
+
p = i + 1
|
678
|
+
if perm[i] == p:
|
679
|
+
continue
|
680
|
+
if p in done_vals:
|
681
|
+
continue
|
682
|
+
cycle = []
|
683
|
+
m = -1
|
684
|
+
max_index = -1
|
685
|
+
while p not in done_vals:
|
686
|
+
cycle += [p]
|
687
|
+
done_vals.add(p)
|
688
|
+
if p>m:
|
689
|
+
m = p
|
690
|
+
max_index = len(cycle) - 1
|
691
|
+
p = perm[p-1]
|
692
|
+
cycle = tuple(cycle[max_index+1:] + cycle[:max_index+1])
|
693
|
+
cycle_set += [cycle]
|
694
|
+
return cycle_set
|
695
|
+
|
696
|
+
def double_elem_sym_q(u,p1,p2,k):
|
697
|
+
ret_list = {}
|
698
|
+
perms1 = elem_sym_perms_q(u,p1,k)
|
699
|
+
iu = inverse(u)
|
700
|
+
for perm1, udiff1, mul_val1 in perms1:
|
701
|
+
perms2 = elem_sym_perms_q(perm1,p2,k)
|
702
|
+
cycles1 = get_cycles(tuple(permtrim(mulperm(iu,[*perm1]))))
|
703
|
+
cycles1_dict = {}
|
704
|
+
for c in cycles1:
|
705
|
+
if c[-1] not in cycles1_dict:
|
706
|
+
cycles1_dict[c[-1]] = []
|
707
|
+
cycles1_dict[c[-1]]+= [set(c)]
|
708
|
+
ip1 = inverse(perm1)
|
709
|
+
for perm2, udiff2, mul_val2 in perms2:
|
710
|
+
cycles2 = get_cycles(tuple(permtrim(mulperm(ip1,[*perm2]))))
|
711
|
+
good = True
|
712
|
+
for i in range(len(cycles2)):
|
713
|
+
c2 = cycles2[i]
|
714
|
+
if c2[-1] not in cycles1_dict:
|
715
|
+
continue
|
716
|
+
for c1_s in cycles1_dict[c2[-1]]:
|
717
|
+
for a in range(len(c2)-2,-1,-1):
|
718
|
+
if c2[a] in c1_s:
|
719
|
+
good = False
|
720
|
+
break
|
721
|
+
if not good:
|
722
|
+
break
|
723
|
+
if not good:
|
724
|
+
break
|
725
|
+
|
726
|
+
if good:
|
727
|
+
if (perm1,udiff1,mul_val1) not in ret_list:
|
728
|
+
ret_list[(perm1,udiff1,mul_val1)] = []
|
729
|
+
ret_list[(perm1,udiff1,mul_val1)] += [(perm2,udiff2,mul_val2)]
|
730
|
+
return ret_list
|
731
|
+
|
732
|
+
def medium_theta(perm):
|
733
|
+
cd = code(perm)
|
734
|
+
found_one = True
|
735
|
+
while found_one:
|
736
|
+
found_one = False
|
737
|
+
for i in range(len(cd)-1):
|
738
|
+
if cd[i]<cd[i+1]:
|
739
|
+
found_one = True
|
740
|
+
cd[i], cd[i+1] = cd[i+1]+1, cd[i]
|
741
|
+
break
|
742
|
+
if cd[i]==cd[i+1] and cd[i]!=0 and i>0 and cd[i-1]<=cd[i]+1:
|
743
|
+
#if cd[i]==cd[i+1] and i>0 and cd[i-1]<=cd[i]+1:
|
744
|
+
cd[i]+=1
|
745
|
+
found_one = True
|
746
|
+
break
|
747
|
+
return cd
|
@@ -63,6 +63,92 @@ for i in range(1,n):
|
|
63
63
|
sm += var_r[j]
|
64
64
|
subs_dict[var2[i]] = sm
|
65
65
|
|
66
|
+
def schubmult_db(perm_dict,v,var2=var2,var3=var3):
|
67
|
+
if v == (1,2):
|
68
|
+
return perm_dict
|
69
|
+
th = medium_theta(inverse(v))
|
70
|
+
