sagemaker-core 1.0.35__tar.gz → 1.0.37__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

Files changed (42) hide show
  1. {sagemaker_core-1.0.35/src/sagemaker_core.egg-info → sagemaker_core-1.0.37}/PKG-INFO +3 -3
  2. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/README.rst +2 -2
  3. sagemaker_core-1.0.37/VERSION +1 -0
  4. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/code_injection/shape_dag.py +63 -0
  5. sagemaker_core-1.0.35/src/sagemaker_core/main/intelligent_defaults_helper.py → sagemaker_core-1.0.37/src/sagemaker_core/main/default_configs_helper.py +2 -2
  6. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/exceptions.py +8 -8
  7. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/resources.py +1 -1
  8. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/shapes.py +65 -0
  9. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/constants.py +1 -1
  10. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/resources_codegen.py +7 -7
  11. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37/src/sagemaker_core.egg-info}/PKG-INFO +3 -3
  12. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core.egg-info/SOURCES.txt +1 -1
  13. sagemaker_core-1.0.35/VERSION +0 -1
  14. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/LICENSE +0 -0
  15. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/pyproject.toml +0 -0
  16. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/setup.cfg +0 -0
  17. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/__init__.py +0 -0
  18. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/_version.py +0 -0
  19. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/helper/__init__.py +0 -0
  20. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/helper/session_helper.py +0 -0
  21. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/__init__.py +0 -0
  22. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
  23. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/code_injection/base.py +0 -0
  24. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/code_injection/codec.py +0 -0
  25. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/code_injection/constants.py +0 -0
  26. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/config_schema.py +0 -0
  27. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/logs.py +0 -0
  28. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/user_agent.py +0 -0
  29. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/main/utils.py +0 -0
  30. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/resources/__init__.py +0 -0
  31. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/shapes/__init__.py +0 -0
  32. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/__init__.py +0 -0
  33. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/codegen.py +0 -0
  34. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/data_extractor.py +0 -0
  35. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/method.py +0 -0
  36. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/resources_extractor.py +0 -0
  37. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
  38. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
  39. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core/tools/templates.py +0 -0
  40. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
  41. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core.egg-info/requires.txt +0 -0
  42. {sagemaker_core-1.0.35 → sagemaker_core-1.0.37}/src/sagemaker_core.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.35
3
+ Version: 1.0.37
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -63,13 +63,13 @@ Key Features
63
63
  * **Abstraction of Low-Level Details**: Automatically handles resource state transitions and polling logic, freeing developers from managing these intricacies and allowing them to focus on higher-level tasks.
64
64
  * **Auto Code Completion**: Enhances the developer experience by offering real-time suggestions and completions in popular IDEs, reducing syntax errors and speeding up the coding process.
65
65
  * **Comprehensive Documentation and Type Hints**: Provides detailed guidance and type hints to help developers understand functionalities, write code faster, and reduce errors without complex API navigation.
66
- * **Incorporation of Intelligent Defaults**: Integrates the previous SageMaker SDK feature of intelligent defaults, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
66
+ * **Incorporation of Default Configs**: Integrates the previous SageMaker SDK feature of default configs, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
67
67
 
68
68
 
69
69
  Benefits
70
70
  --------
71
71
 
72
- * **Simplified Development**: By abstracting low-level details and providing intelligent defaults, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
72
+ * **Simplified Development**: By abstracting low-level details and providing default configs, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
73
73
  * **Increased Productivity**: The SDK's features, such as auto code completion and type hints, help developers write code faster and with fewer errors.
74
74
  * **Enhanced Readability**: Resource chaining and dedicated resource classes result in more readable and maintainable code.
75
75
 
