sagemaker-core 1.0.24__tar.gz → 1.0.26__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

Files changed (43) hide show
  1. {sagemaker_core-1.0.24/src/sagemaker_core.egg-info → sagemaker_core-1.0.26}/PKG-INFO +3 -2
  2. sagemaker_core-1.0.26/VERSION +1 -0
  3. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/code_injection/shape_dag.py +103 -0
  4. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/resources.py +121 -2
  5. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/shapes.py +72 -6
  6. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26/src/sagemaker_core.egg-info}/PKG-INFO +3 -2
  7. sagemaker_core-1.0.24/VERSION +0 -1
  8. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/LICENSE +0 -0
  9. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/MANIFEST.in +0 -0
  10. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/README.rst +0 -0
  11. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/pyproject.toml +0 -0
  12. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/setup.cfg +0 -0
  13. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/__init__.py +0 -0
  14. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/_version.py +0 -0
  15. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/helper/__init__.py +0 -0
  16. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/helper/session_helper.py +0 -0
  17. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/__init__.py +0 -0
  18. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
  19. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/code_injection/base.py +0 -0
  20. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/code_injection/codec.py +0 -0
  21. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/code_injection/constants.py +0 -0
  22. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/config_schema.py +0 -0
  23. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/exceptions.py +0 -0
  24. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/intelligent_defaults_helper.py +0 -0
  25. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/logs.py +0 -0
  26. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/user_agent.py +0 -0
  27. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/main/utils.py +0 -0
  28. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/resources/__init__.py +0 -0
  29. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/shapes/__init__.py +0 -0
  30. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/__init__.py +0 -0
  31. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/codegen.py +0 -0
  32. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/constants.py +0 -0
  33. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/data_extractor.py +0 -0
  34. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/method.py +0 -0
  35. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/resources_codegen.py +0 -0
  36. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/resources_extractor.py +0 -0
  37. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
  38. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
  39. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core/tools/templates.py +0 -0
  40. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
  41. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
  42. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core.egg-info/requires.txt +0 -0
  43. {sagemaker_core-1.0.24 → sagemaker_core-1.0.26}/src/sagemaker_core.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.24
3
+ Version: 1.0.26
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -28,6 +28,7 @@ Requires-Dist: black<25.0.0,>=24.3.0; extra == "codegen"
28
28
  Requires-Dist: pandas<3.0.0,>=2.0.0; extra == "codegen"
29
29
  Requires-Dist: pytest<9.0.0,>=8.0.0; extra == "codegen"
30
30
  Requires-Dist: pylint<4.0.0,>=3.0.0; extra == "codegen"
31
+ Dynamic: license-file
31
32
 