#print(f"{th=}")
|
71
|
+
while th[-1] == 0:
|
72
|
+
th.pop()
|
73
|
+
#if len(set(th))!=len(th):
|
74
|
+
# print(f"medium theta {th=}")
|
75
|
+
mu = permtrim(uncode(th))
|
76
|
+
vmu = permtrim(mulperm([*v],mu))
|
77
|
+
inv_vmu = inv(vmu)
|
78
|
+
inv_mu = inv(mu)
|
79
|
+
ret_dict = {}
|
80
|
+
vpaths = [([(vmu,0)],1)]
|
81
|
+
|
82
|
+
thL = len(th)
|
83
|
+
#if thL!=2 and len(set(thL))!=1:
|
84
|
+
# raise ValueError("Not what I can do")
|
85
|
+
vpathdicts = compute_vpathdicts(th,vmu,True)
|
86
|
+
#print(f"{vpathdicts=}")
|
87
|
+
for u,val in perm_dict.items():
|
88
|
+
inv_u = inv(u)
|
89
|
+
vpathsums = {u: {(1,2): val}}
|
90
|
+
for index in range(thL):
|
91
|
+
if index>0 and th[index-1] == th[index]:
|
92
|
+
continue
|
93
|
+
mx_th = 0
|
94
|
+
for vp in vpathdicts[index]:
|
95
|
+
for v2,vdiff,s in vpathdicts[index][vp]:
|
96
|
+
if th[index]-vdiff > mx_th:
|
97
|
+
mx_th = th[index] - vdiff
|
98
|
+
if index<len(th)-1 and th[index] == th[index+1]:
|
99
|
+
mx_th1 = 0
|
100
|
+
for vp in vpathdicts[index+1]:
|
101
|
+
for v2,vdiff,s in vpathdicts[index+1][vp]:
|
102
|
+
if th[index+1]-vdiff > mx_th1:
|
103
|
+
mx_th1 = th[index+1] - vdiff
|
104
|
+
newpathsums = {}
|
105
|
+
for up in vpathsums:
|
106
|
+
newpathsums0 = {}
|
107
|
+
inv_up = inv(up)
|
108
|
+
newperms = double_elem_sym_q(up,mx_th,mx_th1,th[index])
|
109
|
+
for v in vpathdicts[index]:
|
110
|
+
sumval = vpathsums[up].get(v,zero)
|
111
|
+
if sumval == 0:
|
112
|
+
continue
|
113
|
+
for v2,vdiff2,s2 in vpathdicts[index][v]:
|
114
|
+
for up1, udiff1, mul_val1 in newperms:
|
115
|
+
if (up1,udiff1,mul_val1) not in newpathsums0:
|
116
|
+
newpathsums0[(up1,udiff1,mul_val1)] = {}
|
117
|
+
if udiff1 + vdiff2 == th[index]:
|
118
|
+
newpathsums0[(up1,udiff1,mul_val1)][v2] = newpathsums0[(up1,udiff1,mul_val1)].get(v2,zero)+s2*sumval*mul_val1
|
119
|
+
|
120
|
+
for up1, udiff1, mul_val1 in newpathsums0:
|
121
|
+
for v in vpathdicts[index+1]:
|
122
|
+
sumval = newpathsums0[(up1,udiff1,mul_val1)].get(v,zero)
|
123
|
+
if sumval == 0:
|
124
|
+
continue
|
125
|
+
for v2,vdiff2,s2 in vpathdicts[index+1][v]:
|
126
|
+
for up2, udiff2, mul_val2 in newperms[(up1,udiff1,mul_val1)]:
|
127
|
+
if up2 not in newpathsums:
|
128
|
+
newpathsums[up2]={}
|
129
|
+
if udiff2 + vdiff2 == th[index+1]:
|
130
|
+
newpathsums[up2][v2] = newpathsums[up2].get(v2,zero)+s2*sumval*mul_val2
|
131
|
+
else:
|
132
|
+
newpathsums = {}
|
133
|
+
for up in vpathsums:
|
134
|
+
inv_up = inv(up)
|
135
|
+
