sagemaker-core 1.0.58__tar.gz → 1.0.60__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

Files changed (42) hide show
  1. {sagemaker_core-1.0.58/src/sagemaker_core.egg-info → sagemaker_core-1.0.60}/PKG-INFO +1 -1
  2. sagemaker_core-1.0.60/VERSION +1 -0
  3. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/code_injection/shape_dag.py +20 -0
  4. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/resources.py +1 -1
  5. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/shapes.py +35 -1
  6. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60/src/sagemaker_core.egg-info}/PKG-INFO +1 -1
  7. sagemaker_core-1.0.58/VERSION +0 -1
  8. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/LICENSE +0 -0
  9. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/README.rst +0 -0
  10. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/pyproject.toml +0 -0
  11. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/setup.cfg +0 -0
  12. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/__init__.py +0 -0
  13. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/_version.py +0 -0
  14. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/helper/__init__.py +0 -0
  15. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/helper/session_helper.py +0 -0
  16. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/__init__.py +0 -0
  17. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
  18. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/code_injection/base.py +0 -0
  19. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/code_injection/codec.py +0 -0
  20. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/code_injection/constants.py +0 -0
  21. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/config_schema.py +0 -0
  22. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/default_configs_helper.py +0 -0
  23. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/exceptions.py +0 -0
  24. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/logs.py +0 -0
  25. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/user_agent.py +0 -0
  26. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/main/utils.py +0 -0
  27. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/resources/__init__.py +0 -0
  28. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/shapes/__init__.py +0 -0
  29. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/__init__.py +0 -0
  30. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/codegen.py +0 -0
  31. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/constants.py +0 -0
  32. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/data_extractor.py +0 -0
  33. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/method.py +0 -0
  34. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/resources_codegen.py +0 -0
  35. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/resources_extractor.py +0 -0
  36. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
  37. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
  38. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core/tools/templates.py +0 -0
  39. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
  40. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
  41. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core.egg-info/requires.txt +0 -0
  42. {sagemaker_core-1.0.58 → sagemaker_core-1.0.60}/src/sagemaker_core.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.58
3
+ Version: 1.0.60
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -0,0 +1 @@
1
+ 1.0.60
@@ -6708,6 +6708,7 @@ SHAPE_DAG = {
6708
6708
  "shape": "UnifiedStudioSettings",
6709
6709
  "type": "structure",
6710
6710
  },
6711
+ {"name": "IpAddressType", "shape": "IPAddressType", "type": "string"},
6711
6712
  ],
6712
6713
  "type": "structure",
6713
6714
  },
@@ -6736,6 +6737,7 @@ SHAPE_DAG = {
6736
6737
  "shape": "UnifiedStudioSettings",
6737
6738
  "type": "structure",
6738
6739
  },
6740
+ {"name": "IpAddressType", "shape": "IPAddressType", "type": "string"},
6739
6741
  ],
6740
6742
  "type": "structure",
6741
6743
  },
@@ -8363,6 +8365,14 @@ SHAPE_DAG = {
8363
8365
  ],
8364
8366
  "type": "structure",
8365
8367
  },
8368
+ "InferenceComponentDataCacheConfig": {
8369
+ "members": [{"name": "EnableCaching", "shape": "EnableCaching", "type": "boolean"}],
8370
+ "type": "structure",
8371
+ },
8372
+ "InferenceComponentDataCacheConfigSummary": {
8373
+ "members": [{"name": "EnableCaching", "shape": "EnableCaching", "type": "boolean"}],
8374
+ "type": "structure",
8375
+ },
8366
8376
  "InferenceComponentDeploymentConfig": {
8367
8377
  "members": [
8368
8378
  {
@@ -8435,6 +8445,11 @@ SHAPE_DAG = {
8435
8445
  "shape": "InferenceComponentName",
8436
8446
  "type": "string",
8437
8447
  },
8448
+ {
8449
+ "name": "DataCacheConfig",
8450
+ "shape": "InferenceComponentDataCacheConfig",
8451
+ "type": "structure",
8452
+ },
8438
8453
  ],
8439
8454
  "type": "structure",
8440
8455
  },
@@ -8461,6 +8476,11 @@ SHAPE_DAG = {
8461
8476
  "shape": "InferenceComponentName",
8462
8477
  "type": "string",
8463
8478
  },
8479
+ {
8480
+ "name": "DataCacheConfig",
8481
+ "shape": "InferenceComponentDataCacheConfigSummary",
8482
+ "type": "structure",
8483
+ },
8464
8484
  ],
8465
8485
  "type": "structure",
8466
8486
  },
@@ -22677,7 +22677,7 @@ class NotebookInstance(Base):
22677
22677
  default_code_repository: A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
22678
22678
  additional_code_repositories: An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
22679
22679
  root_access: Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
22680
- platform_identifier: The platform identifier of the notebook instance runtime environment.
22680
+ platform_identifier: The platform identifier of the notebook instance runtime environment. The default value is notebook-al2-v2.
22681
22681
  instance_metadata_service_configuration: Information on the IMDS configuration of the notebook instance
22682
22682
  session: Boto3 session.
22683
22683
  region: Region name.
@@ -5477,6 +5477,7 @@ class DomainSettings(Base):
5477
5477
  docker_settings: A collection of settings that configure the domain's Docker interaction.
5478
5478
  amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
5479
5479
  unified_studio_settings: The settings that apply to an SageMaker AI domain when you use it in Amazon SageMaker Unified Studio.
5480
+ ip_address_type: The IP address type for the domain. Specify ipv4 for IPv4-only connectivity or dualstack for both IPv4 and IPv6 connectivity. When you specify dualstack, the subnet must support IPv6 CIDR blocks. If not specified, defaults to ipv4.
5480
5481
  """
5481
5482
 
