satcube 0.1.29__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- satcube-0.1.29/LICENSE +22 -0
- satcube-0.1.29/PKG-INFO +222 -0
- satcube-0.1.29/README.md +193 -0
- satcube-0.1.29/pyproject.toml +65 -0
- satcube-0.1.29/satcube/__init__.py +18 -0
- satcube-0.1.29/satcube/_quiet.py +260 -0
- satcube-0.1.29/satcube/align.py +222 -0
- satcube-0.1.29/satcube/cloud.py +583 -0
- satcube-0.1.29/satcube/composite.py +214 -0
- satcube-0.1.29/satcube/config.py +51 -0
- satcube-0.1.29/satcube/download.py +59 -0
- satcube-0.1.29/satcube/exceptions.py +45 -0
- satcube-0.1.29/satcube/gapfill.py +432 -0
- satcube-0.1.29/satcube/interpolate.py +281 -0
- satcube-0.1.29/satcube/logging_config.py +36 -0
- satcube-0.1.29/satcube/objects.py +839 -0
- satcube-0.1.29/satcube/smooth.py +303 -0
- satcube-0.1.29/satcube/super.py +542 -0
- satcube-0.1.29/satcube/utils.py +129 -0
satcube-0.1.29/LICENSE
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2024, Cesar Aybar
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
22
|
+
|
satcube-0.1.29/PKG-INFO
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: satcube
|
|
3
|
+
Version: 0.1.29
|
|
4
|
+
Summary: A Python package to create cloud-free monthly composites by fusing Landsat and Sentinel-2 data.
|
|
5
|
+
Home-page: https://github.com/IPL-UV/satcube
|
|
6
|
+
Author: Cesar Aybar
|
|
7
|
+
Author-email: fcesar.aybar@uv.es
|
|
8
|
+
Requires-Python: >=3.9
|
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
+
Provides-Extra: full
|
|
15
|
+
Requires-Dist: cubexpress (==0.1.25)
|
|
16
|
+
Requires-Dist: mlstac (>=0.4.5)
|
|
17
|
+
Requires-Dist: phicloudmask (>=0.0.2)
|
|
18
|
+
Requires-Dist: requests (>=2.26.0)
|
|
19
|
+
Requires-Dist: satalign (==0.1.16)
|
|
20
|
+
Requires-Dist: scikit-learn (>=1.2.0)
|
|
21
|
+
Requires-Dist: segmentation-models-pytorch (>=0.3.0)
|
|
22
|
+
Requires-Dist: sen2sr (>=0.8.5)
|
|
23
|
+
Requires-Dist: torch (>=2.0.0) ; extra == "full"
|
|
24
|
+
Requires-Dist: tqdm (>=4.67.1)
|
|
25
|
+
Requires-Dist: xarray (>=2023.7.0)
|
|
26
|
+
Project-URL: Documentation, https://ipl-uv.github.io/satcube/
|
|
27
|
+
Project-URL: Repository, https://github.com/IPL-UV/satcube
|
|
28
|
+
Description-Content-Type: text/markdown
|
|
29
|
+
|
|
30
|
+
#
|
|
31
|
+
|
|
32
|
+
<p align="center">
|
|
33
|
+
<img src="https://huggingface.co/datasets/JulioContrerasH/DataMLSTAC/resolve/main/banner_satcube.png" width="33%">
|
|
34
|
+
</p>
|
|
35
|
+
|
|
36
|
+
<p align="center">
|
|
37
|
+
<em>A python package for managing Sentinel-2 satellite data cubes</em> 🚀
|
|
38
|
+
</p>
|
|
39
|
+
|
|
40
|
+
<p align="center">
|
|
41
|
+
<a href='https://pypi.python.org/pypi/satcube'>
|
|
42
|
+
<img src='https://img.shields.io/pypi/v/satcube.svg' alt='PyPI' />
|
|
43
|
+
</a>
|
|
44
|
+
<a href="https://opensource.org/licenses/MIT" target="_blank">
|
|
45
|
+
<img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="License">