newperms = elem_sym_perms_q(up,min(mx_th,(inv_mu-(inv_up-inv_u))-inv_vmu),th[index])
|
136
|
+
for up2, udiff, mul_val in newperms:
|
137
|
+
if up2 not in newpathsums:
|
138
|
+
newpathsums[up2]={}
|
139
|
+
for v in vpathdicts[index]:
|
140
|
+
sumval = vpathsums[up].get(v,zero)
|
141
|
+
if sumval == 0:
|
142
|
+
continue
|
143
|
+
for v2,vdiff,s in vpathdicts[index][v]:
|
144
|
+
if udiff+vdiff==th[index]:
|
145
|
+
newpathsums[up2][v2] = newpathsums[up2].get(v2,zero)+s*sumval*mul_val
|
146
|
+
vpathsums = newpathsums
|
147
|
+
toget = tuple(vmu)
|
148
|
+
ret_dict = add_perm_dict({ep: vpathsums[ep].get(toget,0) for ep in vpathsums},ret_dict)
|
149
|
+
return ret_dict
|
150
|
+
|
151
|
+
|
66
152
|
def schubmult(perm_dict,v):
|
67
153
|
th = strict_theta(inverse(v))
|
68
154
|
mu = permtrim(uncode(th))
|
@@ -177,12 +263,16 @@ def main():
|
|
177
263
|
equiv = False
|
178
264
|
mult = False
|
179
265
|
mulstring = ""
|
266
|
+
slow = False
|
180
267
|
|
181
268
|
try:
|
182
269
|
for s in sys.argv[1:]:
|
183
270
|
if s == "-np" or s == "--no-print":
|
184
271
|
pr = False
|
185
272
|
continue
|
273
|
+
if s == "--slow":
|
274
|
+
slow = True
|
275
|
+
continue
|
186
276
|
if mult:
|
187
277
|
mulstring += s
|
188
278
|
continue
|
@@ -344,8 +434,12 @@ def main():
|
|
344
434
|
|
345
435
|
coeff_dict = {tuple(permtrim([*perms[0]])): 1}
|
346
436
|
|
347
|
-
|
348
|
-
|
437
|
+
if not slow:
|
438
|
+
for perm in perms[1:]:
|
439
|
+
coeff_dict = schubmult_db(coeff_dict,tuple(permtrim([*perm])))
|
440
|
+
else:
|
441
|
+
for perm in perms[1:]:
|
442
|
+
coeff_dict = schubmult(coeff_dict,tuple(permtrim([*perm])))
|
349
443
|
|
350
444
|
if mult:
|
351
445
|
mul_exp = sympify(mulstring)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
from schubmult.perm_lib import *
|
2
|
-
from schubmult.schubmult_q_yz import schubmult, mult_poly
|
2
|
+
from schubmult.schubmult_q_yz import schubmult, schubmult_db, mult_poly
|
3
3
|
from symengine import *
|
4
4
|
import sys
|
5
5
|
|
@@ -37,12 +37,16 @@ def main():
|
|
37
37
|
check = True
|
38
38
|
msg = False
|
39
39
|
mult = False
|
40
|
+
slow = False
|
40
41
|
mulstring = ""
|
41
42
|
try:
|
42
43
|
for s in sys.argv[1:]:
|
43
44
|
if s == "-np" or s == "--no-print":
|
44
45
|
pr = False
|
45
46
|
continue
|
47
|
+
if s == "--slow":
|
48
|
+
slow = True
|
49
|
+
continue
|
46
50
|
if mult:
|
47
51
|
mulstring += s
|
48
52
|
continue
|
@@ -96,7 +100,10 @@ def main():
|
|
96
100
|
|
97
101
|
coeff_dict = {perms[0]: 1}
|
98
102
|
for perm in perms[1:]:
|
99
