sagemaker-core 1.0.55__tar.gz → 1.0.57__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- {sagemaker_core-1.0.55/src/sagemaker_core.egg-info → sagemaker_core-1.0.57}/PKG-INFO +1 -1
- sagemaker_core-1.0.57/VERSION +1 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/shape_dag.py +22 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/config_schema.py +2 -1
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/resources.py +24 -10
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/shapes.py +40 -6
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57/src/sagemaker_core.egg-info}/PKG-INFO +1 -1
- sagemaker_core-1.0.55/VERSION +0 -1
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/LICENSE +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/README.rst +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/pyproject.toml +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/setup.cfg +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/_version.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/helper/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/helper/session_helper.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/base.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/codec.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/constants.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/default_configs_helper.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/exceptions.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/logs.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/user_agent.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/utils.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/resources/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/shapes/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/__init__.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/codegen.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/constants.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/data_extractor.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/method.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/resources_codegen.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/resources_extractor.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/templates.py +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core.egg-info/requires.txt +0 -0
- {sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core.egg-info/top_level.txt +0 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
1.0.57
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/shape_dag.py
RENAMED
|
@@ -1445,6 +1445,22 @@ SHAPE_DAG = {
|
|
|
1445
1445
|
],
|
|
1446
1446
|
"type": "structure",
|
|
1447
1447
|
},
|
|
1448
|
+
"ClusterAutoScalingConfig": {
|
|
1449
|
+
"members": [
|
|
1450
|
+
{"name": "Mode", "shape": "ClusterAutoScalingMode", "type": "string"},
|
|
1451
|
+
{"name": "AutoScalerType", "shape": "ClusterAutoScalerType", "type": "string"},
|
|
1452
|
+
],
|
|
1453
|
+
"type": "structure",
|
|
1454
|
+
},
|
|
1455
|
+
"ClusterAutoScalingConfigOutput": {
|
|
1456
|
+
"members": [
|
|
1457
|
+
{"name": "Mode", "shape": "ClusterAutoScalingMode", "type": "string"},
|
|
1458
|
+
{"name": "AutoScalerType", "shape": "ClusterAutoScalerType", "type": "string"},
|
|
1459
|
+
{"name": "Status", "shape": "ClusterAutoScalingStatus", "type": "string"},
|
|
1460
|
+
{"name": "FailureMessage", "shape": "String", "type": "string"},
|
|
1461
|
+
],
|
|
1462
|
+
"type": "structure",
|
|
1463
|
+
},
|
|
1448
1464
|
"ClusterEbsVolumeConfig": {
|
|
1449
1465
|
"members": [
|
|
1450
1466
|
{"name": "VolumeSizeInGB", "shape": "ClusterEbsVolumeSizeInGB", "type": "integer"},
|
|
@@ -2251,6 +2267,8 @@ SHAPE_DAG = {
|
|
|
2251
2267
|
"shape": "ClusterNodeProvisioningMode",
|
|
2252
2268
|
"type": "string",
|
|
2253
2269
|
},
|
|
2270
|
+
{"name": "ClusterRole", "shape": "RoleArn", "type": "string"},
|
|
2271
|
+
{"name": "AutoScaling", "shape": "ClusterAutoScalingConfig", "type": "structure"},
|
|
2254
2272
|
],
|
|
2255
2273
|
"type": "structure",
|
|
2256
2274
|
},
|
|
@@ -4647,6 +4665,8 @@ SHAPE_DAG = {
|
|
|
4647
4665
|
"shape": "ClusterNodeProvisioningMode",
|
|
4648
4666
|
"type": "string",
|
|
4649
4667
|
},
|
|
4668
|
+
{"name": "ClusterRole", "shape": "RoleArn", "type": "string"},
|
|
4669
|
+
{"name": "AutoScaling", "shape": "ClusterAutoScalingConfigOutput", "type": "structure"},
|
|
4650
4670
|
],
|
|
4651
4671
|
"type": "structure",
|
|
4652
4672
|
},
|
|
@@ -15827,6 +15847,8 @@ SHAPE_DAG = {
|
|
|
15827
15847
|
"shape": "ClusterInstanceGroupsToDelete",
|
|
15828
15848
|
"type": "list",
|
|
15829
15849
|
},
|
|
15850
|
+
{"name": "ClusterRole", "shape": "RoleArn", "type": "string"},
|
|
15851
|
+
{"name": "AutoScaling", "shape": "ClusterAutoScalingConfig", "type": "structure"},
|
|
15830
15852
|
],
|
|
15831
15853
|
"type": "structure",
|
|
15832
15854
|
},
|
|
@@ -3226,6 +3226,8 @@ class Cluster(Base):
|
|
|
3226
3226
|
orchestrator: The type of orchestrator used for the SageMaker HyperPod cluster.
|
|
3227
3227
|
node_recovery: The node recovery mode configured for the SageMaker HyperPod cluster.
|
|
3228
3228
|
node_provisioning_mode: The mode used for provisioning nodes in the cluster.
|
|
3229
|
+
cluster_role: The Amazon Resource Name (ARN) of the IAM role that HyperPod uses for cluster autoscaling operations.
|
|
3230
|
+
auto_scaling: The current autoscaling configuration and status for the autoscaler.
|
|
3229
3231
|
|
|
3230
3232
|
"""
|
|
3231
3233
|
|
|
@@ -3242,6 +3244,8 @@ class Cluster(Base):
|
|
|
3242
3244
|
orchestrator: Optional[shapes.ClusterOrchestrator] = Unassigned()
|
|
3243
3245
|
node_recovery: Optional[str] = Unassigned()
|
|
3244
3246
|
node_provisioning_mode: Optional[str] = Unassigned()
|
|
3247
|
+
cluster_role: Optional[str] = Unassigned()
|
|
3248
|
+
auto_scaling: Optional[shapes.ClusterAutoScalingConfigOutput] = Unassigned()
|
|
3245
3249
|
|
|
3246
3250
|
def get_name(self) -> str:
|
|
3247
3251
|
attributes = vars(self)
|
|
@@ -3292,6 +3296,8 @@ class Cluster(Base):
|
|
|
3292
3296
|
orchestrator: Optional[shapes.ClusterOrchestrator] = Unassigned(),
|
|
3293
3297
|
node_recovery: Optional[str] = Unassigned(),
|
|
3294
3298
|
node_provisioning_mode: Optional[str] = Unassigned(),
|
|
3299
|
+
cluster_role: Optional[str] = Unassigned(),
|
|
3300
|
+
auto_scaling: Optional[shapes.ClusterAutoScalingConfig] = Unassigned(),
|
|
3295
3301
|
session: Optional[Session] = None,
|
|
3296
3302
|
region: Optional[str] = None,
|
|
3297
3303
|
) -> Optional["Cluster"]:
|
|
@@ -3307,6 +3313,8 @@ class Cluster(Base):
|
|
|
3307
3313
|
orchestrator: The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is "eks", which is to use an Amazon Elastic Kubernetes Service cluster as the orchestrator.
|
|
3308
3314
|
node_recovery: The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.
|
|
3309
3315
|
node_provisioning_mode: The mode for provisioning nodes in the cluster. You can specify the following modes: Continuous: Scaling behavior that enables 1) concurrent operation execution within instance groups, 2) continuous retry mechanisms for failed operations, 3) enhanced customer visibility into cluster events through detailed event streams, 4) partial provisioning capabilities. Your clusters and instance groups remain InService while scaling. This mode is only supported for EKS orchestrated clusters.
|
|
3316
|
+
cluster_role: The Amazon Resource Name (ARN) of the IAM role that HyperPod assumes to perform cluster autoscaling operations. This role must have permissions for sagemaker:BatchAddClusterNodes and sagemaker:BatchDeleteClusterNodes. This is only required when autoscaling is enabled and when HyperPod is performing autoscaling operations.
|
|
3317
|
+
auto_scaling: The autoscaling configuration for the cluster. Enables automatic scaling of cluster nodes based on workload demand using a Karpenter-based system.
|
|
3310
3318
|
session: Boto3 session.
|
|
3311
3319
|
region: Region name.
|
|
3312
3320
|
|
|
@@ -3344,6 +3352,8 @@ class Cluster(Base):
|
|
|
3344
3352
|
"Orchestrator": orchestrator,
|
|
3345
3353
|
"NodeRecovery": node_recovery,
|
|
3346
3354
|
"NodeProvisioningMode": node_provisioning_mode,
|
|
3355
|
+
"ClusterRole": cluster_role,
|
|
3356
|
+
"AutoScaling": auto_scaling,
|
|
3347
3357
|
}
|
|
3348
3358
|
|
|
3349
3359
|
operation_input_args = Base.populate_chained_attributes(
|
|
@@ -3459,6 +3469,8 @@ class Cluster(Base):
|
|
|
3459
3469
|
] = Unassigned(),
|
|
3460
3470
|
node_recovery: Optional[str] = Unassigned(),
|
|
3461
3471
|
instance_groups_to_delete: Optional[List[str]] = Unassigned(),
|
|
3472
|
+
cluster_role: Optional[str] = Unassigned(),
|
|
3473
|
+
auto_scaling: Optional[shapes.ClusterAutoScalingConfig] = Unassigned(),
|
|
3462
3474
|
) -> Optional["Cluster"]:
|
|
3463
3475
|
"""
|
|
3464
3476
|
Update a Cluster resource
|
|
@@ -3493,6 +3505,8 @@ class Cluster(Base):
|
|
|
3493
3505
|
"RestrictedInstanceGroups": restricted_instance_groups,
|
|
3494
3506
|
"NodeRecovery": node_recovery,
|
|
3495
3507
|
"InstanceGroupsToDelete": instance_groups_to_delete,
|
|
3508
|
+
"ClusterRole": cluster_role,
|
|
3509
|
+
"AutoScaling": auto_scaling,
|
|
3496
3510
|
}
|
|
3497
3511
|
logger.debug(f"Input request: {operation_input_args}")
|
|
3498
3512
|
# serialize the input request
|
|
@@ -9426,20 +9440,20 @@ class Endpoint(Base):
|
|
|
9426
9440
|
region: Optional[str] = None,
|
|
9427
9441
|
) -> Optional[shapes.InvokeEndpointOutput]:
|
|
9428
9442
|
"""
|
|
9429
|
-
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint.
|
|
9443
|
+
After you deploy a model into production using Amazon SageMaker AI hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint.
|
|
9430
9444
|
|
|
9431
9445
|
Parameters:
|
|
9432
|
-
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9446
|
+
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker AI passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9433
9447
|
content_type: The MIME type of the input data in the request body.
|
|
9434
9448
|
accept: The desired MIME type of the inference response from the model container.
|
|
9435
|
-
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
9449
|
+
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
9436
9450
|
target_model: The model to request for inference when invoking a multi-model endpoint.
|
|
9437
9451
|
target_variant: Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights. For information about how to use variant targeting to perform a/b testing, see Test models in production
|
|
9438
9452
|
target_container_hostname: If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.
|
|
9439
9453
|
inference_id: If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see Capture Data.
|
|
9440
9454
|
enable_explanations: An optional JMESPath expression used to override the EnableExplanations parameter of the ClarifyExplainerConfig API. See the EnableExplanations section in the developer guide for more information.
|
|
9441
9455
|
inference_component_name: If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.
|
|
9442
|
-
session_id: Creates a stateful session or identifies an existing one. You can do one of the following: Create a stateful session by specifying the value NEW_SESSION. Send your request to an existing stateful session by specifying the ID of that session. With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the NewSessionId response parameter. For any subsequent request where you specify that session ID, SageMaker routes the request to the same instance that supports the session.
|
|
9456
|
+
session_id: Creates a stateful session or identifies an existing one. You can do one of the following: Create a stateful session by specifying the value NEW_SESSION. Send your request to an existing stateful session by specifying the ID of that session. With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the NewSessionId response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.
|
|
9443
9457
|
session: Boto3 session.
|
|
9444
9458
|
region: Region name.
|
|
9445
9459
|
|
|
@@ -9507,14 +9521,14 @@ class Endpoint(Base):
|
|
|
9507
9521
|
region: Optional[str] = None,
|
|
9508
9522
|
) -> Optional[shapes.InvokeEndpointAsyncOutput]:
|
|
9509
9523
|
"""
|
|
9510
|
-
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint in an asynchronous manner.
|
|
9524
|
+
After you deploy a model into production using Amazon SageMaker AI hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint in an asynchronous manner.
|
|
9511
9525
|
|
|
9512
9526
|
Parameters:
|
|
9513
9527
|
input_location: The Amazon S3 URI where the inference request payload is stored.
|
|
9514
9528
|
content_type: The MIME type of the input data in the request body.
|
|
9515
9529
|
accept: The desired MIME type of the inference response from the model container.
|
|
9516
|
-
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
9517
|
-
inference_id: The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified.
|
|
9530
|
+
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
9531
|
+
inference_id: The identifier for the inference request. Amazon SageMaker AI will generate an identifier for you if none is specified.
|
|
9518
9532
|
request_ttl_seconds: Maximum age in seconds a request can be in the queue before it is marked as expired. The default is 6 hours, or 21,600 seconds.
|
|
9519
9533
|
invocation_timeout_seconds: Maximum amount of time in seconds a request can be processed before it is marked as expired. The default is 15 minutes, or 900 seconds.
|
|
9520
9534
|
session: Boto3 session.
|
|
@@ -9582,10 +9596,10 @@ class Endpoint(Base):
|
|
|
9582
9596
|
Invokes a model at the specified endpoint to return the inference response as a stream.
|
|
9583
9597
|
|
|
9584
9598
|
Parameters:
|
|
9585
|
-
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9599
|
+
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker AI passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9586
9600
|
content_type: The MIME type of the input data in the request body.
|
|
9587
9601
|
accept: The desired MIME type of the inference response from the model container.
|
|
9588
|
-
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
9602
|
+
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
9589
9603
|
target_variant: Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights. For information about how to use variant targeting to perform a/b testing, see Test models in production
|
|
9590
9604
|
target_container_hostname: If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.
|
|
9591
9605
|
inference_id: An identifier that you assign to your request.
|
|
@@ -9610,7 +9624,7 @@ class Endpoint(Base):
|
|
|
9610
9624
|
InternalFailure: An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
|
|
9611
9625
|
InternalStreamFailure: The stream processing failed because of an unknown error, exception or failure. Try your request again.
|
|
9612
9626
|
ModelError: Model (owned by the customer in the container) returned 4xx or 5xx error code.
|
|
9613
|
-
ModelStreamError: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
9627
|
+
ModelStreamError: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
9614
9628
|
ServiceUnavailable: The service is currently unavailable.
|
|
9615
9629
|
ValidationError: There was an error validating your request.
|
|
9616
9630
|
"""
|
|
@@ -66,7 +66,7 @@ class InvokeEndpointAsyncOutput(Base):
|
|
|
66
66
|
|
|
67
67
|
Attributes
|
|
68
68
|
----------------------
|
|
69
|
-
inference_id: Identifier for an inference request. This will be the same as the InferenceId specified in the input. Amazon SageMaker will generate an identifier for you if you do not specify one.
|
|
69
|
+
inference_id: Identifier for an inference request. This will be the same as the InferenceId specified in the input. Amazon SageMaker AI will generate an identifier for you if you do not specify one.
|
|
70
70
|
output_location: The Amazon S3 URI where the inference response payload is stored.
|
|
71
71
|
failure_location: The Amazon S3 URI where the inference failure response payload is stored.
|
|
72
72
|
"""
|
|
@@ -85,7 +85,7 @@ class InvokeEndpointOutput(Base):
|
|
|
85
85
|
body: Includes the inference provided by the model. For information about the format of the response body, see Common Data Formats-Inference. If the explainer is activated, the body includes the explanations provided by the model. For more information, see the Response section under Invoke the Endpoint in the Developer Guide.
|
|
86
86
|
content_type: The MIME type of the inference returned from the model container.
|
|
87
87
|
invoked_production_variant: Identifies the production variant that was invoked.
|
|
88
|
-
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
88
|
+
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
89
89
|
new_session_id: If you created a stateful session with your request, the ID and expiration time that the model assigns to that session.
|
|
90
90
|
closed_session_id: If you closed a stateful session with your request, the ID of that session.
|
|
91
91
|
"""
|
|
@@ -114,12 +114,12 @@ class PayloadPart(Base):
|
|
|
114
114
|
class ModelStreamError(Base):
|
|
115
115
|
"""
|
|
116
116
|
ModelStreamError
|
|
117
|
-
An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
117
|
+
An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
118
118
|
|
|
119
119
|
Attributes
|
|
120
120
|
----------------------
|
|
121
121
|
message
|
|
122
|
-
error_code: This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
122
|
+
error_code: This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
123
123
|
"""
|
|
124
124
|
|
|
125
125
|
message: Optional[str] = Unassigned()
|
|
@@ -134,7 +134,7 @@ class ResponseStream(Base):
|
|
|
134
134
|
Attributes
|
|
135
135
|
----------------------
|
|
136
136
|
payload_part: A wrapper for pieces of the payload that's returned in response to a streaming inference request. A streaming inference response consists of one or more payload parts.
|
|
137
|
-
model_stream_error: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
137
|
+
model_stream_error: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
138
138
|
internal_stream_failure: The stream processing failed because of an unknown error, exception or failure. Try your request again.
|
|
139
139
|
"""
|
|
140
140
|
|
|
@@ -152,7 +152,7 @@ class InvokeEndpointWithResponseStreamOutput(Base):
|
|
|
152
152
|
body
|
|
153
153
|
content_type: The MIME type of the inference returned from the model container.
|
|
154
154
|
invoked_production_variant: Identifies the production variant that was invoked.
|
|
155
|
-
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
155
|
+
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
156
156
|
"""
|
|
157
157
|
|
|
158
158
|
body: ResponseStream
|
|
@@ -3406,6 +3406,40 @@ class ClarifyExplainerConfig(Base):
|
|
|
3406
3406
|
inference_config: Optional[ClarifyInferenceConfig] = Unassigned()
|
|
3407
3407
|
|
|
3408
3408
|
|
|
3409
|
+
class ClusterAutoScalingConfig(Base):
|
|
3410
|
+
"""
|
|
3411
|
+
ClusterAutoScalingConfig
|
|
3412
|
+
Specifies the autoscaling configuration for a HyperPod cluster.
|
|
3413
|
+
|
|
3414
|
+
Attributes
|
|
3415
|
+
----------------------
|
|
3416
|
+
mode: Describes whether autoscaling is enabled or disabled for the cluster. Valid values are Enable and Disable.
|
|
3417
|
+
auto_scaler_type: The type of autoscaler to use. Currently supported value is Karpenter.
|
|
3418
|
+
"""
|
|
3419
|
+
|
|
3420
|
+
mode: str
|
|
3421
|
+
auto_scaler_type: Optional[str] = Unassigned()
|
|
3422
|
+
|
|
3423
|
+
|
|
3424
|
+
class ClusterAutoScalingConfigOutput(Base):
|
|
3425
|
+
"""
|
|
3426
|
+
ClusterAutoScalingConfigOutput
|
|
3427
|
+
The autoscaling configuration and status information for a HyperPod cluster.
|
|
3428
|
+
|
|
3429
|
+
Attributes
|
|
3430
|
+
----------------------
|
|
3431
|
+
mode: Describes whether autoscaling is enabled or disabled for the cluster.
|
|
3432
|
+
auto_scaler_type: The type of autoscaler configured for the cluster.
|
|
3433
|
+
status: The current status of the autoscaling configuration. Valid values are InService, Failed, Creating, and Deleting.
|
|
3434
|
+
failure_message: If the autoscaling status is Failed, this field contains a message describing the failure.
|
|
3435
|
+
"""
|
|
3436
|
+
|
|
3437
|
+
mode: str
|
|
3438
|
+
status: str
|
|
3439
|
+
auto_scaler_type: Optional[str] = Unassigned()
|
|
3440
|
+
failure_message: Optional[str] = Unassigned()
|
|
3441
|
+
|
|
3442
|
+
|
|
3409
3443
|
class ClusterEbsVolumeConfig(Base):
|
|
3410
3444
|
"""
|
|
3411
3445
|
ClusterEbsVolumeConfig
|
sagemaker_core-1.0.55/VERSION
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
1.0.55
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/__init__.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/base.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/codec.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/code_injection/constants.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/main/default_configs_helper.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/resources_codegen.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/resources_extractor.py
RENAMED
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core/tools/shapes_extractor.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.55 → sagemaker_core-1.0.57}/src/sagemaker_core.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|