@@ -31,13 +31,13 @@ Key Features
31
31
  * **Abstraction of Low-Level Details**: Automatically handles resource state transitions and polling logic, freeing developers from managing these intricacies and allowing them to focus on higher-level tasks.
32
32
  * **Auto Code Completion**: Enhances the developer experience by offering real-time suggestions and completions in popular IDEs, reducing syntax errors and speeding up the coding process.
33
33
  * **Comprehensive Documentation and Type Hints**: Provides detailed guidance and type hints to help developers understand functionalities, write code faster, and reduce errors without complex API navigation.
34
- * **Incorporation of Intelligent Defaults**: Integrates the previous SageMaker SDK feature of intelligent defaults, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
34
+ * **Incorporation of Default Configs**: Integrates the previous SageMaker SDK feature of default configs, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
35
35
 
36
36
 
37
37
  Benefits
38
38
  --------
39
39
 
40
- * **Simplified Development**: By abstracting low-level details and providing intelligent defaults, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
40
+ * **Simplified Development**: By abstracting low-level details and providing default configs, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
41
41
  * **Increased Productivity**: The SDK's features, such as auto code completion and type hints, help developers write code faster and with fewer errors.
42
42
  * **Enhanced Readability**: Resource chaining and dedicated resource classes result in more readable and maintainable code.
43
43
 
@@ -0,0 +1 @@
1
+ 1.0.37
@@ -6296,6 +6296,24 @@ SHAPE_DAG = {
6296
6296
  ],
6297
6297
  "type": "structure",
6298
6298
  },
6299
+ "Ec2CapacityReservation": {
6300
+ "members": [
6301
+ {
6302
+ "name": "Ec2CapacityReservationId",
6303
+ "shape": "Ec2CapacityReservationId",
6304
+ "type": "string",
6305
+ },
6306
+ {"name": "TotalInstanceCount", "shape": "TaskCount", "type": "integer"},
6307
+ {"name": "AvailableInstanceCount", "shape": "TaskCount", "type": "integer"},
6308
+ {"name": "UsedByCurrentEndpoint", "shape": "TaskCount", "type": "integer"},
6309
+ ],
6310
+ "type": "structure",
6311
+ },
6312
+ "Ec2CapacityReservationsList": {
6313
+ "member_shape": "Ec2CapacityReservation",
6314
+ "member_type": "structure",
6315
+ "type": "list",
6316
+ },
6299
6317
  "Edge": {
6300
6318
  "members": [
6301
6319
  {"name": "SourceArn", "shape": "AssociationEntityArn", "type": "string"},
@@ -12393,6 +12411,41 @@ SHAPE_DAG = {
12393
12411
  "shape": "ProductionVariantInferenceAmiVersion",
12394
12412
  "type": "string",
12395
12413
  },
12414
+ {
12415
+ "name": "CapacityReservationConfig",
12416
+ "shape": "ProductionVariantCapacityReservationConfig",
12417
+ "type": "structure",
12418
+ },
12419
+ ],
12420
+ "type": "structure",
12421
+ },
12422
+ "ProductionVariantCapacityReservationConfig": {
12423