|
-
|
103
|
+
if slow:
|
104
|
+
coeff_dict = schubmult(coeff_dict,perm,var2,var2)
|
105
|
+
else:
|
106
|
+
coeff_dict = schubmult_db(coeff_dict,perm,var2,var2)
|
100
107
|
if mult:
|
101
108
|
mul_exp = sympify(mulstring)
|
102
109
|
coeff_dict = mult_poly(coeff_dict,mul_exp)
|
@@ -149,6 +149,99 @@ def schubmult(perm_dict,v,var2=var2,var3=var3):
|
|
149
149
|
ret_dict = add_perm_dict({ep: vpathsums[ep].get(toget,0) for ep in vpathsums},ret_dict)
|
150
150
|
return ret_dict
|
151
151
|
|
152
|
+
def schubmult_db(perm_dict,v,var2=var2,var3=var3):
|
153
|
+
if v == (1,2):
|
154
|
+
return perm_dict
|
155
|
+
th = medium_theta(inverse(v))
|
156
|
+
#print(f"{th=}")
|
157
|
+
while th[-1] == 0:
|
158
|
+
th.pop()
|
159
|
+
#if len(set(th))!=len(th):
|
160
|
+
# print(f"medium theta {th=}")
|
161
|
+
mu = permtrim(uncode(th))
|
162
|
+
vmu = permtrim(mulperm([*v],mu))
|
163
|
+
inv_vmu = inv(vmu)
|
164
|
+
inv_mu = inv(mu)
|
165
|
+
ret_dict = {}
|
166
|
+
vpaths = [([(vmu,0)],1)]
|
167
|
+
|
168
|
+
thL = len(th)
|
169
|
+
#if thL!=2 and len(set(thL))!=1:
|
170
|
+
# raise ValueError("Not what I can do")
|
171
|
+
vpathdicts = compute_vpathdicts(th,vmu,True)
|
172
|
+
#print(f"{vpathdicts=}")
|
173
|
+
for u,val in perm_dict.items():
|
174
|
+
inv_u = inv(u)
|
175
|
+
vpathsums = {u: {(1,2): val}}
|
176
|
+
for index in range(thL):
|
177
|
+
if index>0 and th[index-1] == th[index]:
|
178
|
+
continue
|
179
|
+
mx_th = 0
|
180
|
+
for vp in vpathdicts[index]:
|
181
|
+
for v2,vdiff,s in vpathdicts[index][vp]:
|
182
|
+
if th[index]-vdiff > mx_th:
|
183
|
+
mx_th = th[index] - vdiff
|
184
|
+
if index<len(th)-1 and th[index] == th[index+1]:
|
185
|
+
mx_th1 = 0
|
186
|
+
for vp in vpathdicts[index+1]:
|
187
|
+
for v2,vdiff,s in vpathdicts[index+1][vp]:
|
188
|
+
if th[index+1]-vdiff > mx_th1:
|
189
|
+
mx_th1 = th[index+1] - vdiff
|
190
|
+
newpathsums = {}
|
191
|
+
for up in vpathsums:
|
192
|
+
newpathsums0 = {}
|
193
|
+
inv_up = inv(up)
|
194
|
+
newperms = double_elem_sym_q(up,mx_th,mx_th1,th[index])
|
195
|
+
#for up1, up2, udiff1,udiff2,mul_val1,mul_val2 in newperms:
|
196
|
+
for v in vpathdicts[index]:
|
197
|
+
sumval = vpathsums[up].get(v,zero)
|
198
|
+
if sumval == 0:
|
199
|
+
continue
|
200
|
+
for v2,vdiff2,s2 in vpathdicts[index][v]:
|
201
|
+
for up1, udiff1, mul_val1 in newperms:
|
202
|
+
esim1 = elem_sym_func_q(th[index],index+1,up,up1,v,v2,udiff1,vdiff2,var2,var3)*mul_val1*s2
|
203
|
+
mulfac = sumval*esim1
|
204
|
+
if (up1,udiff1,mul_val1) not in newpathsums0:
|
205
|
+
newpathsums0[(up1,udiff1,mul_val1)] = {}
|
206
|
+
#newpathsums0[(up1, udiff1, mul_val1
|
207
|
+
newpathsums0[(up1,udiff1,mul_val1)][v2] = newpathsums0[(up1,udiff1,mul_val1)].get(v2,0) + mulfac
|
208
|
+
|
209
|
+
for up1, udiff1, mul_val1 in newpathsums0:
|
210
|
+
for v in vpathdicts[index+1]:
|
211
|
+
sumval = newpathsums0[(up1,udiff1,mul_val1)].get(v,zero)
|
212
|
+
if sumval == 0:
|
213
|
+
continue
|
214
|
+
for v2,vdiff2,s2 in vpathdicts[index+1][v]:
|
215
|
+
for up2, udiff2, mul_val2 in newperms[(up1,udiff1,mul_val1)]:
|
216
|
+
esim1 = elem_sym_func_q(th[index+1],index+2,up1,up2,v,v2,udiff2,vdiff2,var2,var3)*mul_val2*s2
|
217
|
+
mulfac = sumval*esim1
|
218
|
+
if up2 not in newpathsums:
|
219
|
+
newpathsums[up2] = {}
|
220
|
+
newpathsums[up2][v2] = newpathsums[up2].get(v2,0) + mulfac
|
221
|
+
#for up2, udiff2, mul_val2 in newperms[(up1,udiff1,mul_val1)]:
|
222
|
+
# if up2 not in newpathsums:
|
223
|
+
# newpathsums[up2]={}
|
224
|
+
# for v3,vdiff3,s3 in vpathdicts[index+1][v2]:
|
225
|
+
# newpathsums[up2][v3] = newpathsums[up2].get(v3,zero)+s3*mul_val2*mulfac*elem_sym_func_q(th[index+1],index+2,up1,up2,v2,v3,udiff2,vdiff3,var2,var3)
|
226
|
+
else:
|
227
|
+
newpathsums = {}
|
228
|
+
for up in vpathsums:
|
229
|
+
inv_up = inv(up)
|
230
|
+
newperms = elem_sym_perms_q(up,min(mx_th,(inv_mu-(inv_up-inv_u))-inv_vmu),th[index])
|
231
|
+
for up2, udiff,mul_val in newperms:
|
232
|
+
if up2 not in newpathsums:
|
233
|
+
newpathsums[up2]={}
|
234
|
+
for v in vpathdicts[index]:
|
235
|
+
sumval = vpathsums[up].get(v,zero)*mul_val
|
236
|
+
if sumval == 0:
|
237
|
+
continue
|
238
|
+
for v2,vdiff,s in vpathdicts[index][v]:
|
239
|
+
newpathsums[up2][v2] = newpathsums[up2].get(v2,zero)+s*sumval*elem_sym_func_q(th[index],index+1,up,up2,v,v2,udiff,vdiff,var2,var3)
|
240
|
+
vpathsums = newpathsums
|
241
|
+
toget = tuple(vmu)
|
242
|
+
ret_dict = add_perm_dict({ep: vpathsums[ep].get(toget,0) for ep in vpathsums},ret_dict)
|
243
|
+
return ret_dict
|
244
|
+
|
152
245
|
q_var2 = q_var.tolist()
|
153
246
|
|
154
247
|
def sum_q_dict(q_dict1,q_dict2):
|
@@ -270,6 +363,7 @@ def main():
|
|
270
363
|
msg = False
|
271
364
|
just_nil = False
|
272
365
|
mult = False
|
366
|
+
slow = False
|
273
367
|
|
274
368
|
nil_N = 0
|
275
369
|
|
@@ -283,6 +377,9 @@ def main():
|
|
283
377
|
just_nil = False
|
284
378
|
nil_N = int(s)
|
285
379
|
continue
|
380
|
+
if s == "--slow":
|
381
|
+
slow = True
|
382
|
+
continue
|
286
383
|
if s == "--norep":
|
287
384