|
|
46
|
+
</a>
|
|
47
|
+
<a href="https://github.com/psf/black" target="_blank">
|
|
48
|
+
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Black">
|
|
49
|
+
</a>
|
|
50
|
+
<a href="https://pycqa.github.io/isort/" target="_blank">
|
|
51
|
+
<img src="https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336" alt="isort">
|
|
52
|
+
</a>
|
|
53
|
+
</p>
|
|
54
|
+
|
|
55
|
+
---
|
|
56
|
+
|
|
57
|
+
**GitHub**: [https://github.com/IPL-UV/satcube](https://github.com/IPL-UV/satcube) 🌐
|
|
58
|
+
|
|
59
|
+
**PyPI**: [https://pypi.org/project/satcube/](https://pypi.org/project/satcube/) 🛠️
|
|
60
|
+
|
|
61
|
+
---
|
|
62
|
+
|
|
63
|
+
## **Overview** 📊
|
|
64
|
+
|
|
65
|
+
**satcube** is a Python package designed for efficient management, processing, and analysis of Sentinel-2 satellite image cubes. It allows for downloading, cloud masking, gap filling, and super-resolving Sentinel-2 imagery, as well as creating monthly composites and performing interpolation.
|
|
66
|
+
|
|
67
|
+
## **Key Features** ✨
|
|
68
|
+
- **Satellite image download**: Retrieve Sentinel-2 images from Earth Engine efficiently. 🛰️
|
|
69
|
+
- **Cloud masking**: Automatically remove clouds from Sentinel-2 images. ☁️
|
|
70
|
+
- **Gap filling**: Fill missing data using methods like linear interpolation and histogram matching. 🧩
|
|
71
|
+
- **Super-resolution**: Apply super-resolution models to enhance image quality. 🔍
|
|
72
|
+
- **Monthly composites**: Aggregate images into monthly composites with various statistical methods. 📅
|
|
73
|
+
- **Temporal smoothing**: Smooth reflectance values across time using interpolation techniques. 📈
|
|
74
|
+
## **Installation** ⚙️
|
|
75
|
+
|
|
76
|
+
Install the latest version from PyPI:
|
|
77
|
+
|
|
78
|
+
```bash
|
|
79
|
+
pip install satcube
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
## **How to use** 🛠️
|
|
83
|
+
|
|
84
|
+
### **Basic usage: working with sentinel-2 data** 🌍
|
|
85
|
+
|
|
86
|
+
#### **Load libraries**
|
|
87
|
+
|
|
88
|
+
```python
|
|
89
|
+
import ee
|
|
90
|
+
import satcube
|
|
91
|
+
```
|
|
92
|
+
|
|
93
|
+
#### **Authenticate and initialize earth engine**
|
|
94
|
+
|
|
95
|
+
```python
|
|
96
|
+
ee.Authenticate()
|
|
97
|
+
ee.Initialize(project="ee-csaybar-real")
|
|
98
|
+
```
|
|
99
|
+
#### **Download model weights**
|
|
100
|
+
```python
|
|
101
|
+
outpath = satcube.download_weights(path="weights")
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
#### **Create a satellite dataCube**
|
|
105
|
+
```python
|
|
106
|
+
datacube = satcube.SatCube(
|
|
107
|
+
coordinates=(-77.68598590138802,-8.888223962022263),
|
|
108
|
+
sensor=satcube.Sentinel2(weight_path=outpath, edge_size=384),
|
|
109
|
+
output_dir="wendy01",
|
|
110
|
+
max_workers=12,
|
|
111
|
+
device="cuda",
|
|
112
|
+
)
|
|
113
|
+
```
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