32
33
  .. image:: https://github.com/aws/sagemaker-python-sdk/raw/master/branding/icon/sagemaker-banner.png
33
34
  :height: 100px
@@ -0,0 +1 @@
1
+ 1.0.26
@@ -2070,6 +2070,7 @@ SHAPE_DAG = {
2070
2070
  "CreateDomainResponse": {
2071
2071
  "members": [
2072
2072
  {"name": "DomainArn", "shape": "DomainArn", "type": "string"},
2073
+ {"name": "DomainId", "shape": "DomainId", "type": "string"},
2073
2074
  {"name": "Url", "shape": "String1024", "type": "string"},
2074
2075
  ],
2075
2076
  "type": "structure",
@@ -4712,6 +4713,7 @@ SHAPE_DAG = {
4712
4713
  {"name": "HubContentStatus", "shape": "HubContentStatus", "type": "string"},
4713
4714
  {"name": "FailureReason", "shape": "FailureReason", "type": "string"},
4714
4715
  {"name": "CreationTime", "shape": "Timestamp", "type": "timestamp"},
4716
+ {"name": "LastModifiedTime", "shape": "Timestamp", "type": "timestamp"},
4715
4717
  ],
4716
4718
  "type": "structure",
4717
4719
  },
@@ -4911,6 +4913,11 @@ SHAPE_DAG = {
4911
4913
  "shape": "InferenceComponentStatus",
4912
4914
  "type": "string",
4913
4915
  },
4916
+ {
4917
+ "name": "LastDeploymentConfig",
4918
+ "shape": "InferenceComponentDeploymentConfig",
4919
+ "type": "structure",
4920
+ },
4914
4921
  ],
4915
4922
  "type": "structure",
4916
4923
  },
@@ -7019,6 +7026,10 @@ SHAPE_DAG = {
7019
7026
  "value_shape": "ConfigValue",
7020
7027
  "value_type": "string",
7021
7028
  },
7029
+ "HubAccessConfig": {
7030
+ "members": [{"name": "HubContentArn", "shape": "HubContentArn", "type": "string"}],
7031
+ "type": "structure",
7032
+ },
7022
7033
  "HubContentDependency": {
7023
7034
  "members": [
7024
7035
  {"name": "DependencyOriginPath", "shape": "DependencyOriginPath", "type": "string"},
@@ -7654,6 +7665,7 @@ SHAPE_DAG = {
7654
7665
  {"name": "HubContentDescription", "shape": "HubContentDescription", "type": "string"},
7655
7666
  {"name": "HubContentMarkdown", "shape": "HubContentMarkdown", "type": "string"},
7656
7667
  {"name": "HubContentDocument", "shape": "HubContentDocument", "type": "string"},
7668
+ {"name": "SupportStatus", "shape": "HubContentSupportStatus", "type": "string"},
7657
7669
  {
7658
7670
  "name": "HubContentSearchKeywords",
7659
7671
  "shape": "HubContentSearchKeywordList",
@@ -7670,6 +7682,13 @@ SHAPE_DAG = {
7670
7682
  ],
7671
7683
  "type": "structure",
7672
7684
  },
7685
+ "InferenceComponentCapacitySize": {
7686
+ "members": [
7687
+ {"name": "Type", "shape": "InferenceComponentCapacitySizeType", "type": "string"},
7688
+ {"name": "Value", "shape": "CapacitySizeValue", "type": "integer"},
7689
+ ],
7690
+ "type": "structure",
7691
+ },
7673
7692
  "InferenceComponentComputeResourceRequirements": {
7674
7693
  "members": [
7675
7694
  {"name": "NumberOfCpuCoresRequired", "shape": "NumberOfCpuCores", "type": "float"},
@@ -7699,6 +7718,42 @@ SHAPE_DAG = {
7699
7718
  ],
7700
7719
  "type": "structure",
7701
7720
  },
7721
+ "InferenceComponentDeploymentConfig": {
7722
+ "members": [
7723
+ {
7724
+ "name": "RollingUpdatePolicy",
7725
+ "shape": "InferenceComponentRollingUpdatePolicy",
7726
+ "type": "structure",
7727
+ },
7728
+ {
7729
+ "name": "AutoRollbackConfiguration",
7730
+ "shape": "AutoRollbackConfig",
7731
+ "type": "structure",
7732
+ },
7733
+ ],
7734
+ "type": "structure",
7735
+ },
7736
+ "InferenceComponentRollingUpdatePolicy": {
7737
+ "members": [
7738
+ {
7739
+ "name": "MaximumBatchSize",
7740
+ "shape": "InferenceComponentCapacitySize",
7741
+ "type": "structure",
7742
+ },
7743
+ {"name": "WaitIntervalInSeconds", "shape": "WaitIntervalInSeconds", "type": "integer"},
7744
+ {
7745
+ "name": "MaximumExecutionTimeoutInSeconds",
