sawnergy 1.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sawnergy might be problematic. Click here for more details.

sawnergy-1.0.0/LICENSE ADDED
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2025 Yehor Mishchyriak
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
sawnergy-1.0.0/NOTICE ADDED
@@ -0,0 +1,4 @@
1
+ SAWNERGY
2
+ Copyright (c) 2025 Yehor Mishchyriak
3
+
4
+ This product includes software developed by Yehor Mishchyriak.
@@ -0,0 +1,290 @@
1
+ Metadata-Version: 2.4
2
+ Name: sawnergy
3
+ Version: 1.0.0
4
+ Summary: Toolkit for transforming molecular dynamics (MD) trajectories into rich graph representations
5
+ Home-page: https://github.com/Yehor-Mishchyriak/SAWNERGY
6
+ Author: Yehor Mishchyriak
7
+ License: Apache-2.0
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: Apache Software License
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.11
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
14
+ License-File: NOTICE
15
+ Requires-Dist: numpy>=2.0
16
+ Requires-Dist: zarr>=3.0
17
+ Requires-Dist: threadpoolctl>=3.0
18
+ Requires-Dist: matplotlib>=3.7
19
+ Requires-Dist: psutil>=5.9
20
+ Requires-Dist: ym-pure-ml>=1.2.0
21
+ Dynamic: author
22
+ Dynamic: classifier
23
+ Dynamic: description
24
+ Dynamic: description-content-type
25
+ Dynamic: home-page
26
+ Dynamic: license
27
+ Dynamic: license-file
28
+ Dynamic: requires-dist
29
+ Dynamic: requires-python
30
+ Dynamic: summary
31
+
32
+ # SAWNERGY
33
+
34
+ A toolkit for transforming molecular dynamics (MD) trajectories into rich graph representations, sampling
35
+ random and self-avoiding walks, learning node embeddings, and visualising residue interaction networks (RINs). SAWNERGY
36
+ keeps the full workflow — from `cpptraj` output to skip-gram embeddings (node2vec approach) — inside Python, backed by efficient Zarr-based archives and optional GPU acceleration.
37
+
38
+ ---
39
+
40
+ ## Why SAWNERGY?
41
+
42
+ - **Bridge simulations and graph ML**: Convert raw MD trajectories into residue interaction networks ready for graph
43
+ algorithms and downstream machine learning tasks.
44
+ - **Deterministic, shareable artefacts**: Every stage produces compressed Zarr archives that contain both data and metadata so runs can be reproduced, shared, or inspected later.
45
+ - **High-performance data handling**: Heavy arrays live in shared memory during walk sampling to allow parallel processing without serealization overhead; archives are written in chunked, compressed form for fast read/write.
46
+ - **Flexible embedding backends**: Train skip-gram with negative sampling (SGNS) models using either PureML or PyTorch.
47
+ - **Visualization out of the box**: Plot and animate residue networks without leaving Python, using the data produced by RINBuilder
48
+
49
+ ---
50
+
51
+ ## Pipeline at a Glance
52
+
53
+ ```
54
+ MD Trajectory + Topology
55
+
56
+
57
+ RINBuilder
58
+ │ → RIN archive (.zip/.zarr) → Visualizer (display/animate RINs)
59
+
60
+ Walker
61
+ │ → Walks archive (RW/SAW per frame)
62
+
63
+ Embedder
64
+ │ → Embedding archive (frame × vocab × dim)
65
+
66
+ Downstream ML
67
+ ```
68
+
69
+ Each stage consumes the archive produced by the previous one. Metadata embedded in the archives ensures frame order,
70
+ node indexing, and RNG seeds stay consistent across the toolchain.
71
+
72
+ ---
73
+
74
+ ## Core Components
75
+
76
+ ### `sawnergy.rin.RINBuilder`
77
+
78
+ * Wraps the AmberTools `cpptraj` executable to:
79
+ - compute per-frame electrostatic (EMAP) and van der Waals (VMAP) energy matrices at the atomic level,
80
+ - project atom–atom interactions to residue–residue interactions using compositional masks,
81
+ - prune, symmetrise, remove self-interactions, and L1-normalise the matrices,
82
+ - compute per-residue centres of mass (COM) over the same frames.