### **Query and process sentinel-2 data** 🛰️
|
|
117
|
+
|
|
118
|
+
#### **Query the sentinel-2 image collection**
|
|
119
|
+
|
|
120
|
+
```python
|
|
121
|
+
# Query the Sentinel-2 image collection
|
|
122
|
+
table_query = datacube.metadata_s2()
|
|
123
|
+
|
|
124
|
+
# Filter images based on cloud cover and remove duplicates
|
|
125
|
+
table_query_subset = table_query[table_query["cs_cdf"] > 0.30]
|
|
126
|
+
table_query_subset = table_query_subset.drop_duplicates(subset="img_date")
|
|
127
|
+
mgrs_tile_max = table_query_subset["mgrs_title"].value_counts().idxmax()
|
|
128
|
+
table_query_subset = table_query_subset[table_query_subset["mgrs_title"] == mgrs_tile_max]
|
|
129
|
+
```
|
|
130
|
+
|
|
131
|
+
#### **Download sentinel-2 images**
|
|
132
|
+
|
|
133
|
+
```python
|
|
134
|
+
table_download = datacube.download_s2_image(table_query_subset)
|
|
135
|
+
```
|
|
136
|
+
#### **Cloud masking**
|
|
137
|
+
|
|
138
|
+
```python
|
|
139
|
+
# Remove clouds from the images
|
|
140
|
+
table_nocloud = datacube.cloudmasking_s2(table_download)
|
|
141
|
+
table_nocloud = table_nocloud[table_nocloud["cloud_cover"] < 0.75]
|
|
142
|
+
table_nocloud.reset_index(drop=True, inplace=True)
|
|
143
|
+
```
|
|
144
|
+
|
|
145
|
+
#### **Gap filling**
|
|
146
|
+
|
|
147
|
+
```python
|
|
148
|
+
# Fill missing data in the images
|
|
149
|
+
table_nogaps = datacube.gapfilling_s2(table_nocloud)
|
|
150
|
+
table_nogaps = table_nogaps[table_nogaps["match_error"] < 0.1]
|
|
151
|
+
```
|
|
152
|
+
### **Monthly composites and image smoothing 📅**
|
|
153
|
+
|
|
154
|
+
#### **Create monthly composites**
|
|
155
|
+
|
|
156
|
+
```python
|
|
157
|
+
# Generate monthly composites
|
|
158
|
+
table_composites = datacube.monthly_composites_s2(
|
|
159
|
+
table_nogaps, agg_method="median", date_range=("2016-01-01", "2024-07-31")
|
|
160
|
+
)
|
|
161
|
+
```
|
|
162
|
+
|
|
163
|
+
#### **Interpolate missing data**
|
|
164
|
+
|
|
165
|
+
```python
|
|
166
|
+
# Interpolate missing months if necessary
|
|
167
|
+
table_interpolate = datacube.interpolate_s2(table=table_composites)
|
|
168
|
+
```
|
|
169
|
+
|
|
170
|
+
#### **Smooth reflectance values**
|
|
171
|
+
|
|
172
|
+
```python
|
|
173
|
+
# Smooth reflectance values across time
|
|
174
|
+
table_smooth = datacube.smooth_s2(table=table_interpolate)
|
|
175
|
+
```
|
|
176
|
+
|
|
177
|
+
### **Super-resolution and visualization** 📐
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
#### **Super-resolution**
|
|
182
|
+
|
|
183
|
+
```python
|
|
184
|
+
# Apply super-resolution to the image cube
|
|
185
|
+
# table_final = datacube.super_s2(table_smooth)
|
|
186
|
+
```
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
#### **Display images**
|
|
190
|
+
|
|
191
|
+
```python
|
|
192
|
+
# Display the images from the data cube
|
|
193
|
+
datacube.display_images(table=table_smooth)
