sagemaker-core 1.0.34__tar.gz → 1.0.36__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

Files changed (42) hide show
  1. {sagemaker_core-1.0.34/src/sagemaker_core.egg-info → sagemaker_core-1.0.36}/PKG-INFO +1 -1
  2. sagemaker_core-1.0.36/VERSION +1 -0
  3. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/code_injection/codec.py +10 -0
  4. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/code_injection/shape_dag.py +68 -0
  5. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/resources.py +2 -0
  6. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/shapes.py +65 -0
  7. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/utils.py +2 -2
  8. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36/src/sagemaker_core.egg-info}/PKG-INFO +1 -1
  9. sagemaker_core-1.0.34/VERSION +0 -1
  10. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/LICENSE +0 -0
  11. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/README.rst +0 -0
  12. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/pyproject.toml +0 -0
  13. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/setup.cfg +0 -0
  14. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/__init__.py +0 -0
  15. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/_version.py +0 -0
  16. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/helper/__init__.py +0 -0
  17. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/helper/session_helper.py +0 -0
  18. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/__init__.py +0 -0
  19. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
  20. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/code_injection/base.py +0 -0
  21. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/code_injection/constants.py +0 -0
  22. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/config_schema.py +0 -0
  23. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/exceptions.py +0 -0
  24. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/intelligent_defaults_helper.py +0 -0
  25. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/logs.py +0 -0
  26. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/main/user_agent.py +0 -0
  27. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/resources/__init__.py +0 -0
  28. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/shapes/__init__.py +0 -0
  29. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/__init__.py +0 -0
  30. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/codegen.py +0 -0
  31. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/constants.py +0 -0
  32. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/data_extractor.py +0 -0
  33. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/method.py +0 -0
  34. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/resources_codegen.py +0 -0
  35. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/resources_extractor.py +0 -0
  36. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
  37. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
  38. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core/tools/templates.py +0 -0
  39. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
  40. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
  41. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core.egg-info/requires.txt +0 -0
  42. {sagemaker_core-1.0.34 → sagemaker_core-1.0.36}/src/sagemaker_core.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.34
3
+ Version: 1.0.36
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -0,0 +1 @@
1
+ 1.0.36
@@ -22,6 +22,7 @@ from sagemaker_core.main.code_injection.constants import (
22
22
  LIST_TYPE,
23
23
  MAP_TYPE,
24
24
  )
25
+ from io import BytesIO
25
26
 
26
27
 
27
28
  def pascal_to_snake(pascal_str):
@@ -244,6 +245,15 @@ def transform(data, shape, object_instance=None) -> dict:
244
245
  elif _member_type == MAP_TYPE:
245
246
  _map_type_shape = SHAPE_DAG[_member_shape]
246
247
  evaluated_value = _evaluate_map_type(data[_member_name], _map_type_shape)
248
+ elif _member_type == "blob":
249
+ blob_data = data[_member_name]
250
+ if isinstance(blob_data, bytes):
251
+ evaluated_value = BytesIO(blob_data)
252
+ elif hasattr(blob_data, "read"):
253
+ # If it's already a file-like object, use it as is
254
+ evaluated_value = blob_data
255
+ else:
256
+ raise ValueError(f"Unexpected blob data type: {type(blob_data)}")
247
257
  else:
248
258
  raise ValueError(f"Unexpected member type encountered: {_member_type}")
249
259
 