+ "members": [
12424
+ {
12425
+ "name": "CapacityReservationPreference",
12426
+ "shape": "CapacityReservationPreference",
12427
+ "type": "string",
12428
+ },
12429
+ {"name": "MlReservationArn", "shape": "MlReservationArn", "type": "string"},
12430
+ ],
12431
+ "type": "structure",
12432
+ },
12433
+ "ProductionVariantCapacityReservationSummary": {
12434
+ "members": [
12435
+ {"name": "MlReservationArn", "shape": "MlReservationArn", "type": "string"},
12436
+ {
12437
+ "name": "CapacityReservationPreference",
12438
+ "shape": "CapacityReservationPreference",
12439
+ "type": "string",
12440
+ },
12441
+ {"name": "TotalInstanceCount", "shape": "TaskCount", "type": "integer"},
12442
+ {"name": "AvailableInstanceCount", "shape": "TaskCount", "type": "integer"},
12443
+ {"name": "UsedByCurrentEndpoint", "shape": "TaskCount", "type": "integer"},
12444
+ {
12445
+ "name": "Ec2CapacityReservations",
12446
+ "shape": "Ec2CapacityReservationsList",
12447
+ "type": "list",
12448
+ },
12396
12449
  ],
12397
12450
  "type": "structure",
12398
12451
  },
@@ -12493,6 +12546,11 @@ SHAPE_DAG = {
12493
12546
  "shape": "ProductionVariantRoutingConfig",
12494
12547
  "type": "structure",
12495
12548
  },
12549
+ {
12550
+ "name": "CapacityReservationConfig",
12551
+ "shape": "ProductionVariantCapacityReservationSummary",
12552
+ "type": "structure",
12553
+ },
12496
12554
  ],
12497
12555
  "type": "structure",
12498
12556
  },
@@ -14833,6 +14891,11 @@ SHAPE_DAG = {
14833
14891
  {"name": "ProjectId", "shape": "UnifiedStudioProjectId", "type": "string"},
14834
14892
  {"name": "EnvironmentId", "shape": "UnifiedStudioEnvironmentId", "type": "string"},
14835
14893
  {"name": "ProjectS3Path", "shape": "S3Uri", "type": "string"},
14894
+ {
14895
+ "name": "SingleSignOnApplicationArn",
14896
+ "shape": "SingleSignOnApplicationArn",
14897
+ "type": "string",
14898
+ },
14836
14899
  ],
14837
14900
  "type": "structure",
14838
14901
  },
@@ -29,7 +29,7 @@ from sagemaker_core.main.config_schema import SAGEMAKER_PYTHON_SDK_CONFIG_SCHEMA
29
29
  from sagemaker_core.main.exceptions import (
30
30
  LocalConfigNotFoundError,
31
31
  S3ConfigNotFoundError,
32
- IntelligentDefaultsError,
32
+ DefaultConfigsError,
33
33
  ConfigSchemaValidationError,
34
34
  )
35
35
  from sagemaker_core.main.utils import get_textual_rich_logger
@@ -116,7 +116,7 @@ def _load_config_from_s3(s3_uri, s3_resource_for_config) -> dict:
116
116
  boto_session = boto3.DEFAULT_SESSION or boto3.Session()
117
117
  boto_region_name = boto_session.region_name
118
118
  if boto_region_name is None:
119
- raise IntelligentDefaultsError(
119
+ raise DefaultConfigsError(
120
120
  message=(
121
121
  "Valid region is not provided in the Boto3 session."
122
122
  + "Setup local AWS configuration with a valid region supported by SageMaker."
@@ -91,21 +91,21 @@ class TimeoutExceededError(WaiterError):
91
91
  super().__init__(resource_type=resource_type, status=status, reason=reason)
92
92
 