83
+ * Outputs a compressed Zarr archive with transition matrices, optional prenormalised energies, COM snapshots, and rich
84
+ metadata (frame range, pruning quantile, molecule ID, etc.).
85
+ * Supports parallel `cpptraj` execution, batch processing, and keeps temporary stores tidy via
86
+ `ArrayStorage.compress_and_cleanup`.
87
+
88
+ ### `sawnergy.visual.Visualizer`
89
+
90
+ * Opens RIN archives, resolves dataset names from attributes, and renders nodes plus attractive/repulsive edge bundles
91
+ in 3D using Matplotlib.
92
+ * Allows both static frame visualization and trajectory animation.
93
+ * Handles backend selection (`Agg` fallback in headless environments) and offers convenient colour palettes via
94
+ `visualizer_util`.
95
+
96
+ ### `sawnergy.walks.Walker`
97
+
98
+ * Attaches to the RIN archive and loads attractive/repulsive transition matrices into shared memory using
99
+ `walker_util.SharedNDArray` so multiple processes can sample without copying.
100
+ * Samples random walks (RW) and self-avoiding walks (SAW), optionally time-aware, that is, walks move through transition matrices with transition probabilities proportional to cosine similarity between the current and next frame. Randomness is controlled by the seed passed to the class constructor.
101
+ * Persists walks as `(time, walk_id, length+1)` tensors (1-based node indices) alongside metadata such as
102
+ `walk_length`, `walks_per_node`, and RNG scheme.
103
+
104
+ ### `sawnergy.embedding.Embedder`
105
+
106
+ * Consumes walk archives, generates skip-gram pairs, and normalises them to 0-based indices.
107
+ * Provides a unified interface to SGNS implementations:
108
+ - **PureML backend** (`SGNS_PureML`): works with the `pureml` ecosystem, optimistic for CPU training.
109
+ - **PyTorch backend** (`SGNS_Torch`): uses `torch.nn.Embedding` plays nicely with GPUs.
110
+ * Both `SGNS_PureML` and `SGNS_Torch` accept training hyperparameters such as batch_size, LR, optimizer and LR_scheduler, etc.
111
+ * Exposes `embed_frame` (single frame) and `embed_all` (all frames, deterministic seeding per frame) which return the
112
+ learned input embedding matrices and write them to disk when requested.
113
+
114
+ ### Supporting Utilities
115
+
116
+ * `sawnergy.sawnergy_util`
117
+ - `ArrayStorage`: thin wrapper over Zarr v3 with helpers for chunk management, attribute coercion to JSON, and transparent compression to `.zip` archives.
118
+ - Parallel helpers (`elementwise_processor`, `compose_steps`, etc.), temporary file management, logging, and runtime
119
+ inspection utilities.
120
+ * `sawnergy.logging_util.configure_logging`: configure rotating file/console logging consistently across scripts.
121
+
122
+ ---
123
+
124
+ ## Archive Layouts
125
+
126
+ | Archive | Key datasets (name → shape, dtype) | Important attributes (root `attrs`) |
127
+ |---|---|---|
128
+ | **RIN** | `ATTRACTIVE_transitions` → **(T, N, N)**, float32 • `REPULSIVE_transitions` → **(T, N, N)**, float32 (optional) • `ATTRACTIVE_energies` → **(T, N, N)**, float32 (optional) • `REPULSIVE_energies` → **(T, N, N)**, float32 (optional) • `COM` → **(T, N, 3)**, float32 | `time_created` (ISO) • `com_name` = `"COM"` • `molecule_of_interest` (int) • `frame_range` = `(start, end)` inclusive • `frame_batch_size` (int) • `prune_low_energies_frac` (float in [0,1]) • `attractive_transitions_name` / `repulsive_transitions_name` (dataset names or `None`) • `attractive_energies_name` / `repulsive_energies_name` (dataset names or `None`) |
129
+ | **Walks** | `ATTRACTIVE_RWs` → **(T, N·num_RWs, L+1)**, int32 (optional) • `REPULSIVE_RWs` → **(T, N·num_RWs, L+1)**, int32 (optional) • `ATTRACTIVE_SAWs` → **(T, N·num_SAWs, L+1)**, int32 (optional) • `REPULSIVE_SAWs` → **(T, N·num_SAWs, L+1)**, int32 (optional) <br/>_Note:_ node IDs are **1-based**.| `time_created` (ISO) • `seed` (int) • `rng_scheme` = `"SeedSequence.spawn_per_batch_v1"` • `num_workers` (int) • `in_parallel` (bool) • `batch_size_nodes` (int) • `num_RWs` / `num_SAWs` (ints) • `node_count` (N) • `time_stamp_count` (T) • `walk_length` (L) • `walks_per_node` (int) • `attractive_RWs_name` / `repulsive_RWs_name` / `attractive_SAWs_name` / `repulsive_SAWs_name` (dataset names or `None`) • `walks_layout` = `"time_leading_3d"` |
