scez 0.1.0__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scez might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scez
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary: Single Cell Analysis, Easy Mode!
5
5
  License: MIT
6
6
  Author: Abe Arab
@@ -14,20 +14,33 @@ Classifier: Programming Language :: Python :: 3.11
14
14
  Classifier: Programming Language :: Python :: 3.12
15
15
  Requires-Dist: adjustText (>=0.7.3,<0.8.0)
16
16
  Requires-Dist: adpbulk (>=0.1.4,<0.2.0)
17
- Requires-Dist: anndata (>=0.7.4,<0.8.0)
17
+ Requires-Dist: anndata (>=0.8.0,<0.9.0)
18
18
  Requires-Dist: blitzgsea (>=1.3.0,<2.0.0)
19
+ Requires-Dist: bottleneck (>=1.3.6,<2.0.0)
19
20
  Requires-Dist: matplotlib (>=3.7,<4.0)
20
- Requires-Dist: numpy (>=1.17.0,<2.0.0)
21
- Requires-Dist: pandas (>=0.21,<0.22)
21
+ Requires-Dist: numpy (>=1.26.0,<2.0.0)
22
+ Requires-Dist: pandas (>=2.1.4,<3.0.0)
22
23
  Requires-Dist: pydeseq2 (>=0.4.0,<0.5.0)
23
24
  Requires-Dist: pytdc (>=1.0.0,<2.0.0)
25
+ Requires-Dist: scanpy (>=1.9.6,<2.0.0)
24
26
  Requires-Dist: seaborn (>=0.12.2,<0.13.0)
27
+ Requires-Dist: tomli
25
28
  Requires-Dist: tqdm
26
29
  Project-URL: Source, https://github.com/abearab/scez
27
30
  Description-Content-Type: text/markdown
28
31
 
29
32
  ## scez – single cell, easy mode
30
33
  [![package](https://github.com/abearab/scez/actions/workflows/main.yml/badge.svg)](https://github.com/abearab/scez/actions/workflows/main.yml)
34
+ [![PyPI version](https://badge.fury.io/py/scez.svg)](https://badge.fury.io/py/scez)
35
+ [![Downloads](https://static.pepy.tech/badge/scez)](https://pepy.tech/project/scez)
36
+ [![Downloads](https://static.pepy.tech/badge/scez/month)](https://pepy.tech/project/scez)
37
+
38
+
39
+ ### Description
40
+ There are many tools available for single-cell RNA-seq analysis, but they often require a lot of understanding of the underlying algorithms, reading of documentation, and setting up analysis environments. This takes time and effort, and can be a barrier to entry for many projects. [Single-Cell Best Practices](https://github.com/theislab/single-cell-best-practices) is a great resource for learning about the best practices for single-cell analysis. `scez` aims to provide functionalities for single-cell analysis through definitions of analysis "tasks" and implementation of these "best practices" in a user-friendly way.
41
+
42
+ This is more a personal effort to streamline my own analysis workflows, but I hope it can be useful to others as well.
43
+
31
44
 
32
45
  ### Installation
33
46
  Make sure you have mamba installed in your base environment. If not, install it with:
@@ -36,7 +49,7 @@ conda install mamba -n base -c conda-forge
36
49
  ```
37
50
  Then, create a new conda environment with the provided `environment.yml` file and activate it. This will install all necessary dependencies for scez.
38
51
  ```bash
39
- conda env create -f environment.yml
52
+ conda env create -f https://raw.githubusercontent.com/abearab/scez/main/environment.yml
40
53
 
41
54
  conda activate scez
42
55
  ```
@@ -46,6 +59,7 @@ Finally, install scez with:
46
59
  pip install scez
47
60
  ```
48
61
 