|
|
194
|
+
```
|
|
195
|
+
|
|
196
|
+
#### **Create a GIF**
|
|
197
|
+
|
|
198
|
+
```python
|
|
199
|
+
# !apt-get install imagemagick
|
|
200
|
+
import os
|
|
201
|
+
os.system("convert -delay 20 -loop 0 wendy01/z_s2_07_smoothed_png/temp_07*.png animation.gif")
|
|
202
|
+
|
|
203
|
+
from IPython.display import Image
|
|
204
|
+
Image(filename='animation.gif', width=500)
|
|
205
|
+
```
|
|
206
|
+
|
|
207
|
+
<p align="center">
|
|
208
|
+
<img src="https://huggingface.co/datasets/JulioContrerasH/DataMLSTAC/resolve/main/gif_satcube.gif" width="100%">
|
|
209
|
+
</p>
|
|
210
|
+
|
|
211
|
+
#### **Smooth reflectance values**
|
|
212
|
+
|
|
213
|
+
```python
|
|
214
|
+
# Smooth reflectance values across time
|
|
215
|
+
table_smooth = datacube.smooth_s2(table=table_interpolate)
|
|
216
|
+
```
|
|
217
|
+
|
|
218
|
+
## **Supported features and filters** ✨
|
|
219
|
+
|
|
220
|
+
- **Cloud masking:** Efficient removal of clouds from satellite images.
|
|
221
|
+
- **Resampling methods:** Various methods for resampling and aligning imagery.
|
|
222
|
+
- **Super-resolution:** ONNX-based models for improving image resolution.
|
satcube-0.1.29/README.md
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
#
|
|
2
|
+
|
|
3
|
+
<p align="center">
|
|
4
|
+
<img src="https://huggingface.co/datasets/JulioContrerasH/DataMLSTAC/resolve/main/banner_satcube.png" width="33%">
|
|
5
|
+
</p>
|
|
6
|
+
|
|
7
|
+
<p align="center">
|
|
8
|
+
<em>A python package for managing Sentinel-2 satellite data cubes</em> 🚀
|
|
9
|
+
</p>
|
|
10
|
+
|
|
11
|
+
<p align="center">
|
|
12
|
+
<a href='https://pypi.python.org/pypi/satcube'>
|
|
13
|
+
<img src='https://img.shields.io/pypi/v/satcube.svg' alt='PyPI' />
|
|
14
|
+
</a>
|
|
15
|
+
<a href="https://opensource.org/licenses/MIT" target="_blank">
|
|
16
|
+
<img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="License">
|
|
17
|
+
</a>
|
|
18
|
+
<a href="https://github.com/psf/black" target="_blank">
|
|
19
|
+
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Black">
|
|
20
|
+
</a>
|
|
21
|
+
<a href="https://pycqa.github.io/isort/" target="_blank">
|
|
22
|
+
<img src="https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336" alt="isort">
|
|
23
|
+
</a>
|
|
24
|
+
</p>
|
|
25
|
+
|
|
26
|
+
---
|
|
27
|
+
|
|
28
|
+
**GitHub**: [https://github.com/IPL-UV/satcube](https://github.com/IPL-UV/satcube) 🌐
|
|
29
|
+
|
|
30
|
+
**PyPI**: [https://pypi.org/project/satcube/](https://pypi.org/project/satcube/) 🛠️
|
|
31
|
+
|
|
32
|
+
---
|
|
33
|
+
|
|
34
|
+
## **Overview** 📊
|
|
35
|
+
|
|
36
|
+
**satcube** is a Python package designed for efficient management, processing, and analysis of Sentinel-2 satellite image cubes. It allows for downloading, cloud masking, gap filling, and super-resolving Sentinel-2 imagery, as well as creating monthly composites and performing interpolation.