7746
+ "shape": "MaximumExecutionTimeoutInSeconds",
7747
+ "type": "integer",
7748
+ },
7749
+ {
7750
+ "name": "RollbackMaximumBatchSize",
7751
+ "shape": "InferenceComponentCapacitySize",
7752
+ "type": "structure",
7753
+ },
7754
+ ],
7755
+ "type": "structure",
7756
+ },
7702
7757
  "InferenceComponentRuntimeConfig": {
7703
7758
  "members": [
7704
7759
  {"name": "CopyCount", "shape": "InferenceComponentCopyCount", "type": "integer"}
@@ -13134,6 +13189,8 @@ SHAPE_DAG = {
13134
13189
  {"name": "S3DataDistributionType", "shape": "S3DataDistribution", "type": "string"},
13135
13190
  {"name": "AttributeNames", "shape": "AttributeNames", "type": "list"},
13136
13191
  {"name": "InstanceGroupNames", "shape": "InstanceGroupNames", "type": "list"},
13192
+ {"name": "ModelAccessConfig", "shape": "ModelAccessConfig", "type": "structure"},
13193
+ {"name": "HubAccessConfig", "shape": "HubAccessConfig", "type": "structure"},
13137
13194
  ],
13138
13195
  "type": "structure",
13139
13196
  },
@@ -14943,6 +15000,47 @@ SHAPE_DAG = {
14943
15000
  ],
14944
15001
  "type": "structure",
14945
15002
  },
15003
+ "UpdateHubContentReferenceRequest": {
15004
+ "members": [
15005
+ {"name": "HubName", "shape": "HubNameOrArn", "type": "string"},
15006
+ {"name": "HubContentName", "shape": "HubContentName", "type": "string"},
15007
+ {"name": "HubContentType", "shape": "HubContentType", "type": "string"},
15008
+ {"name": "MinVersion", "shape": "HubContentVersion", "type": "string"},
15009
+ ],
15010
+ "type": "structure",
15011
+ },
15012
+ "UpdateHubContentReferenceResponse": {
15013
+ "members": [
15014
+ {"name": "HubArn", "shape": "HubArn", "type": "string"},
15015
+ {"name": "HubContentArn", "shape": "HubContentArn", "type": "string"},
15016
+ ],
15017
+ "type": "structure",
15018
+ },
15019
+ "UpdateHubContentRequest": {
15020
+ "members": [
15021
+ {"name": "HubName", "shape": "HubNameOrArn", "type": "string"},
15022
+ {"name": "HubContentName", "shape": "HubContentName", "type": "string"},
15023
+ {"name": "HubContentType", "shape": "HubContentType", "type": "string"},
15024
+ {"name": "HubContentVersion", "shape": "HubContentVersion", "type": "string"},
15025
+ {"name": "HubContentDisplayName", "shape": "HubContentDisplayName", "type": "string"},
15026
+ {"name": "HubContentDescription", "shape": "HubContentDescription", "type": "string"},
15027
+ {"name": "HubContentMarkdown", "shape": "HubContentMarkdown", "type": "string"},
15028
+ {
15029
+ "name": "HubContentSearchKeywords",
15030
+ "shape": "HubContentSearchKeywordList",
15031
+ "type": "list",
15032
+ },
15033
+ {"name": "SupportStatus", "shape": "HubContentSupportStatus", "type": "string"},
15034
+ ],
15035
+ "type": "structure",
15036
+ },
15037
+ "UpdateHubContentResponse": {
15038
+ "members": [
15039
+ {"name": "HubArn", "shape": "HubArn", "type": "string"},
15040
+ {"name": "HubContentArn", "shape": "HubContentArn", "type": "string"},
15041
+ ],
15042
+ "type": "structure",
15043
+ },
14946
15044
  "UpdateHubRequest": {
14947
15045
  "members": [
14948
15046
  {"name": "HubName", "shape": "HubNameOrArn", "type": "string"},
@@ -15004,6 +15102,11 @@ SHAPE_DAG = {
15004
15102
  "shape": "InferenceComponentRuntimeConfig",
15005
15103
  "type": "structure",
15006
15104
  },
15105
+ {
15106
+ "name": "DeploymentConfig",
15107
+ "shape": "InferenceComponentDeploymentConfig",
15108
+ "type": "structure",
15109
+ },
15007
15110
  ],
15008
15111
  "type": "structure",
15009
15112
  },
@@ -3874,7 +3874,7 @@ class Cluster(Base):
3874
3874
  Deletes specific nodes within a SageMaker HyperPod cluster.
3875
3875
 
3876
3876
  Parameters:
3877
- node_ids: A list of node IDs to be deleted from the specified cluster. For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes.
3877
+ node_ids: A list of node IDs to be deleted from the specified cluster. For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes. If you need to delete more than 99 instances, contact Support for assistance.
3878
3878
  session: Boto3 session.
3879
3879
  region: Region name.
3880
3880
 
@@ -12221,6 +12221,7 @@ class HubContent(Base):
12221
12221
  hub_content_search_keywords: The searchable keywords for the hub content.
12222
12222
  hub_content_dependencies: The location of any dependencies that the hub content has, such as scripts, model artifacts, datasets, or notebooks.
12223
12223
  failure_reason: The failure reason if importing hub content failed.
12224
+ last_modified_time: The last modified time of the hub content.
12224
12225
 
12225
12226
  """
12226
12227
 
@@ -12242,6 +12243,7 @@ class HubContent(Base):
12242
12243
  hub_content_status: Optional[str] = Unassigned()
12243
12244
  failure_reason: Optional[str] = Unassigned()
12244
12245
  creation_time: Optional[datetime.datetime] = Unassigned()
12246
+ last_modified_time: Optional[datetime.datetime] = Unassigned()
12245
12247
  hub_name: Optional[str] = Unassigned()
12246
12248
 
12247
12249
  def get_name(self) -> str:
@@ -12360,6 +12362,63 @@ class HubContent(Base):
12360
12362
  transform(response, "DescribeHubContentResponse", self)
12361
12363
  return self
12362
12364
 