93
93
 
94
- ### Intelligent Defaults Errors
95
- class IntelligentDefaultsError(SageMakerCoreError):
96
- """Raised when an error occurs in the Intelligent Defaults"""
94
+ ### Default Configs Errors
95
+ class DefaultConfigsError(SageMakerCoreError):
96
+ """Raised when an error occurs in the Default Configs"""
97
97
 
98
- fmt = "An error occurred while loading Intelligent Default. {message}"
98
+ fmt = "An error occurred while loading Default Configs. {message}"
99
99
 
100
100
  def __init__(self, message="", **kwargs):
101
- """Initialize an IntelligentDefaultsError exception.
101
+ """Initialize an DefaultConfigsError exception.
102
102
  Args:
103
103
  message (str): A message describing the error.
104
104
  """
105
105
  super().__init__(message=message, **kwargs)
106
106
 
107
107
 
108
- class LocalConfigNotFoundError(IntelligentDefaultsError):
108
+ class LocalConfigNotFoundError(DefaultConfigsError):
109
109
  """Raised when a configuration file is not found in local file system"""
110
110
 
111
111
  fmt = "Failed to load configuration file from location: {file_path}. {message}"
@@ -119,7 +119,7 @@ class LocalConfigNotFoundError(IntelligentDefaultsError):
119
119
  super().__init__(file_path=file_path, message=message)
120
120
 
121
121
 
122
- class S3ConfigNotFoundError(IntelligentDefaultsError):
122
+ class S3ConfigNotFoundError(DefaultConfigsError):
123
123
  """Raised when a configuration file is not found in S3"""
124
124
 
125
125
  fmt = "Failed to load configuration file from S3 location: {s3_uri}. {message}"
@@ -133,7 +133,7 @@ class S3ConfigNotFoundError(IntelligentDefaultsError):
133
133
  super().__init__(s3_uri=s3_uri, message=message)
134
134
 
135
135
 
136
- class ConfigSchemaValidationError(IntelligentDefaultsError, ValidationError):
136
+ class ConfigSchemaValidationError(DefaultConfigsError, ValidationError):
137
137
  """Raised when a configuration file does not adhere to the schema"""
138
138
 
139
139
  fmt = "Failed to validate configuration file from location: {file_path}. {message}"
@@ -37,7 +37,7 @@ from sagemaker_core.main.utils import (
37
37
  is_primitive_list,
38
38
  serialize,
39
39
  )
40
- from sagemaker_core.main.intelligent_defaults_helper import (
40
+ from sagemaker_core.main.default_configs_helper import (
41
41
  load_default_configs_for_resource_name,
42
42
  get_config_value,
43
43
  )
@@ -4779,6 +4779,7 @@ class UnifiedStudioSettings(Base):
4779
4779
  project_id: The ID of the Amazon SageMaker Unified Studio project that corresponds to the domain.
4780
4780
  environment_id: The ID of the environment that Amazon SageMaker Unified Studio associates with the domain.
4781
4781
  project_s3_path: The location where Amazon S3 stores temporary execution data and other artifacts for the project that corresponds to the domain.
4782
+ single_sign_on_application_arn: The ARN of the application managed by SageMaker AI and SageMaker Unified Studio in the Amazon Web Services IAM Identity Center.
4782
4783
  """
4783
4784
 
4784
4785
  studio_web_portal_access: Optional[str] = Unassigned()
@@ -4788,6 +4789,7 @@ class UnifiedStudioSettings(Base):
4788
4789
  project_id: Optional[str] = Unassigned()
4789
4790
  environment_id: Optional[str] = Unassigned()
4790
4791
  project_s3_path: Optional[str] = Unassigned()
4792
+ single_sign_on_application_arn: Optional[str] = Unassigned()
4791
4793
 
4792
4794
 
4793
4795
  class DomainSettings(Base):
@@ -4966,6 +4968,21 @@ class ProductionVariantRoutingConfig(Base):
4966
4968
  routing_strategy: str
4967
4969
 
4968
4970
 
4971
+ class ProductionVariantCapacityReservationConfig(Base):
4972
+ """
4973
+ ProductionVariantCapacityReservationConfig
4974
+ Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
4975
+
4976
+ Attributes
4977
+ ----------------------
4978
+ capacity_reservation_preference: Options that you can choose for the capacity reservation. SageMaker AI supports the following options: capacity-reservations-only SageMaker AI launches instances only into an ML capacity reservation. If no capacity is available, the instances fail to launch.
4979
+ ml_reservation_arn: The Amazon Resource Name (ARN) that uniquely identifies the ML capacity reservation that SageMaker AI applies when it deploys the endpoint.
4980
+ """
4981
+
4982
+ capacity_reservation_preference: Optional[str] = Unassigned()
4983
+ ml_reservation_arn: Optional[str] = Unassigned()
4984
+
4985
+
4969
4986
  class ProductionVariant(Base):
4970
4987
  """
4971
4988
  ProductionVariant
@@ -4988,6 +5005,7 @@ class ProductionVariant(Base):
4988
5005
  managed_instance_scaling: Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
4989
5006
  routing_config: Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
4990
5007
  inference_ami_version: Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions. The AMI version names, and their configurations, are the following: al2-ami-sagemaker-inference-gpu-2 Accelerator: GPU NVIDIA driver version: 535 CUDA version: 12.2 al2-ami-sagemaker-inference-gpu-2-1 Accelerator: GPU NVIDIA driver version: 535 CUDA version: 12.2 NVIDIA Container Toolkit with disabled CUDA-compat mounting al2-ami-sagemaker-inference-gpu-3-1 Accelerator: GPU NVIDIA driver version: 550 CUDA version: 12.4 NVIDIA Container Toolkit with disabled CUDA-compat mounting al2-ami-sagemaker-inference-neuron-2 Accelerator: Inferentia2 and Trainium Neuron driver version: 2.19
5008
+ capacity_reservation_config: Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
4991
5009
  """
4992
5010
 