|
|
37
|
+
|
|
38
|
+
## **Key Features** ✨
|
|
39
|
+
- **Satellite image download**: Retrieve Sentinel-2 images from Earth Engine efficiently. 🛰️
|
|
40
|
+
- **Cloud masking**: Automatically remove clouds from Sentinel-2 images. ☁️
|
|
41
|
+
- **Gap filling**: Fill missing data using methods like linear interpolation and histogram matching. 🧩
|
|
42
|
+
- **Super-resolution**: Apply super-resolution models to enhance image quality. 🔍
|
|
43
|
+
- **Monthly composites**: Aggregate images into monthly composites with various statistical methods. 📅
|
|
44
|
+
- **Temporal smoothing**: Smooth reflectance values across time using interpolation techniques. 📈
|
|
45
|
+
## **Installation** ⚙️
|
|
46
|
+
|
|
47
|
+
Install the latest version from PyPI:
|
|
48
|
+
|
|
49
|
+
```bash
|
|
50
|
+
pip install satcube
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
## **How to use** 🛠️
|
|
54
|
+
|
|
55
|
+
### **Basic usage: working with sentinel-2 data** 🌍
|
|
56
|
+
|
|
57
|
+
#### **Load libraries**
|
|
58
|
+
|
|
59
|
+
```python
|
|
60
|
+
import ee
|
|
61
|
+
import satcube
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
#### **Authenticate and initialize earth engine**
|
|
65
|
+
|
|
66
|
+
```python
|
|
67
|
+
ee.Authenticate()
|
|
68
|
+
ee.Initialize(project="ee-csaybar-real")
|
|
69
|
+
```
|
|
70
|
+
#### **Download model weights**
|
|
71
|
+
```python
|
|
72
|
+
outpath = satcube.download_weights(path="weights")
|
|
73
|
+
```
|
|
74
|
+
|
|
75
|
+
#### **Create a satellite dataCube**
|
|
76
|
+
```python
|
|
77
|
+
datacube = satcube.SatCube(
|
|
78
|
+
coordinates=(-77.68598590138802,-8.888223962022263),
|
|
79
|
+
sensor=satcube.Sentinel2(weight_path=outpath, edge_size=384),
|
|
80
|
+
output_dir="wendy01",
|
|
81
|
+
max_workers=12,
|
|
82
|
+
device="cuda",
|
|
83
|
+
)
|
|
84
|
+
```
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
### **Query and process sentinel-2 data** 🛰️
|
|
88
|
+
|
|
89
|
+
#### **Query the sentinel-2 image collection**
|
|
90
|
+
|
|
91
|
+
```python
|
|
92
|
+
# Query the Sentinel-2 image collection
|
|
93
|
+
table_query = datacube.metadata_s2()
|
|
94
|
+
|
|
95
|
+
# Filter images based on cloud cover and remove duplicates
|
|
96
|
+
table_query_subset = table_query[table_query["cs_cdf"] > 0.30]
|
|
97
|
+
table_query_subset = table_query_subset.drop_duplicates(subset="img_date")
|
|
98
|
+
mgrs_tile_max = table_query_subset["mgrs_title"].value_counts().idxmax()
|
|
99
|
+
table_query_subset = table_query_subset[table_query_subset["mgrs_title"] == mgrs_tile_max]
|
|
100
|
+
```
|
|
101
|
+
|
|
102
|
+
#### **Download sentinel-2 images**
|
|
103
|
+
|
|
104
|
+
```python
|
|
105
|
+
table_download = datacube.download_s2_image(table_query_subset)
|
|
106
|
+
```
|
|
107
|
+
#### **Cloud masking**
|
|
108
|
+
|
|
109
|
+
```python
|
|
110
|
+
# Remove clouds from the images
|
|
111
|
+
table_nocloud = datacube.cloudmasking_s2(table_download)
|
|
112
|
+
table_nocloud = table_nocloud[table_nocloud["cloud_cover"] < 0.75]
|
|
113
|
+
table_nocloud.reset_index(drop=True, inplace=True)
|
|
114
|
+
```
|
|
115
|
+
|
|
116
|
+
#### **Gap filling**
|
|
117
|
+
|
|
118
|
+
```python
|
|
119
|
+
# Fill missing data in the images
|
|
120
|
+
table_nogaps = datacube.gapfilling_s2(table_nocloud)
|
|
121
|
+
table_nogaps = table_nogaps[table_nogaps["match_error"] < 0.1]
|
|
122
|
+
```
|
|
123
|
+
### **Monthly composites and image smoothing 📅**
|
|
124
|
+
|
|
125
|
+
#### **Create monthly composites**
|
|
126
|
+
|
|
127
|
+
```python
|
|
128
|
+
# Generate monthly composites
|
|
129
|
+
table_composites = datacube.monthly_composites_s2(
|
|
130
|
+
table_nogaps, agg_method="median", date_range=("2016-01-01", "2024-07-31")
|
|
131
|
+
)
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
#### **Interpolate missing data**
|
|
135
|
+
|
|
136
|
+
```python
|
|
137
|
+
# Interpolate missing months if necessary
|
|
138
|
+
table_interpolate = datacube.interpolate_s2(table=table_composites)
|
|
139
|
+
```
|
|
140
|
+
|
|
141
|
+
#### **Smooth reflectance values**
|
|
142
|
+
|
|
143
|
+
```python
|
|
144
|
+
# Smooth reflectance values across time
|
|
145
|
+
table_smooth = datacube.smooth_s2(table=table_interpolate)
|
|
146
|
+
```
|
|
147
|
+
|
|
148
|
+
### **Super-resolution and visualization** 📐
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
#### **Super-resolution**
|
|
153
|
+
|
|
154
|
+
```python
|
|
155
|
+
# Apply super-resolution to the image cube
|
|
156
|
+
# table_final = datacube.super_s2(table_smooth)
|
|
157
|
+
```
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
#### **Display images**
|
|
161
|
+
|
|
162
|
+
```python
|
|
163
|
+
# Display the images from the data cube
|
|
164
|
+
datacube.display_images(table=table_smooth)
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
#### **Create a GIF**
|
|
168
|
+
|
|
169
|
+
```python
|
|
170
|
+
# !apt-get install imagemagick
|
|
171
|
+
import os
|
|
172
|
+
os.system("convert -delay 20 -loop 0 wendy01/z_s2_07_smoothed_png/temp_07*.png animation.gif")
|
|
173
|
+
|
|
174
|
+
from IPython.display import Image
|
|
175
|
+
Image(filename='animation.gif', width=500)
|
|
176
|
+
```
|
|
177
|
+
|
|
178
|
+
<p align="center">
|
|
179
|
+
<img src="https://huggingface.co/datasets/JulioContrerasH/DataMLSTAC/resolve/main/gif_satcube.gif" width="100%">
|
|
180
|
+
</p>
|
|
181
|
+
|
|
182
|
+
#### **Smooth reflectance values**
|
|
183
|
+
|
|
184
|
+
```python
|
|
185
|
+
# Smooth reflectance values across time
|
|
186
|
+
table_smooth = datacube.smooth_s2(table=table_interpolate)
|
|
187
|
+
```
|
|
188
|
+
|
|
189
|
+
## **Supported features and filters** ✨
|
|
190
|
+
|
|
191
|
+
- **Cloud masking:** Efficient removal of clouds from satellite images.
|
|
192
|
+
- **Resampling methods:** Various methods for resampling and aligning imagery.
|
|
193
|
+
- **Super-resolution:** ONNX-based models for improving image resolution.
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
[tool.poetry]
|
|
2
|
+
name = "satcube"
|
|
3
|
+
version = "0.1.29"
|
|
4
|
+
description = "A Python package to create cloud-free monthly composites by fusing Landsat and Sentinel-2 data."
|
|
5
|
+
authors = ["Cesar Aybar <fcesar.aybar@uv.es>"]
|
|
6
|
+
repository = "https://github.com/IPL-UV/satcube"
|
|
7
|
+
documentation = "https://ipl-uv.github.io/satcube/"
|
|
8
|
+
readme = "README.md"
|
|
9
|
+
packages = [{ include = "satcube" }]
|
|
10
|
+
|
|
11
|
+
[tool.poetry.dependencies]
|
|
12
|
+
python = ">=3.9"
|
|
13
|
+
cubexpress = "0.1.25"
|
|
14
|
+
mlstac = ">=0.4.5"
|
|
15
|
+
satalign = "0.1.16"
|
|
16
|
+
segmentation-models-pytorch = ">=0.3.0"
|
|
17
|
+
phicloudmask = ">=0.0.2"
|
|
18
|
+
scikit-learn = ">=1.2.0"
|
|
19
|
+
requests = ">=2.26.0"
|
|
20
|
+
xarray = ">=2023.7.0"
|
|
21
|
+
tqdm = ">=4.67.1"
|
|
22
|
+
torch = ">=2.0.0"
|
|
23
|
+
sen2sr = ">=0.8.5"
|
|
24
|
+
|
|
25
|
+
[tool.poetry.extras]
|
|
26
|
+
full = ["torch"]
|
|
27
|
+
|
|
28
|
+
# --- tooling fixes ----------------------------------------------------------
|
|
29
|
+
[tool.mypy]
|
|
30
|
+
files = ["satcube"]
|
|
31
|
+
disallow_untyped_defs = true
|
|
32
|
+
disallow_any_unimported = true
|
|
33
|
+
no_implicit_optional = true
|
|
34
|
+
check_untyped_defs = true
|
|
35
|
+
warn_return_any = true
|
|
36
|
+
warn_unused_ignores = true
|
|
37
|
+
show_error_codes = true
|
|
38
|
+
|
|
39
|
+
[tool.ruff]
|
|
40
|
+
target-version = "py310"
|
|
41
|
+
line-length = 120
|
|
42
|
+
fix = true
|
|
43
|
+
|
|
44
|
+
[tool.ruff.lint]
|
|
45
|
+
select = ["YTT","S","B","A","C4","T10","SIM","I","C90","E","W","F","PGH","UP","RUF","TRY"]
|
|
46
|
+
ignore = [
|
|
47
|
+
"E501",
|
|
48
|
+
"E731",
|
|
49
|
+
"RUF002",
|
|
50
|
+
"SIM108",
|
|
51
|
+
"RUF059",
|
|
52
|
+
"TRY003",
|
|
53
|
+
"C901",
|
|
54
|
+
"TRY300",
|
|
55
|
+
"S112",
|
|
56
|
+
"S110",
|
|
57
|
+
"SIM101",
|
|
58
|
+
"S101",
|
|
59
|
+
"RUF003",
|
|
60
|
+
]
|
|
61
|
+
|
|
62
|
+
[tool.ruff.lint.per-file-ignores]
|
|
63
|
+
"__init__.py" = ["F401", "E402"]
|
|
64
|
+
"_quiet.py" = ["E402"]
|
|
65
|
+
"utils.py" = ["S101"]
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import importlib as _importlib
|
|
4
|
+
|
|
5
|
+
_importlib.import_module("satcube._quiet")
|
|
6
|
+
from satcube.download import metadata # noqa: E402
|
|
7
|
+
from satcube.objects import SatCubeMetadata # noqa: E402
|
|
8
|
+
|
|
9
|
+
from_directory = SatCubeMetadata.from_directory
|
|
10
|
+
|
|
11
|
+
__all__ = ["SatCubeMetadata", "from_directory", "metadata"]
|
|
12
|
+
|
|
13
|
+
try:
|
|
14
|
+
from importlib.metadata import version
|
|
15
|
+
|
|
16
|
+
__version__ = version("satcube")
|
|
17
|
+
except Exception:
|
|
18
|
+
__version__ = "0.0.0-dev"
|