5482
5483
  security_group_ids: Optional[List[str]] = Unassigned()
@@ -5488,6 +5489,7 @@ class DomainSettings(Base):
5488
5489
  docker_settings: Optional[DockerSettings] = Unassigned()
5489
5490
  amazon_q_settings: Optional[AmazonQSettings] = Unassigned()
5490
5491
  unified_studio_settings: Optional[UnifiedStudioSettings] = Unassigned()
5492
+ ip_address_type: Optional[str] = Unassigned()
5491
5493
 
5492
5494
 
5493
5495
  class DefaultSpaceSettings(Base):
@@ -6375,6 +6377,19 @@ class InferenceComponentComputeResourceRequirements(Base):
6375
6377
  max_memory_required_in_mb: Optional[int] = Unassigned()
6376
6378
 
6377
6379
 
6380
+ class InferenceComponentDataCacheConfig(Base):
6381
+ """
6382
+ InferenceComponentDataCacheConfig
6383
+ Settings that affect how the inference component caches data.
6384
+
6385
+ Attributes
6386
+ ----------------------
6387
+ enable_caching: Sets whether the endpoint that hosts the inference component caches the model artifacts and container image. With caching enabled, the endpoint caches this data in each instance that it provisions for the inference component. That way, the inference component deploys faster during the auto scaling process. If caching isn't enabled, the inference component takes longer to deploy because of the time it spends downloading the data.
6388
+ """
6389
+
6390
+ enable_caching: bool
6391
+
6392
+
6378
6393
  class InferenceComponentSpecification(Base):
6379
6394
  """
6380
6395
  InferenceComponentSpecification
@@ -6387,6 +6402,7 @@ class InferenceComponentSpecification(Base):
6387
6402
  startup_parameters: Settings that take effect while the model container starts up.
6388
6403
  compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
6389
6404
  base_inference_component_name: The name of an existing inference component that is to contain the inference component that you're creating with your request. Specify this parameter only if your request is meant to create an adapter inference component. An adapter inference component contains the path to an adapter model. The purpose of the adapter model is to tailor the inference output of a base foundation model, which is hosted by the base inference component. The adapter inference component uses the compute resources that you assigned to the base inference component. When you create an adapter inference component, use the Container parameter to specify the location of the adapter artifacts. In the parameter value, use the ArtifactUrl parameter of the InferenceComponentContainerSpecification data type. Before you can create an adapter inference component, you must have an existing inference component that contains the foundation model that you want to adapt.
6405
+ data_cache_config: Settings that affect how the inference component caches data.
6390
6406
  """
6391
6407
 
6392
6408
  model_name: Optional[Union[str, object]] = Unassigned()
@@ -6396,6 +6412,7 @@ class InferenceComponentSpecification(Base):
6396
6412
  Unassigned()
6397
6413
  )
6398
6414
  base_inference_component_name: Optional[str] = Unassigned()
6415
+ data_cache_config: Optional[InferenceComponentDataCacheConfig] = Unassigned()
6399
6416
 
6400
6417
 
6401
6418
  class InferenceComponentRuntimeConfig(Base):
@@ -7801,7 +7818,7 @@ class ProcessingS3Input(Base):
7801
7818
  local_path: The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/. LocalPath is a required parameter when AppManaged is False (default).
7802
7819
  s3_data_type: Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
7803
7820
  s3_input_mode: Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.
7804
- s3_data_distribution_type: Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is shared by Amazon S3 key, downloading one shard of data to each processing instance.
7821
+ s3_data_distribution_type: Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is sharded by Amazon S3 key, downloading one shard of data to each processing instance.
7805
7822
  s3_compression_type: Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.
7806
7823
  """
7807
7824
 
@@ -9282,6 +9299,19 @@ class InferenceComponentContainerSpecificationSummary(Base):
9282
9299
  environment: Optional[Dict[str, str]] = Unassigned()
9283
9300
 
9284
9301
 
9302
+ class InferenceComponentDataCacheConfigSummary(Base):
9303
+ """
9304
+ InferenceComponentDataCacheConfigSummary
9305
+ Settings that affect how the inference component caches data.
9306
+
9307
+ Attributes
9308
+ ----------------------
9309
+ enable_caching: Indicates whether the inference component caches model artifacts as part of the auto scaling process.
9310
+ """
9311
+
9312
+ enable_caching: bool
9313
+
9314
+
9285
9315
  class InferenceComponentSpecificationSummary(Base):
9286
9316
  """
9287
9317
  InferenceComponentSpecificationSummary
@@ -9294,6 +9324,7 @@ class InferenceComponentSpecificationSummary(Base):
9294
9324
  startup_parameters: Settings that take effect while the model container starts up.
9295
9325
  compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
9296
9326
  base_inference_component_name: The name of the base inference component that contains this inference component.
9327
+ data_cache_config: Settings that affect how the inference component caches data.
9297
9328
  """
9298
9329
 
9299
9330
  model_name: Optional[Union[str, object]] = Unassigned()
@@ -9303,6 +9334,7 @@ class InferenceComponentSpecificationSummary(Base):
9303
9334
  Unassigned()
9304
9335
  )
9305
9336
  base_inference_component_name: Optional[str] = Unassigned()
9337
+ data_cache_config: Optional[InferenceComponentDataCacheConfigSummary] = Unassigned()
9306
9338
 
9307
9339
 
9308
9340
  class InferenceComponentRuntimeConfigSummary(Base):
@@ -10311,6 +10343,7 @@ class DomainSettingsForUpdate(Base):
10311
10343
  docker_settings: A collection of settings that configure the domain's Docker interaction.
10312
10344
  amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain.
10313
10345
  unified_studio_settings: The settings that apply to an SageMaker AI domain when you use it in Amazon SageMaker Unified Studio.
10346
+ ip_address_type: The IP address type for the domain. Specify ipv4 for IPv4-only connectivity or dualstack for both IPv4 and IPv6 connectivity. When you specify dualstack, the subnet must support IPv6 CIDR blocks.
10314
10347
  """
10315
10348
 
10316
10349
  r_studio_server_pro_domain_settings_for_update: Optional[
@@ -10324,6 +10357,7 @@ class DomainSettingsForUpdate(Base):
10324
10357
  docker_settings: Optional[DockerSettings] = Unassigned()
10325
10358
  amazon_q_settings: Optional[AmazonQSettings] = Unassigned()
10326
10359
  unified_studio_settings: Optional[UnifiedStudioSettings] = Unassigned()
10360
+ ip_address_type: Optional[str] = Unassigned()
10327
10361
 
10328
10362
 
10329
10363
  class PredefinedMetricSpecification(Base):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.58
3
+ Version: 1.0.60
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -1 +0,0 @@
1
- 1.0.58
File without changes