|
norep = True
|
288
385
|
continue
|
@@ -350,7 +447,10 @@ def main():
|
|
350
447
|
else:
|
351
448
|
coeff_dict = {perms[0]: 1}
|
352
449
|
for perm in perms[1:]:
|
353
|
-
|
450
|
+
if not slow:
|
451
|
+
coeff_dict = schubmult_db(coeff_dict,perm)
|
452
|
+
else:
|
453
|
+
coeff_dict = schubmult(coeff_dict,perm)
|
354
454
|
if mult:
|
355
455
|
for v in var2:
|
356
456
|
globals()[str(v)] = v
|
@@ -358,15 +458,18 @@ def main():
|
|
358
458
|
globals()[str(v)] = v
|
359
459
|
for v in var_x:
|
360
460
|
globals()[str(v)] = v
|
461
|
+
for v in q_var:
|
462
|
+
globals()[str(v)] = v
|
463
|
+
q = q_var
|
361
464
|
mul_exp = eval(mulstring)
|
362
465
|
coeff_dict = mult_poly(coeff_dict,mul_exp)
|
363
466
|
rep = ("","")
|
364
467
|
|
365
468
|
if pr:
|
366
|
-
if ascode:
|
367
|
-
|
368
|
-
else:
|
369
|
-
|
469
|
+
#if ascode:
|
470
|
+
# width = max([len(str(trimcode(perm))) for perm in coeff_dict.keys() if expand(coeff_dict[perm])!=0])
|
471
|
+
#else:
|
472
|
+
# width = max([len(str(perm)) for perm in coeff_dict.keys() if expand(coeff_dict[perm])!=0])
|
370
473
|
|
371
474
|
coeff_perms = list(coeff_dict.keys())
|
372
475
|
coeff_perms.sort(key=lambda x: (inv(x),*x))
|
@@ -425,14 +528,14 @@ def main():
|
|
425
528
|
if val!=0:
|
426
529
|
if ascode:
|
427
530
|
if norep:
|
428
|
-
print(f"{str(trimcode(perm))
|
531
|
+
print(f"{str(trimcode(perm))} {str(val).replace(*rep)}")
|
429
532
|
else:
|
430
|
-
print(f"{str(trimcode(perm))
|
533
|
+
print(f"{str(trimcode(perm))} {str(val).replace('**','^').replace('*',' ').replace(*rep)}")
|
431
534
|
else:
|
432
535
|
if norep:
|
433
|
-
print(f"{str(perm)
|
536
|
+
print(f"{str(perm)} {str(val).replace(*rep)}")
|
434
537
|
else:
|
435
|
-
print(f"{str(perm)
|
538
|
+
print(f"{str(perm)} {str(val).replace('**','^').replace('*',' ').replace(*rep)}")
|
436
539
|
except BrokenPipeError:
|
437
540
|
pass
|
438
541
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: schubmult
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.4.0
|
4
4
|
Summary: Computing Littlewood-Richardson coefficients of Schubert polynomials
|
5
5
|
Home-page: https://github.com/matthematics/schubmult
|
6
6
|
Author: Matt Samuel
|
@@ -15,7 +15,7 @@ License-File: LICENSE
|
|
15
15
|
|
16
16
|
## Program and package for computing Littlewood-Richardson coefficients of Schubert polynomials
|
17
17
|
|
18
|
-
This is a set of python scripts written by Matt Samuel for computing Littlewood-Richardson coefficients of (ordinary or double) Schubert polynomials.