62
+ ___
49
63
  Or, if you want to install the latest version from the repository:
50
64
  ```bash
51
65
  pip install git+https://github.com/abearab/scez.git
scez-0.1.1/README.md ADDED
@@ -0,0 +1,35 @@
1
+ ## scez – single cell, easy mode
2
+ [![package](https://github.com/abearab/scez/actions/workflows/main.yml/badge.svg)](https://github.com/abearab/scez/actions/workflows/main.yml)
3
+ [![PyPI version](https://badge.fury.io/py/scez.svg)](https://badge.fury.io/py/scez)
4
+ [![Downloads](https://static.pepy.tech/badge/scez)](https://pepy.tech/project/scez)
5
+ [![Downloads](https://static.pepy.tech/badge/scez/month)](https://pepy.tech/project/scez)
6
+
7
+
8
+ ### Description
9
+ There are many tools available for single-cell RNA-seq analysis, but they often require a lot of understanding of the underlying algorithms, reading of documentation, and setting up analysis environments. This takes time and effort, and can be a barrier to entry for many projects. [Single-Cell Best Practices](https://github.com/theislab/single-cell-best-practices) is a great resource for learning about the best practices for single-cell analysis. `scez` aims to provide functionalities for single-cell analysis through definitions of analysis "tasks" and implementation of these "best practices" in a user-friendly way.
10
+
11
+ This is more a personal effort to streamline my own analysis workflows, but I hope it can be useful to others as well.
12
+
13
+
14
+ ### Installation
15
+ Make sure you have mamba installed in your base environment. If not, install it with:
16
+ ```bash
17
+ conda install mamba -n base -c conda-forge
18
+ ```
19
+ Then, create a new conda environment with the provided `environment.yml` file and activate it. This will install all necessary dependencies for scez.
20
+ ```bash
21
+ conda env create -f https://raw.githubusercontent.com/abearab/scez/main/environment.yml
22
+
23
+ conda activate scez
24
+ ```
25
+ Finally, install scez with:
26
+
27
+ ```bash
28
+ pip install scez
29
+ ```
30
+
31
+ ___
32
+ Or, if you want to install the latest version from the repository:
33
+ ```bash
34
+ pip install git+https://github.com/abearab/scez.git
35
+ ```
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "scez"
3
- version = "0.1.0"
3
+ version = "0.1.1"
4
4
  authors = [
5
5
  "Abe Arab <abarbiology@gmail.com>"
6
6
  ]
@@ -19,17 +19,20 @@ Source = "https://github.com/abearab/scez"
19
19
 
20
20
  [tool.poetry.dependencies]
21
21
  python = "^3.9 <4.0"
22
- anndata = "^0.7.4"
23
- numpy = "^1.17.0"
24
- pandas = "^0.21 <2.0"
22
+ numpy = "^1.26.0"
23
+ pandas = "^2.1.4 <3.0.0"
24
+ bottleneck = "^1.3.6"
25
+ tqdm = "*"
26
+ tomli = "*"
25
27
  matplotlib = "^3.7"
26
28
  seaborn = "^0.12.2"
27
29
  adjustText = "^0.7.3"
30
+ scanpy = "^1.9.6"
31
+ anndata = "^0.8.0"
28
32
  adpbulk = "^0.1.4"
29
33
  pydeseq2 = "^0.4.0"
30
34
  pytdc = "^1.0.0"
31
35
  blitzgsea = "^1.3.0"
32
- tqdm = "*"
33
36
 
34
37
 
35
38
  [tool.poetry.group.test.dependencies]
@@ -8,8 +8,9 @@ import scanpy as sc
8
8
  import matplotlib.pyplot as plt
9
9
 
10
10
  import tomli
11
+ from pathlib import Path
11
12
 
12
- toml_dict = tomli.load(open('pyproject.toml','rb'))
13
+ toml_dict = tomli.load(open(Path(__file__).parent.parent / 'pyproject.toml','rb'))
13
14
  __version__ = toml_dict['tool']['poetry']['version']
14
15
 
15
16
 
scez-0.1.0/README.md DELETED
@@ -1,24 +0,0 @@
1
- ## scez – single cell, easy mode
2
- [![package](https://github.com/abearab/scez/actions/workflows/main.yml/badge.svg)](https://github.com/abearab/scez/actions/workflows/main.yml)
3
-
4
- ### Installation
5
- Make sure you have mamba installed in your base environment. If not, install it with:
6
- ```bash
7
- conda install mamba -n base -c conda-forge
8
- ```
9
- Then, create a new conda environment with the provided `environment.yml` file and activate it. This will install all necessary dependencies for scez.
10
- ```bash
11
- conda env create -f environment.yml
12
-
13
- conda activate scez
14
- ```
15
- Finally, install scez with:
16
-
17
- ```bash
18
- pip install scez
19
- ```
20
-
21
- Or, if you want to install the latest version from the repository:
22
- ```bash
23
- pip install git+https://github.com/abearab/scez.git
24
- ```
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes