sagemaker-core 1.0.24__tar.gz → 1.0.25__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

Files changed (43) hide show
  1. {sagemaker_core-1.0.24/src/sagemaker_core.egg-info → sagemaker_core-1.0.25}/PKG-INFO +1 -1
  2. sagemaker_core-1.0.25/VERSION +1 -0
  3. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/code_injection/shape_dag.py +53 -0
  4. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/resources.py +8 -1
  5. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/shapes.py +53 -4
  6. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25/src/sagemaker_core.egg-info}/PKG-INFO +1 -1
  7. sagemaker_core-1.0.24/VERSION +0 -1
  8. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/LICENSE +0 -0
  9. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/MANIFEST.in +0 -0
  10. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/README.rst +0 -0
  11. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/pyproject.toml +0 -0
  12. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/setup.cfg +0 -0
  13. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/__init__.py +0 -0
  14. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/_version.py +0 -0
  15. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/helper/__init__.py +0 -0
  16. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/helper/session_helper.py +0 -0
  17. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/__init__.py +0 -0
  18. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
  19. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/code_injection/base.py +0 -0
  20. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/code_injection/codec.py +0 -0
  21. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/code_injection/constants.py +0 -0
  22. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/config_schema.py +0 -0
  23. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/exceptions.py +0 -0
  24. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/intelligent_defaults_helper.py +0 -0
  25. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/logs.py +0 -0
  26. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/user_agent.py +0 -0
  27. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/main/utils.py +0 -0
  28. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/resources/__init__.py +0 -0
  29. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/shapes/__init__.py +0 -0
  30. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/__init__.py +0 -0
  31. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/codegen.py +0 -0
  32. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/constants.py +0 -0
  33. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/data_extractor.py +0 -0
  34. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/method.py +0 -0
  35. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/resources_codegen.py +0 -0
  36. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/resources_extractor.py +0 -0
  37. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
  38. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
  39. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core/tools/templates.py +0 -0
  40. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
  41. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
  42. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core.egg-info/requires.txt +0 -0
  43. {sagemaker_core-1.0.24 → sagemaker_core-1.0.25}/src/sagemaker_core.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: sagemaker-core
3
- Version: 1.0.24
3
+ Version: 1.0.25
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -0,0 +1 @@
1
+ 1.0.25
@@ -4911,6 +4911,11 @@ SHAPE_DAG = {
4911
4911
  "shape": "InferenceComponentStatus",
4912
4912
  "type": "string",
4913
4913
  },
4914
+ {
4915
+ "name": "LastDeploymentConfig",
4916
+ "shape": "InferenceComponentDeploymentConfig",
4917
+ "type": "structure",
4918
+ },
4914
4919
  ],
4915
4920
  "type": "structure",
4916
4921
  },
@@ -7670,6 +7675,13 @@ SHAPE_DAG = {
7670
7675
  ],
7671
7676
  "type": "structure",
7672
7677
  },
7678
+ "InferenceComponentCapacitySize": {
7679
+ "members": [
7680
+ {"name": "Type", "shape": "InferenceComponentCapacitySizeType", "type": "string"},
7681
+ {"name": "Value", "shape": "CapacitySizeValue", "type": "integer"},
7682
+ ],
7683
+ "type": "structure",
7684
+ },
7673
7685
  "InferenceComponentComputeResourceRequirements": {
7674
7686
  "members": [
7675
7687
  {"name": "NumberOfCpuCoresRequired", "shape": "NumberOfCpuCores", "type": "float"},
@@ -7699,6 +7711,42 @@ SHAPE_DAG = {
7699
7711
  ],
7700
7712
  "type": "structure",
7701
7713
  },
7714
+ "InferenceComponentDeploymentConfig": {
7715
+ "members": [
7716
+ {
7717
+ "name": "RollingUpdatePolicy",
7718
+ "shape": "InferenceComponentRollingUpdatePolicy",
7719
+ "type": "structure",
7720
+ },
7721
+ {
7722
+ "name": "AutoRollbackConfiguration",
7723
+ "shape": "AutoRollbackConfig",
7724
+ "type": "structure",
7725
+ },
7726
+ ],
7727
+ "type": "structure",
7728
+ },
7729
+ "InferenceComponentRollingUpdatePolicy": {
7730
+ "members": [
7731
+ {
7732
+ "name": "MaximumBatchSize",
7733
+ "shape": "InferenceComponentCapacitySize",
7734
+ "type": "structure",
7735
+ },
7736
+ {"name": "WaitIntervalInSeconds", "shape": "WaitIntervalInSeconds", "type": "integer"},
7737
+ {
7738
+ "name": "MaximumExecutionTimeoutInSeconds",
7739
+ "shape": "MaximumExecutionTimeoutInSeconds",
7740
+ "type": "integer",
7741
+ },
7742
+ {
7743
+ "name": "RollbackMaximumBatchSize",
7744
+ "shape": "InferenceComponentCapacitySize",
7745
+ "type": "structure",
7746
+ },
7747
+ ],
7748
+ "type": "structure",
7749
+ },
7702
7750
  "InferenceComponentRuntimeConfig": {
7703
7751
  "members": [
7704
7752
  {"name": "CopyCount", "shape": "InferenceComponentCopyCount", "type": "integer"}
@@ -15004,6 +15052,11 @@ SHAPE_DAG = {
15004
15052
  "shape": "InferenceComponentRuntimeConfig",
15005
15053
  "type": "structure",
15006
15054
  },
15055
+ {
15056
+ "name": "DeploymentConfig",
15057
+ "shape": "InferenceComponentDeploymentConfig",
15058
+ "type": "structure",
15059
+ },
15007
15060
  ],
15008
15061
  "type": "structure",
15009
15062
  },
@@ -3874,7 +3874,7 @@ class Cluster(Base):
3874
3874
  Deletes specific nodes within a SageMaker HyperPod cluster.
3875
3875
 