130
+ | **Embeddings** | `FRAME_EMBEDDINGS` → **(frames_written, vocab_size, D)**, typically float32 | `time_created` (ISO) • `seed` (int) • `rng_scheme` = `"SeedSequence.spawn_per_frame_v1"` • `source_walks_path` (str) • `model_base` = `"torch"` or `"pureml"` • `rin_type` = `"attr"` or `"repuls"` • `using_mode` = `"RW"|"SAW"|"merged"` • `window_size` (int) • `alpha` (float; noise exponent) • `dimensionality` = D • `num_negative_samples` (int) • `num_epochs` (int) • `batch_size` (int) • `shuffle_data` (bool) • `frames_written` (int) • `vocab_size` (int) • `frame_count` (int) • `embedding_dtype` (str) • `frame_embeddings_name` = `"FRAME_EMBEDDINGS"` • `arrays_per_chunk` (int) • `compression_level` (int) |
131
+
132
+ **Notes**
133
+
134
+ - In **RIN**, `T` equals the number of frame **batches** written (i.e., `frame_range` swept in steps of `frame_batch_size`). `ATTRACTIVE/REPULSIVE_energies` are **pre-normalised** absolute energies (written only when `keep_prenormalized_energies=True`), whereas `ATTRACTIVE/REPULSIVE_transitions` are the **row-wise L1-normalised** versions used for sampling.
135
+ - All archives are Zarr v3 groups. ArrayStorage also maintains per-block metadata in root attrs: `array_chunk_size_in_block`, `array_shape_in_block`, and `array_dtype_in_block` (dicts keyed by dataset name). You’ll see these in every archive.
136
+
137
+ ---
138
+
139
+ ## Installation
140
+
141
+ ```bash
142
+ pip install sawnergy
143
+ ```
144
+
145
+ > **Note:** RIN building requires `cpptraj` (AmberTools). Ensure it is discoverable via `$PATH` or the `CPPTRAJ`
146
+ > environment variable.
147
+
148
+ ---
149
+
150
+ ## Quick Start
151
+
152
+ ```python
153
+ from pathlib import Path
154
+ from sawnergy.logging_util import configure_logging
155
+ from sawnergy.rin import RINBuilder
156
+ from sawnergy.walks import Walker
157
+ from sawnergy.embedding import Embedder
158
+
159
+ import logging
160
+ configure_logging("./logs", file_level=logging.WARNING, console_level=logging.INFO)
161
+
162
+ # 1. Build a Residue Interaction Network archive
163
+ rin_path = Path("./RIN_demo.zip")
164
+ rin_builder = RINBuilder()
165
+ rin_builder.build_rin(
166
+ topology_file="system.prmtop",
167
+ trajectory_file="trajectory.nc",
168
+ molecule_of_interest=1,
169
+ frame_range=(1, 100),
170
+ frame_batch_size=10,
171
+ prune_low_energies_frac=0.3,
172
+ output_path=rin_path,
173
+ include_attractive=True,
174
+ include_repulsive=False,
175
+ )
176
+
177
+ # 2. Sample walks from the RIN
178
+ walker = Walker(rin_path, seed=123)
179
+ walks_path = Path("./WALKS_demo.zip")
180
+ walker.sample_walks(
181
+ walk_length=16,
182
+ walks_per_node=32,
183
+ saw_frac=0.25,
184
+ include_attractive=True,
185
+ include_repulsive=False,
186
+ time_aware=False,
187
+ output_path=walks_path,
188
+ in_parallel=False,
189
+ )
190
+ walker.close()
191
+
192
+ # 3. Train embeddings per frame (PyTorch backend)
193
+ import torch
194
+
195
+ embedder = Embedder(walks_path, base="torch", seed=999)
196
+ embeddings_path = embedder.embed_all(
197
+ RIN_type="attr",
198
+ using="merged",
199
+ window_size=4,
200
+ num_negative_samples=5,
201
+ num_epochs=5,
202
+ batch_size=1024,
203
+ dimensionality=128,
204
+ shuffle_data=True,
205
+ output_path="./EMBEDDINGS_demo.zip",
206
+ sgns_kwargs={
207
+ "optim": torch.optim.Adam,
208
+ "optim_kwargs": {"lr": 1e-3},
209
+ "lr_sched": torch.optim.lr_scheduler.LambdaLR,
210
+ "lr_sched_kwargs": {"lr_lambda": lambda _: 1.0},
211
+ "device": "cuda" if torch.cuda.is_available() else "cpu",
212
+ },
213
+ )
214
+ print("Embeddings written to", embeddings_path)
215
+ ```
216
+
217
+ > For the PureML backend, supply the relevant optimiser and scheduler via `sgns_kwargs`
218
+ > (for example `optim=pureml.optimizers.Adam`, `lr_sched=pureml.optimizers.CosineAnnealingLR`).