@@ -5098,6 +5098,11 @@ SHAPE_DAG = {
5098
5098
  {"name": "MlflowVersion", "shape": "MlflowVersion", "type": "string"},
5099
5099
  {"name": "RoleArn", "shape": "RoleArn", "type": "string"},
5100
5100
  {"name": "TrackingServerStatus", "shape": "TrackingServerStatus", "type": "string"},
5101
+ {
5102
+ "name": "TrackingServerMaintenanceStatus",
5103
+ "shape": "TrackingServerMaintenanceStatus",
5104
+ "type": "string",
5105
+ },
5101
5106
  {"name": "IsActive", "shape": "IsTrackingServerActive", "type": "string"},
5102
5107
  {"name": "TrackingServerUrl", "shape": "TrackingServerUrl", "type": "string"},
5103
5108
  {
@@ -6291,6 +6296,24 @@ SHAPE_DAG = {
6291
6296
  ],
6292
6297
  "type": "structure",
6293
6298
  },
6299
+ "Ec2CapacityReservation": {
6300
+ "members": [
6301
+ {
6302
+ "name": "Ec2CapacityReservationId",
6303
+ "shape": "Ec2CapacityReservationId",
6304
+ "type": "string",
6305
+ },
6306
+ {"name": "TotalInstanceCount", "shape": "TaskCount", "type": "integer"},
6307
+ {"name": "AvailableInstanceCount", "shape": "TaskCount", "type": "integer"},
6308
+ {"name": "UsedByCurrentEndpoint", "shape": "TaskCount", "type": "integer"},
6309
+ ],
6310
+ "type": "structure",
6311
+ },
6312
+ "Ec2CapacityReservationsList": {
6313
+ "member_shape": "Ec2CapacityReservation",
6314
+ "member_type": "structure",
6315
+ "type": "list",
6316
+ },
6294
6317
  "Edge": {
6295
6318
  "members": [
6296
6319
  {"name": "SourceArn", "shape": "AssociationEntityArn", "type": "string"},
@@ -12388,6 +12411,41 @@ SHAPE_DAG = {
12388
12411
  "shape": "ProductionVariantInferenceAmiVersion",
12389
12412
  "type": "string",
12390
12413
  },
12414
+ {
12415
+ "name": "CapacityReservationConfig",
12416
+ "shape": "ProductionVariantCapacityReservationConfig",
12417
+ "type": "structure",
12418
+ },
12419
+ ],
12420
+ "type": "structure",
12421
+ },
12422
+ "ProductionVariantCapacityReservationConfig": {
12423
+ "members": [
12424
+ {
12425
+ "name": "CapacityReservationPreference",
12426
+ "shape": "CapacityReservationPreference",
12427
+ "type": "string",
12428
+ },
12429
+ {"name": "MlReservationArn", "shape": "MlReservationArn", "type": "string"},
12430
+ ],
12431
+ "type": "structure",
12432
+ },
12433
+ "ProductionVariantCapacityReservationSummary": {
12434
+ "members": [
12435
+ {"name": "MlReservationArn", "shape": "MlReservationArn", "type": "string"},
12436
+ {
12437
+ "name": "CapacityReservationPreference",
12438
+ "shape": "CapacityReservationPreference",
12439
+ "type": "string",
12440
+ },
12441
+ {"name": "TotalInstanceCount", "shape": "TaskCount", "type": "integer"},
12442
+ {"name": "AvailableInstanceCount", "shape": "TaskCount", "type": "integer"},
12443
+ {"name": "UsedByCurrentEndpoint", "shape": "TaskCount", "type": "integer"},
12444
+ {
12445
+ "name": "Ec2CapacityReservations",
12446
+ "shape": "Ec2CapacityReservationsList",
12447
+ "type": "list",
12448
+ },
12391
12449
  ],
12392
12450
  "type": "structure",
12393
12451
  },
@@ -12488,6 +12546,11 @@ SHAPE_DAG = {
12488
12546
  "shape": "ProductionVariantRoutingConfig",
12489
12547
  "type": "structure",
12490
12548
  },
12549
+ {
12550
+ "name": "CapacityReservationConfig",
12551
+ "shape": "ProductionVariantCapacityReservationSummary",
12552
+ "type": "structure",
12553
+ },
12491
12554
  ],
12492
12555
  "type": "structure",
12493
12556
  },
@@ -14828,6 +14891,11 @@ SHAPE_DAG = {
14828
14891
  {"name": "ProjectId", "shape": "UnifiedStudioProjectId", "type": "string"},
14829
14892
  {"name": "EnvironmentId", "shape": "UnifiedStudioEnvironmentId", "type": "string"},
14830
14893
  {"name": "ProjectS3Path", "shape": "S3Uri", "type": "string"},
14894
+ {
14895
+ "name": "SingleSignOnApplicationArn",
14896
+ "shape": "SingleSignOnApplicationArn",
14897
+ "type": "string",
14898
+ },
14831
14899
  ],
14832
14900
  "type": "structure",
14833
14901
  },
@@ -17364,6 +17364,7 @@ class MlflowTrackingServer(Base):
17364
17364
  mlflow_version: The MLflow version used for the described tracking server.
17365
17365
  role_arn: The Amazon Resource Name (ARN) for an IAM role in your account that the described MLflow Tracking Server uses to access the artifact store in Amazon S3.
17366
17366
  tracking_server_status: The current creation status of the described MLflow Tracking Server.
17367
+ tracking_server_maintenance_status: The current maintenance status of the described MLflow Tracking Server.
17367
17368
  is_active: Whether the described MLflow Tracking Server is currently active.
17368
17369
  tracking_server_url: The URL to connect to the MLflow user interface for the described tracking server.
17369
17370
  weekly_maintenance_window_start: The day and time of the week when weekly maintenance occurs on the described tracking server.
@@ -17382,6 +17383,7 @@ class MlflowTrackingServer(Base):
17382
17383
  mlflow_version: Optional[str] = Unassigned()
17383
17384
  role_arn: Optional[str] = Unassigned()
17384
17385
  tracking_server_status: Optional[str] = Unassigned()
17386
+ tracking_server_maintenance_status: Optional[str] = Unassigned()
17385
17387
  is_active: Optional[str] = Unassigned()
17386
17388
  tracking_server_url: Optional[str] = Unassigned()
17387
17389
  weekly_maintenance_window_start: Optional[str] = Unassigned()
@@ -4779,6 +4779,7 @@ class UnifiedStudioSettings(Base):
4779
4779
  project_id: The ID of the Amazon SageMaker Unified Studio project that corresponds to the domain.
4780
4780
  environment_id: The ID of the environment that Amazon SageMaker Unified Studio associates with the domain.
4781
4781
  project_s3_path: The location where Amazon S3 stores temporary execution data and other artifacts for the project that corresponds to the domain.
4782
+ single_sign_on_application_arn: The ARN of the application managed by SageMaker AI and SageMaker Unified Studio in the Amazon Web Services IAM Identity Center.
4782
4783
  """
4783
4784
 