12365
+ @Base.add_validate_call
12366
+ def update(
12367
+ self,
12368
+ hub_content_type: str,
12369
+ hub_content_version: str,
12370
+ hub_content_display_name: Optional[str] = Unassigned(),
12371
+ hub_content_description: Optional[str] = Unassigned(),
12372
+ hub_content_markdown: Optional[str] = Unassigned(),
12373
+ hub_content_search_keywords: Optional[List[str]] = Unassigned(),
12374
+ support_status: Optional[str] = Unassigned(),
12375
+ ) -> Optional["HubContent"]:
12376
+ """
12377
+ Update a HubContent resource
12378
+
12379
+ Returns:
12380
+ The HubContent resource.
12381
+
12382
+ Raises:
12383
+ botocore.exceptions.ClientError: This exception is raised for AWS service related errors.
12384
+ The error message and error code can be parsed from the exception as follows:
12385
+ ```
12386
+ try:
12387
+ # AWS service call here
12388
+ except botocore.exceptions.ClientError as e:
12389
+ error_message = e.response['Error']['Message']
12390
+ error_code = e.response['Error']['Code']
12391
+ ```
12392
+ ResourceInUse: Resource being accessed is in use.
12393
+ ResourceNotFound: Resource being access is not found.
12394
+ """
12395
+
12396
+ logger.info("Updating hub_content resource.")
12397
+ client = Base.get_sagemaker_client()
12398
+
12399
+ operation_input_args = {
12400
+ "HubName": self.hub_name,
12401
+ "HubContentName": self.hub_content_name,
12402
+ "HubContentType": hub_content_type,
12403
+ "HubContentVersion": hub_content_version,
12404
+ "HubContentDisplayName": hub_content_display_name,
12405
+ "HubContentDescription": hub_content_description,
12406
+ "HubContentMarkdown": hub_content_markdown,
12407
+ "HubContentSearchKeywords": hub_content_search_keywords,
12408
+ "SupportStatus": support_status,
12409
+ }
12410
+ logger.debug(f"Input request: {operation_input_args}")
12411
+ # serialize the input request
12412
+ operation_input_args = serialize(operation_input_args)
12413
+ logger.debug(f"Serialized input request: {operation_input_args}")
12414
+
12415
+ # create the resource
12416
+ response = client.update_hub_content(**operation_input_args)
12417
+ logger.debug(f"Response: {response}")
12418
+ self.refresh()
12419
+
12420
+ return self
12421
+
12363
12422
  @Base.add_validate_call
12364
12423
  def delete(
12365
12424
  self,
@@ -12400,7 +12459,7 @@ class HubContent(Base):
12400
12459
  @Base.add_validate_call
12401
12460
  def wait_for_status(
12402
12461
  self,
12403
- target_status: Literal["Supported", "Deprecated"],
12462
+ target_status: Literal["Supported", "Deprecated", "Restricted"],
12404
12463
  poll: int = 5,
12405
12464
  timeout: Optional[int] = None,
12406
12465
  ) -> None:
@@ -12461,6 +12520,7 @@ class HubContent(Base):
12461
12520
  hub_content_display_name: Optional[str] = Unassigned(),
12462
12521
  hub_content_description: Optional[str] = Unassigned(),
12463
12522
  hub_content_markdown: Optional[str] = Unassigned(),
12523
+ support_status: Optional[str] = Unassigned(),
12464
12524
  hub_content_search_keywords: Optional[List[str]] = Unassigned(),
12465
12525
  tags: Optional[List[Tag]] = Unassigned(),
12466
12526
  session: Optional[Session] = None,
@@ -12479,6 +12539,7 @@ class HubContent(Base):
12479
12539
  hub_content_display_name: The display name of the hub content to import.
12480
12540
  hub_content_description: A description of the hub content to import.
12481
12541
  hub_content_markdown: A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.
12542
+ support_status: The status of the hub content resource.
12482
12543
  hub_content_search_keywords: The searchable keywords of the hub content.
12483
12544
  tags: Any tags associated with the hub content.
12484
12545
  session: Boto3 session.
@@ -12517,6 +12578,7 @@ class HubContent(Base):
12517
12578
  "HubContentDescription": hub_content_description,
12518
12579
  "HubContentMarkdown": hub_content_markdown,
12519
12580
  "HubContentDocument": hub_content_document,
12581
+ "SupportStatus": support_status,
12520
12582
  "HubContentSearchKeywords": hub_content_search_keywords,
12521
12583
  "Tags": tags,
12522
12584
  }
@@ -12714,6 +12776,56 @@ class HubContentReference(Base):
12714
12776
  transformed_response = transform(response, "CreateHubContentReferenceResponse")
12715
12777
  return cls(**operation_input_args, **transformed_response)
12716
12778
 
12779
+ @Base.add_validate_call
12780
+ def update(
12781
+ self,
12782
+ hub_content_type: str,
12783
+ min_version: Optional[str] = Unassigned(),
12784
+ ) -> Optional["HubContentReference"]:
12785
+ """
12786
+ Update a HubContentReference resource
12787
+
12788
+ Parameters:
12789
+ hub_content_type: The content type of the resource that you want to update. Only specify a ModelReference resource for this API. To update a Model or Notebook resource, use the UpdateHubContent API instead.
12790
+
12791
+ Returns:
12792
+ The HubContentReference resource.
12793
+
12794
+ Raises:
12795
+ botocore.exceptions.ClientError: This exception is raised for AWS service related errors.
12796
+ The error message and error code can be parsed from the exception as follows:
12797
+ ```
12798
+ try:
12799
+ # AWS service call here
12800
+ except botocore.exceptions.ClientError as e:
12801
+ error_message = e.response['Error']['Message']
12802
+ error_code = e.response['Error']['Code']
12803
+ ```
12804
+ ResourceInUse: Resource being accessed is in use.
12805
+ ResourceNotFound: Resource being access is not found.
12806
+ """
12807
+
12808
+ logger.info("Updating hub_content_reference resource.")
12809
+ client = Base.get_sagemaker_client()
12810
+
12811
+ operation_input_args = {
12812
+ "HubName": self.hub_name,
12813
+ "HubContentName": self.hub_content_name,
12814
+ "HubContentType": hub_content_type,
12815
+ "MinVersion": min_version,
12816
+ }
12817
+ logger.debug(f"Input request: {operation_input_args}")
12818
+ # serialize the input request
12819
+ operation_input_args = serialize(operation_input_args)
12820
+ logger.debug(f"Serialized input request: {operation_input_args}")
12821
+
12822
+ # create the resource
12823
+ response = client.update_hub_content_reference(**operation_input_args)
12824
+ logger.debug(f"Response: {response}")
12825
+ self.refresh()
12826
+
12827
+ return self
12828
+
12717
12829
  @Base.add_validate_call
12718
12830
  def delete(
12719
12831
  self,
@@ -14801,6 +14913,7 @@ class InferenceComponent(Base):
14801
14913
  specification: Details about the resources that are deployed with this inference component.
14802
14914
  runtime_config: Details about the runtime settings for the model that is deployed with the inference component.
14803
14915
  inference_component_status: The status of the inference component.
14916
+ last_deployment_config: The deployment and rollback settings that you assigned to the inference component.
14804
14917
 