|
18
|
+
This is a set of python scripts written by Matt Samuel for computing (equivariant, Molev-Sagan) Littlewood-Richardson coefficients of (ordinary or double) Schubert polynomials. It also handles (double) quantum Schubert polynomials, if double then either in the same set or different sets of coefficient variables; that is to say it compute the (equivariant/mixed) Gromov-Witten invariants of the complete flag variety. It has the same command line syntax as the program "schubmult" in lrcalc by Anders Buch. Example:
|
19
19
|
|
20
20
|
```
|
21
21
|
schubmult_py 1 2 4 9 11 6 8 12 3 5 7 10 - 6 8 1 2 3 4 7 10 12 14 5 9 11 13
|
@@ -50,7 +50,7 @@ schubmult_double -code -coprod 0 1 2 3 - 2 4
|
|
50
50
|
schubmult_yz -code -coprod 0 1 2 3 - 2 4 --display-positive
|
51
51
|
```
|
52
52
|
|
53
|
-
|
53
|
+
schubmult_q_yz has a feature for displaying the coefficients of the divided difference operators in the evaluation of the quantum double Schubert polynomials on the commuting difference operators of Fomin, Gelfand, and Postnikov. It is necessary to cap the value of n in the group S_n we are working in because as n increases the expression does not stabilize.
|
54
54
|
```
|
55
55
|
schubmult_q_yz -nil-hecke 6 -code 2 2 --display-positive
|
56
56
|
```
|
@@ -59,7 +59,7 @@ Runtime will vary tremendously by case. The general problem is #P-hard. Though t
|
|
59
59
|
|
60
60
|
schubmult_py is for multiplying ordinary Schubert polynomials. schubmult_yz is for multiplying double Schubert polynomials in different sets of coefficient variables (labeled y and z), and schubmult_double is for multiplying double Schubert polynomials in the same set of coefficient variables. Similarly, schubmult_q is for multiplying quantum Schubert polynomials, schubmult_q_double is for multiplying quantum double Schubert polynomials in the same set of coefficient variables, and schubmult_q_yz is for multiplying quantum double Schubert polynomials in different sets of coefficient variables, or in other words it computes the Gromov-Witten invariants, equivariant Gromov-Witten invariants, and (mixed?) equivariant Gromov-Witten invariants of the complete flag variety. All have the same command line syntax as schubmult, except when using the -code option. schubmult_double/schubmult_q_double display the result with nonnegative coefficients in terms of the negative simple roots (and the q variables), and schubmult_yz and schubmult_q_yz optionally display the result positively in terms of y_i-z_j (and q) with the --display-positive option.
|
61
61
|
|
62
|
-
|
62
|
+
schubmult_xx -coprod allows you to split (double) Schubert polynomials along certain indices (not available for quantum). It takes one permutation as an argument, followed by a dash -, then the set of indices you would like to split on. These coefficients are always nonnegative since they occur as product coefficients (this is actually how they are computed).
|
63
63
|
|
64
64
|
When imported as a python package, the relevant packages are schubmult.perm_lib, which has various permutation manipulation functions, and three modules that have functions of the same name (function name is "schubmult"): schubmult.schubmult_py, schubmult.schubmult_yz, schubmult.schubmult_double. Function takes a permutation dictionary (keys are tuples of ints, which must be trimmed permutations, and values are either integers or symengine values, which can also be integers) as well as a permutation as its second argument, which is the (double) Schubert polynomial to multiply by. Returns a dictionary of the same form with the coefficients.
|
65
65
|
|
@@ -76,7 +76,7 @@ from schubmult.schubmult_py import schubmult
|
|
76
76
|
coeff_dict = schubmult({(1,3,4,6,2,5): 1},(2,1,5,7,3,4,6))
|
77
77
|
```
|
78
78
|
|
79
|
-
|
79
|
+
The command line argument --display-positive is available in schubmult_yz and schubmult_q_yz, which displays the result positively (if possible, this is still only always possible conjecturally). It will fail and print out the offending case if it finds a counterexample. This is highly processor intensive.
|
80
80
|
|
81
81
|

|
82
82
|
|
@@ -6,7 +6,7 @@ long_description = (this_directory / "README.md").read_text()
|
|
6
6
|
|
7
7
|
setup(
|
8
8
|
name="schubmult",
|
9
|
-
version="1.
|
9
|
+
version="1.4.0",
|
10
10
|
description="Computing Littlewood-Richardson coefficients of Schubert polynomials",
|
11
11
|
long_description=long_description,
|
12
12
|
long_description_content_type='text/markdown',
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|