4784
4785
  studio_web_portal_access: Optional[str] = Unassigned()
@@ -4788,6 +4789,7 @@ class UnifiedStudioSettings(Base):
4788
4789
  project_id: Optional[str] = Unassigned()
4789
4790
  environment_id: Optional[str] = Unassigned()
4790
4791
  project_s3_path: Optional[str] = Unassigned()
4792
+ single_sign_on_application_arn: Optional[str] = Unassigned()
4791
4793
 
4792
4794
 
4793
4795
  class DomainSettings(Base):
@@ -4966,6 +4968,21 @@ class ProductionVariantRoutingConfig(Base):
4966
4968
  routing_strategy: str
4967
4969
 
4968
4970
 
4971
+ class ProductionVariantCapacityReservationConfig(Base):
4972
+ """
4973
+ ProductionVariantCapacityReservationConfig
4974
+ Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
4975
+
4976
+ Attributes
4977
+ ----------------------
4978
+ capacity_reservation_preference: Options that you can choose for the capacity reservation. SageMaker AI supports the following options: capacity-reservations-only SageMaker AI launches instances only into an ML capacity reservation. If no capacity is available, the instances fail to launch.
4979
+ ml_reservation_arn: The Amazon Resource Name (ARN) that uniquely identifies the ML capacity reservation that SageMaker AI applies when it deploys the endpoint.
4980
+ """
4981
+
4982
+ capacity_reservation_preference: Optional[str] = Unassigned()
4983
+ ml_reservation_arn: Optional[str] = Unassigned()
4984
+
4985
+
4969
4986
  class ProductionVariant(Base):
4970
4987
  """
4971
4988
  ProductionVariant
@@ -4988,6 +5005,7 @@ class ProductionVariant(Base):
4988
5005
  managed_instance_scaling: Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
4989
5006
  routing_config: Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
4990
5007
  inference_ami_version: Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions. The AMI version names, and their configurations, are the following: al2-ami-sagemaker-inference-gpu-2 Accelerator: GPU NVIDIA driver version: 535 CUDA version: 12.2 al2-ami-sagemaker-inference-gpu-2-1 Accelerator: GPU NVIDIA driver version: 535 CUDA version: 12.2 NVIDIA Container Toolkit with disabled CUDA-compat mounting al2-ami-sagemaker-inference-gpu-3-1 Accelerator: GPU NVIDIA driver version: 550 CUDA version: 12.4 NVIDIA Container Toolkit with disabled CUDA-compat mounting al2-ami-sagemaker-inference-neuron-2 Accelerator: Inferentia2 and Trainium Neuron driver version: 2.19
5008
+ capacity_reservation_config: Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
4991
5009
  """
4992
5010
 
4993
5011
  variant_name: str
@@ -5005,6 +5023,7 @@ class ProductionVariant(Base):
5005
5023
  managed_instance_scaling: Optional[ProductionVariantManagedInstanceScaling] = Unassigned()
5006
5024
  routing_config: Optional[ProductionVariantRoutingConfig] = Unassigned()
5007
5025
  inference_ami_version: Optional[str] = Unassigned()
5026
+ capacity_reservation_config: Optional[ProductionVariantCapacityReservationConfig] = Unassigned()
5008
5027
 
5009
5028
 
5010
5029
  class DataCaptureConfig(Base):
@@ -8164,6 +8183,48 @@ class ProductionVariantStatus(Base):
8164
8183
  start_time: Optional[datetime.datetime] = Unassigned()
8165
8184
 