14805
14918
  """
14806
14919
 
@@ -14815,6 +14928,7 @@ class InferenceComponent(Base):
14815
14928
  creation_time: Optional[datetime.datetime] = Unassigned()
14816
14929
  last_modified_time: Optional[datetime.datetime] = Unassigned()
14817
14930
  inference_component_status: Optional[str] = Unassigned()
14931
+ last_deployment_config: Optional[InferenceComponentDeploymentConfig] = Unassigned()
14818
14932
 
14819
14933
  def get_name(self) -> str:
14820
14934
  attributes = vars(self)
@@ -14999,10 +15113,14 @@ class InferenceComponent(Base):
14999
15113
  self,
15000
15114
  specification: Optional[InferenceComponentSpecification] = Unassigned(),
15001
15115
  runtime_config: Optional[InferenceComponentRuntimeConfig] = Unassigned(),
15116
+ deployment_config: Optional[InferenceComponentDeploymentConfig] = Unassigned(),
15002
15117
  ) -> Optional["InferenceComponent"]:
15003
15118
  """
15004
15119
  Update a InferenceComponent resource
15005
15120
 
15121
+ Parameters:
15122
+ deployment_config: The deployment configuration for the inference component. The configuration contains the desired deployment strategy and rollback settings.
15123
+
15006
15124
  Returns:
15007
15125
  The InferenceComponent resource.
15008
15126
 
@@ -15026,6 +15144,7 @@ class InferenceComponent(Base):
15026
15144
  "InferenceComponentName": self.inference_component_name,
15027
15145
  "Specification": specification,
15028
15146
  "RuntimeConfig": runtime_config,
15147
+ "DeploymentConfig": deployment_config,
15029
15148
  }
15030
15149
  logger.debug(f"Input request: {operation_input_args}")
15031
15150
  # serialize the input request
@@ -835,6 +835,19 @@ class AlgorithmSummary(Base):
835
835
  algorithm_description: Optional[str] = Unassigned()
836
836
 
837
837
 
838
+ class HubAccessConfig(Base):
839
+ """
840
+ HubAccessConfig
841
+ The configuration for a private hub model reference that points to a public SageMaker JumpStart model. For more information about private hubs, see Private curated hubs for foundation model access control in JumpStart.
842
+
843
+ Attributes
844
+ ----------------------
845
+ hub_content_arn: The ARN of your private model hub content. This should be a ModelReference resource type that points to a SageMaker JumpStart public hub model.
846
+ """
847
+
848
+ hub_content_arn: str
849
+
850
+
838
851
  class S3DataSource(Base):
839
852
  """
840
853
  S3DataSource
@@ -847,6 +860,8 @@ class S3DataSource(Base):
847
860
  s3_data_distribution_type: If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated. If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data. Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms. In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.
848
861
  attribute_names: A list of one or more attribute names to use that are found in a specified augmented manifest file.
849
862
  instance_group_names: A list of names of instance groups that get data from the S3 data source.
863
+ model_access_config
864
+ hub_access_config: The configuration for a private hub model reference that points to a SageMaker JumpStart public hub model.
850
865
  """
851
866
 