219
+
220
+ ---
221
+
222
+ ## Visualisation
223
+
224
+ ```python
225
+ from sawnergy.visual import Visualizer
226
+
227
+ v = sawnergy.visual.Visualizer("./RIN_demo.zip")
228
+ v.build_frame(1,
229
+ node_colors="rainbow",
230
+ displayed_nodes="ALL",
231
+ displayed_pairwise_attraction_for_nodes="DISPLAYED_NODES",
232
+ displayed_pairwise_repulsion_for_nodes="DISPLAYED_NODES",
233
+ show_node_labels=True,
234
+ show=True
235
+ )
236
+ ```
237
+
238
+ `Visualizer` lazily loads datasets and works even in headless environments (falls back to the `Agg` backend).
239
+
240
+ ---
241
+
242
+ ## Advanced Notes
243
+
244
+ - **Time-aware walks**: Set `time_aware=True`, provide `stickiness` and `on_no_options` when calling `Walker.sample_walks`.
245
+ - **Shared memory lifecycle**: Call `Walker.close()` (or use a context manager) to release shared-memory segments.
246
+ - **PureML vs PyTorch**: Choose the backend via `Embedder(..., base="pureml"|"torch")` and provide backend-specific
247
+ constructor kwargs through `sgns_kwargs` (optimizer, scheduler, device).
248
+ - **ArrayStorage utilities**: Use `ArrayStorage` directly to peek into archives, append arrays, or manage metadata.
249
+
250
+ ---
251
+
252
+ ## Testing & Quality Assurance
253
+
254
+ The automated test suite (`pytest`) synthesises deterministic cpptraj outputs and exercises the entire workflow:
255
+
256
+ - RIN parsing, residue aggregation, and metadata verification.
257
+ - Random/self-avoiding walk sampling and probability consistency with the RIN.
258
+ - Embedding orchestration, frame ordering, SGNS pair generation property tests.
259
+ - PureML and PyTorch SGNS smoke tests verifying finite weights and decreasing loss.
260
+ - Visualiser smoke tests that cover data loading and artist updates.
261
+
262
+ Run the suite (inside the project virtualenv):
263
+
264
+ ```bash
265
+ python -m pytest
266
+ ```
267
+
268
+ ---
269
+
270
+ ## Project Structure
271
+
272
+ ```
273
+ ├── sawnergy/
274
+ │ ├── rin/ # RINBuilder and cpptraj integration helpers
275
+ │ ├── walks/ # Walker class and shared-memory utilities
276
+ │ ├── embedding/ # Embedder + SGNS backends (PureML / PyTorch)
277
+ │ ├── visual/ # Visualizer and palette utilities
278
+ │ ├── logging_util.py
279
+ │ └── sawnergy_util.py
280
+ ├── tests/ # Synthetic end-to-end tests (pytest)
281
+
282
+ └── README.md
283
+ ```
284
+
285
+ ---
286
+
287
+ ## Acknowledgements
288
+
289
+ SAWNERGY builds on the AmberTools `cpptraj` ecosystem, NumPy, Matplotlib, Zarr, and PyTorch (for GPU acceleration if necessary; PureML is available by default).
290
+ Big thanks to the upstream communities whose work makes this toolkit possible.