8166
8185
 
8186
+ class Ec2CapacityReservation(Base):
8187
+ """
8188
+ Ec2CapacityReservation
8189
+ The EC2 capacity reservations that are shared to an ML capacity reservation.
8190
+
8191
+ Attributes
8192
+ ----------------------
8193
+ ec2_capacity_reservation_id: The unique identifier for an EC2 capacity reservation that's part of the ML capacity reservation.
8194
+ total_instance_count: The number of instances that you allocated to the EC2 capacity reservation.
8195
+ available_instance_count: The number of instances that are currently available in the EC2 capacity reservation.
8196
+ used_by_current_endpoint: The number of instances from the EC2 capacity reservation that are being used by the endpoint.
8197
+ """
8198
+
8199
+ ec2_capacity_reservation_id: Optional[str] = Unassigned()
8200
+ total_instance_count: Optional[int] = Unassigned()
8201
+ available_instance_count: Optional[int] = Unassigned()
8202
+ used_by_current_endpoint: Optional[int] = Unassigned()
8203
+
8204
+
8205
+ class ProductionVariantCapacityReservationSummary(Base):
8206
+ """
8207
+ ProductionVariantCapacityReservationSummary
8208
+ Details about an ML capacity reservation.
8209
+
8210
+ Attributes
8211
+ ----------------------
8212
+ ml_reservation_arn: The Amazon Resource Name (ARN) that uniquely identifies the ML capacity reservation that SageMaker AI applies when it deploys the endpoint.
8213
+ capacity_reservation_preference: The option that you chose for the capacity reservation. SageMaker AI supports the following options: capacity-reservations-only SageMaker AI launches instances only into an ML capacity reservation. If no capacity is available, the instances fail to launch.
8214
+ total_instance_count: The number of instances that you allocated to the ML capacity reservation.
8215
+ available_instance_count: The number of instances that are currently available in the ML capacity reservation.
8216
+ used_by_current_endpoint: The number of instances from the ML capacity reservation that are being used by the endpoint.
8217
+ ec2_capacity_reservations: The EC2 capacity reservations that are shared to this ML capacity reservation, if any.
8218
+ """
8219
+
8220
+ ml_reservation_arn: Optional[str] = Unassigned()
8221
+ capacity_reservation_preference: Optional[str] = Unassigned()
8222
+ total_instance_count: Optional[int] = Unassigned()
8223
+ available_instance_count: Optional[int] = Unassigned()
8224
+ used_by_current_endpoint: Optional[int] = Unassigned()
8225
+ ec2_capacity_reservations: Optional[List[Ec2CapacityReservation]] = Unassigned()
8226
+
8227
+
8167
8228
  class ProductionVariantSummary(Base):
8168
8229
  """
8169
8230
  ProductionVariantSummary
@@ -8182,6 +8243,7 @@ class ProductionVariantSummary(Base):
8182
8243
  desired_serverless_config: The serverless configuration requested for the endpoint update.
8183
8244
  managed_instance_scaling: Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
8184
8245
  routing_config: Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
8246
+ capacity_reservation_config: Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
8185
8247
  """
8186
8248
 
8187
8249
  variant_name: str
@@ -8195,6 +8257,9 @@ class ProductionVariantSummary(Base):
8195
8257
  desired_serverless_config: Optional[ProductionVariantServerlessConfig] = Unassigned()
8196
8258
  managed_instance_scaling: Optional[ProductionVariantManagedInstanceScaling] = Unassigned()
8197
8259
  routing_config: Optional[ProductionVariantRoutingConfig] = Unassigned()
8260
+ capacity_reservation_config: Optional[ProductionVariantCapacityReservationSummary] = (
8261
+ Unassigned()
8262
+ )
8198
8263
 
8199
8264
 
8200
8265
  class PendingProductionVariantSummary(Base):
@@ -457,13 +457,13 @@ class ResourceIterator(Generic[T]):
457
457
  elif (
458
458
  len(self.summary_list) > 0
459
459
  and self.index >= len(self.summary_list)
460
- and self.next_token is None
460
+ and (not self.next_token)
461
461
  ):
462
462
  raise StopIteration
463
463
 
464
464
  # Otherwise, get the next page of summaries by calling the list method with the next token if available
465
465
  else:
466
- if self.next_token is not None:
466
+ if self.next_token:
467
467
  response = getattr(self.client, self.list_method)(
468
468
  NextToken=self.next_token, **self.list_method_kwargs
469
469
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.34
3
+ Version: 1.0.36
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -1 +0,0 @@
1
- 1.0.34
File without changes