4993
5011
  variant_name: str
@@ -5005,6 +5023,7 @@ class ProductionVariant(Base):
5005
5023
  managed_instance_scaling: Optional[ProductionVariantManagedInstanceScaling] = Unassigned()
5006
5024
  routing_config: Optional[ProductionVariantRoutingConfig] = Unassigned()
5007
5025
  inference_ami_version: Optional[str] = Unassigned()
5026
+ capacity_reservation_config: Optional[ProductionVariantCapacityReservationConfig] = Unassigned()
5008
5027
 
5009
5028
 
5010
5029
  class DataCaptureConfig(Base):
@@ -8164,6 +8183,48 @@ class ProductionVariantStatus(Base):
8164
8183
  start_time: Optional[datetime.datetime] = Unassigned()
8165
8184
 
8166
8185
 
8186
+ class Ec2CapacityReservation(Base):
8187
+ """
8188
+ Ec2CapacityReservation
8189
+ The EC2 capacity reservations that are shared to an ML capacity reservation.
8190
+
8191
+ Attributes
8192
+ ----------------------
8193
+ ec2_capacity_reservation_id: The unique identifier for an EC2 capacity reservation that's part of the ML capacity reservation.
8194
+ total_instance_count: The number of instances that you allocated to the EC2 capacity reservation.
8195
+ available_instance_count: The number of instances that are currently available in the EC2 capacity reservation.
8196
+ used_by_current_endpoint: The number of instances from the EC2 capacity reservation that are being used by the endpoint.
8197
+ """
8198
+
8199
+ ec2_capacity_reservation_id: Optional[str] = Unassigned()
8200
+ total_instance_count: Optional[int] = Unassigned()
8201
+ available_instance_count: Optional[int] = Unassigned()
8202
+ used_by_current_endpoint: Optional[int] = Unassigned()
8203
+
8204
+
8205
+ class ProductionVariantCapacityReservationSummary(Base):
8206
+ """
8207
+ ProductionVariantCapacityReservationSummary
8208
+ Details about an ML capacity reservation.
8209
+
8210
+ Attributes
8211
+ ----------------------
8212
+ ml_reservation_arn: The Amazon Resource Name (ARN) that uniquely identifies the ML capacity reservation that SageMaker AI applies when it deploys the endpoint.
8213
+ capacity_reservation_preference: The option that you chose for the capacity reservation. SageMaker AI supports the following options: capacity-reservations-only SageMaker AI launches instances only into an ML capacity reservation. If no capacity is available, the instances fail to launch.
8214
+ total_instance_count: The number of instances that you allocated to the ML capacity reservation.
8215
+ available_instance_count: The number of instances that are currently available in the ML capacity reservation.
8216
+ used_by_current_endpoint: The number of instances from the ML capacity reservation that are being used by the endpoint.
8217
+ ec2_capacity_reservations: The EC2 capacity reservations that are shared to this ML capacity reservation, if any.
8218
+ """
8219
+
8220
+ ml_reservation_arn: Optional[str] = Unassigned()
8221
+ capacity_reservation_preference: Optional[str] = Unassigned()
8222
+ total_instance_count: Optional[int] = Unassigned()
8223
+ available_instance_count: Optional[int] = Unassigned()
8224
+ used_by_current_endpoint: Optional[int] = Unassigned()
8225
+ ec2_capacity_reservations: Optional[List[Ec2CapacityReservation]] = Unassigned()
8226
+
8227
+
8167
8228
  class ProductionVariantSummary(Base):
8168
8229
  """
8169
8230
  ProductionVariantSummary
@@ -8182,6 +8243,7 @@ class ProductionVariantSummary(Base):
8182
8243
  desired_serverless_config: The serverless configuration requested for the endpoint update.
8183
8244
  managed_instance_scaling: Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
8184
8245
  routing_config: Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
8246
+ capacity_reservation_config: Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
8185
8247
  """
8186
8248
 
8187
8249
  variant_name: str
@@ -8195,6 +8257,9 @@ class ProductionVariantSummary(Base):
8195
8257
  desired_serverless_config: Optional[ProductionVariantServerlessConfig] = Unassigned()
8196
8258
  managed_instance_scaling: Optional[ProductionVariantManagedInstanceScaling] = Unassigned()
8197
8259
  routing_config: Optional[ProductionVariantRoutingConfig] = Unassigned()
8260
+ capacity_reservation_config: Optional[ProductionVariantCapacityReservationSummary] = (
8261
+ Unassigned()
8262
+ )
8198
8263
 
8199
8264
 
8200
8265
  class PendingProductionVariantSummary(Base):
@@ -88,7 +88,7 @@ METRICS_SERVICE_JSON_FILE_PATH = os.getcwd() + "/sample/sagemaker-metrics/2022-0
88
88
 
89
89
  GENERATED_CLASSES_LOCATION = os.getcwd() + "/src/sagemaker_core/main"
90
90
  UTILS_CODEGEN_FILE_NAME = "utils.py"
91
- INTELLIGENT_DEFAULTS_HELPER_CODEGEN_FILE_NAME = "intelligent_defaults_helper.py"
91
+ DEFAULT_CONFIGS_CODEGEN_FILE_NAME = "default_configs_helper.py"
92
92
 
93
93
  RESOURCES_CODEGEN_FILE_NAME = "resources.py"
94
94
 
@@ -17,7 +17,7 @@ import os
17
17
  import json
18
18
  from sagemaker_core.main.code_injection.codec import pascal_to_snake
19
19
  from sagemaker_core.main.config_schema import SAGEMAKER_PYTHON_SDK_CONFIG_SCHEMA
20
- from sagemaker_core.main.exceptions import IntelligentDefaultsError
20
+ from sagemaker_core.main.exceptions import DefaultConfigsError
21
21
  from sagemaker_core.main.utils import get_textual_rich_logger
22
22
  from sagemaker_core.tools.constants import (
23
23
  BASIC_RETURN_TYPES,
@@ -190,7 +190,7 @@ class ResourcesCodeGen:
190
190
  "from sagemaker_core.main.code_injection.constants import Color",
191
191
  "from sagemaker_core.main.utils import SageMakerClient, ResourceIterator, Unassigned, get_textual_rich_logger, "
192
192
  "snake_to_pascal, pascal_to_snake, is_not_primitive, is_not_str_dict, is_primitive_list, serialize",
193
- "from sagemaker_core.main.intelligent_defaults_helper import load_default_configs_for_resource_name, get_config_value",
193
+ "from sagemaker_core.main.default_configs_helper import load_default_configs_for_resource_name, get_config_value",
194
194
  "from sagemaker_core.main.logs import MultiLogStreamHandler",
195
195
  "from sagemaker_core.main.exceptions import *",
196
196
  "import sagemaker_core.main.shapes as shapes",
@@ -859,7 +859,7 @@ class ResourcesCodeGen:
859
859
  operation_input_shape_name=operation_input_shape_name,
860
860
  include_session_region=True,
861
861
  include_return_resource_docstring=True,
862
- include_intelligent_defaults_errors=True,
862
+ include_default_configs_errors=True,
863
863
  )
864
864
 