852
867
  s3_data_type: str
@@ -854,6 +869,8 @@ class S3DataSource(Base):
854
869
  s3_data_distribution_type: Optional[str] = Unassigned()
855
870
  attribute_names: Optional[List[str]] = Unassigned()
856
871
  instance_group_names: Optional[List[str]] = Unassigned()
872
+ model_access_config: Optional[ModelAccessConfig] = Unassigned()
873
+ hub_access_config: Optional[HubAccessConfig] = Unassigned()
857
874
 
858
875
 
859
876
  class FileSystemDataSource(Base):
@@ -4368,7 +4385,7 @@ class KernelGatewayAppSettings(Base):
4368
4385
  Attributes
4369
4386
  ----------------------
4370
4387
  default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app. The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
4371
- custom_images: A list of custom SageMaker AI images that are configured to run as a KernelGateway app.
4388
+ custom_images: A list of custom SageMaker AI images that are configured to run as a KernelGateway app. The maximum number of custom images are as follows. On a domain level: 200 On a space level: 5 On a user profile level: 5
4372
4389
  lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
4373
4390
  """
4374
4391
 
@@ -7101,7 +7118,7 @@ class ProcessingOutputConfig(Base):
7101
7118
  Attributes
7102
7119
  ----------------------
7103
7120
  outputs: An array of outputs configuring the data to upload from the processing container.
7104
- kms_key_id: The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
7121
+ kms_key_id: The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
7105
7122
  """
7106
7123
 
7107
7124
  outputs: List[ProcessingOutput]
@@ -8404,6 +8421,55 @@ class InferenceComponentRuntimeConfigSummary(Base):
8404
8421
  current_copy_count: Optional[int] = Unassigned()
8405
8422
 
8406
8423
 
8424
+ class InferenceComponentCapacitySize(Base):
8425
+ """
8426
+ InferenceComponentCapacitySize
8427
+ Specifies the type and size of the endpoint capacity to activate for a rolling deployment or a rollback strategy. You can specify your batches as either of the following: A count of inference component copies The overall percentage or your fleet For a rollback strategy, if you don't specify the fields in this object, or if you set the Value parameter to 100%, then SageMaker AI uses a blue/green rollback strategy and rolls all traffic back to the blue fleet.
8428
+
8429
+ Attributes
8430
+ ----------------------
8431
+ type: Specifies the endpoint capacity type. COPY_COUNT The endpoint activates based on the number of inference component copies. CAPACITY_PERCENT The endpoint activates based on the specified percentage of capacity.
8432
+ value: Defines the capacity size, either as a number of inference component copies or a capacity percentage.
8433
+ """
8434
+
8435
+ type: str
8436
+ value: int
8437
+
8438
+
8439
+ class InferenceComponentRollingUpdatePolicy(Base):
8440
+ """
8441
+ InferenceComponentRollingUpdatePolicy
8442
+ Specifies a rolling deployment strategy for updating a SageMaker AI inference component.
8443
+
8444
+ Attributes
8445
+ ----------------------
8446
+ maximum_batch_size: The batch size for each rolling step in the deployment process. For each step, SageMaker AI provisions capacity on the new endpoint fleet, routes traffic to that fleet, and terminates capacity on the old endpoint fleet. The value must be between 5% to 50% of the copy count of the inference component.
8447
+ wait_interval_in_seconds: The length of the baking period, during which SageMaker AI monitors alarms for each batch on the new fleet.
8448
+ maximum_execution_timeout_in_seconds: The time limit for the total deployment. Exceeding this limit causes a timeout.
8449
+ rollback_maximum_batch_size: The batch size for a rollback to the old endpoint fleet. If this field is absent, the value is set to the default, which is 100% of the total capacity. When the default is used, SageMaker AI provisions the entire capacity of the old fleet at once during rollback.
8450
+ """
8451
+
8452
+ maximum_batch_size: InferenceComponentCapacitySize
8453
+ wait_interval_in_seconds: int
8454
+ maximum_execution_timeout_in_seconds: Optional[int] = Unassigned()
8455
+ rollback_maximum_batch_size: Optional[InferenceComponentCapacitySize] = Unassigned()
8456
+
8457
+
8458
+ class InferenceComponentDeploymentConfig(Base):
8459
+ """
8460
+ InferenceComponentDeploymentConfig
8461
+ The deployment configuration for an endpoint that hosts inference components. The configuration includes the desired deployment strategy and rollback settings.
8462
+
8463
+ Attributes
8464
+ ----------------------
8465
+ rolling_update_policy: Specifies a rolling deployment strategy for updating a SageMaker AI endpoint.
8466
+ auto_rollback_configuration
8467
+ """
8468
+
8469
+ rolling_update_policy: InferenceComponentRollingUpdatePolicy
8470
+ auto_rollback_configuration: Optional[AutoRollbackConfig] = Unassigned()
8471
+
8472
+
8407
8473
  class EndpointMetadata(Base):
8408
8474
  """
8409
8475
  EndpointMetadata
@@ -9638,7 +9704,7 @@ class EndpointSummary(Base):
9638
9704
  class Experiment(Base):
9639
9705
  """
9640
9706
  Experiment
9641
- The properties of an experiment as returned by the Search API.
9707
+ The properties of an experiment as returned by the Search API. For information about experiments, see the CreateExperiment API.
9642
9708
 
9643
9709
  Attributes
9644
9710
  ----------------------
@@ -11690,11 +11756,11 @@ class ModelDashboardModel(Base):
11690
11756
  class ModelPackage(Base):
11691
11757
  """
11692
11758
  ModelPackage
11693
- A versioned model that can be deployed for SageMaker inference.
11759
+ A container for your trained model that can be deployed for SageMaker inference. This can include inference code, artifacts, and metadata. The model package type can be one of the following. Versioned model: A part of a model package group in Model Registry. Unversioned model: Not part of a model package group and used in Amazon Web Services Marketplace. For more information, see CreateModelPackage .
11694
11760
 
11695
11761
  Attributes
11696
11762
  ----------------------
11697
- model_package_name: The name of the model.
11763
+ model_package_name: The name of the model package. The name can be as follows: For a versioned model, the name is automatically generated by SageMaker Model Registry and follows the format 'ModelPackageGroupName/ModelPackageVersion'. For an unversioned model, you must provide the name.
11698
11764
  model_package_group_name: The model group to which the model belongs.
11699
11765
  model_package_version: The version number of a versioned model.
11700
11766
  model_package_arn: The Amazon Resource Name (ARN) of the model package.
@@ -11765,7 +11831,7 @@ class ModelPackage(Base):
11765
11831
  class ModelPackageGroup(Base):
11766
11832
  """
11767
11833
  ModelPackageGroup
11768
- A group of versioned models in the model registry.
11834
+ A group of versioned models in the Model Registry.
11769
11835
 
11770
11836
  Attributes
11771
11837
  ----------------------
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.24
3
+ Version: 1.0.26
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -28,6 +28,7 @@ Requires-Dist: black<25.0.0,>=24.3.0; extra == "codegen"
28
28
  Requires-Dist: pandas<3.0.0,>=2.0.0; extra == "codegen"
29
29
  Requires-Dist: pytest<9.0.0,>=8.0.0; extra == "codegen"
30
30
  Requires-Dist: pylint<4.0.0,>=3.0.0; extra == "codegen"
31
+ Dynamic: license-file
31
32
 
32
33
  .. image:: https://github.com/aws/sagemaker-python-sdk/raw/master/branding/icon/sagemaker-banner.png
33
34
  :height: 100px
@@ -1 +0,0 @@
1
- 1.0.24
File without changes