865
865
  if "Describe" + resource_name in self.operations:
@@ -956,7 +956,7 @@ class ResourcesCodeGen:
956
956
  include_session_region: bool = False,
957
957
  include_return_resource_docstring: bool = False,
958
958
  return_string: str = None,
959
- include_intelligent_defaults_errors: bool = False,
959
+ include_default_configs_errors: bool = False,
960
960
  exclude_resource_attrs: list = None,
961
961
  ) -> str:
962
962
  """
@@ -970,7 +970,7 @@ class ResourcesCodeGen:
970
970
  include_session_region (bool): Whether to include session and region documentation.
971
971
  include_return_resource_docstring (bool): Whether to include resource-specific documentation.
972
972
  return_string (str): The return string.
973
- include_intelligent_defaults_errors (bool): Whether to include intelligent defaults errors.
973
+ include_default_configs_errors (bool): Whether to include default configs errors.
974
974
  exclude_resource_attrs (list): A list of attributes to exclude from the docstring.
975
975
 
976
976
  Returns:
@@ -1000,8 +1000,8 @@ class ResourcesCodeGen:
1000
1000
 
1001
1001
  docstring += self._exception_docstring(operation_name)
1002
1002
 
1003
- if include_intelligent_defaults_errors:
1004
- subclasses = set(IntelligentDefaultsError.__subclasses__())
1003
+ if include_default_configs_errors:
1004
+ subclasses = set(DefaultConfigsError.__subclasses__())
1005
1005
  _id_exception_docstrings = [
1006
1006
  f"\n {subclass.__name__}: {subclass.__doc__}" for subclass in subclasses
1007
1007
  ]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.35
3
+ Version: 1.0.37
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -63,13 +63,13 @@ Key Features
63
63
  * **Abstraction of Low-Level Details**: Automatically handles resource state transitions and polling logic, freeing developers from managing these intricacies and allowing them to focus on higher-level tasks.
64
64
  * **Auto Code Completion**: Enhances the developer experience by offering real-time suggestions and completions in popular IDEs, reducing syntax errors and speeding up the coding process.
65
65
  * **Comprehensive Documentation and Type Hints**: Provides detailed guidance and type hints to help developers understand functionalities, write code faster, and reduce errors without complex API navigation.
66
- * **Incorporation of Intelligent Defaults**: Integrates the previous SageMaker SDK feature of intelligent defaults, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
66
+ * **Incorporation of Default Configs**: Integrates the previous SageMaker SDK feature of default configs, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
67
67
 
68
68
 
69
69
  Benefits
70
70
  --------
71
71
 
72
- * **Simplified Development**: By abstracting low-level details and providing intelligent defaults, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
72
+ * **Simplified Development**: By abstracting low-level details and providing default configs, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
73
73
  * **Increased Productivity**: The SDK's features, such as auto code completion and type hints, help developers write code faster and with fewer errors.
74
74
  * **Enhanced Readability**: Resource chaining and dedicated resource classes result in more readable and maintainable code.
75
75
 
@@ -14,8 +14,8 @@ src/sagemaker_core/helper/__init__.py
14
14
  src/sagemaker_core/helper/session_helper.py
15
15
  src/sagemaker_core/main/__init__.py
16
16
  src/sagemaker_core/main/config_schema.py
17
+ src/sagemaker_core/main/default_configs_helper.py
17
18
  src/sagemaker_core/main/exceptions.py
18
- src/sagemaker_core/main/intelligent_defaults_helper.py
19
19
  src/sagemaker_core/main/logs.py
20
20
  src/sagemaker_core/main/resources.py
21
21
  src/sagemaker_core/main/shapes.py
@@ -1 +0,0 @@
1
- 1.0.35
File without changes