3876
3876
  Parameters:
3877
- node_ids: A list of node IDs to be deleted from the specified cluster. For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes.
3877
+ node_ids: A list of node IDs to be deleted from the specified cluster. For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes. If you need to delete more than 99 instances, contact Support for assistance.
3878
3878
  session: Boto3 session.
3879
3879
  region: Region name.
3880
3880
 
@@ -14801,6 +14801,7 @@ class InferenceComponent(Base):
14801
14801
  specification: Details about the resources that are deployed with this inference component.
14802
14802
  runtime_config: Details about the runtime settings for the model that is deployed with the inference component.
14803
14803
  inference_component_status: The status of the inference component.
14804
+ last_deployment_config: The deployment and rollback settings that you assigned to the inference component.
14804
14805
 
14805
14806
  """
14806
14807
 
@@ -14815,6 +14816,7 @@ class InferenceComponent(Base):
14815
14816
  creation_time: Optional[datetime.datetime] = Unassigned()
14816
14817
  last_modified_time: Optional[datetime.datetime] = Unassigned()
14817
14818
  inference_component_status: Optional[str] = Unassigned()
14819
+ last_deployment_config: Optional[InferenceComponentDeploymentConfig] = Unassigned()
14818
14820
 
14819
14821
  def get_name(self) -> str:
14820
14822
  attributes = vars(self)
@@ -14999,10 +15001,14 @@ class InferenceComponent(Base):
14999
15001
  self,
15000
15002
  specification: Optional[InferenceComponentSpecification] = Unassigned(),
15001
15003
  runtime_config: Optional[InferenceComponentRuntimeConfig] = Unassigned(),
15004
+ deployment_config: Optional[InferenceComponentDeploymentConfig] = Unassigned(),
15002
15005
  ) -> Optional["InferenceComponent"]:
15003
15006
  """
15004
15007
  Update a InferenceComponent resource
15005
15008
 
15009
+ Parameters:
15010
+ deployment_config: The deployment configuration for the inference component. The configuration contains the desired deployment strategy and rollback settings.
15011
+
15006
15012
  Returns:
15007
15013
  The InferenceComponent resource.
15008
15014
 
@@ -15026,6 +15032,7 @@ class InferenceComponent(Base):
15026
15032
  "InferenceComponentName": self.inference_component_name,
15027
15033
  "Specification": specification,
15028
15034
  "RuntimeConfig": runtime_config,
15035
+ "DeploymentConfig": deployment_config,
15029
15036
  }
15030
15037
  logger.debug(f"Input request: {operation_input_args}")
15031
15038
  # serialize the input request
@@ -8404,6 +8404,55 @@ class InferenceComponentRuntimeConfigSummary(Base):
8404
8404
  current_copy_count: Optional[int] = Unassigned()
8405
8405
 
8406
8406
 
8407
+ class InferenceComponentCapacitySize(Base):
8408
+ """
8409
+ InferenceComponentCapacitySize
8410
+ Specifies the type and size of the endpoint capacity to activate for a rolling deployment or a rollback strategy. You can specify your batches as either of the following: A count of inference component copies The overall percentage or your fleet For a rollback strategy, if you don't specify the fields in this object, or if you set the Value parameter to 100%, then SageMaker AI uses a blue/green rollback strategy and rolls all traffic back to the blue fleet.
8411
+
8412
+ Attributes
8413
+ ----------------------
8414
+ type: Specifies the endpoint capacity type. COPY_COUNT The endpoint activates based on the number of inference component copies. CAPACITY_PERCENT The endpoint activates based on the specified percentage of capacity.
8415
+ value: Defines the capacity size, either as a number of inference component copies or a capacity percentage.
8416
+ """
8417
+
8418
+ type: str
8419
+ value: int
8420
+
8421
+
8422
+ class InferenceComponentRollingUpdatePolicy(Base):
8423
+ """
8424
+ InferenceComponentRollingUpdatePolicy
8425
+ Specifies a rolling deployment strategy for updating a SageMaker AI inference component.
8426
+
8427
+ Attributes
8428
+ ----------------------
8429
+ maximum_batch_size: The batch size for each rolling step in the deployment process. For each step, SageMaker AI provisions capacity on the new endpoint fleet, routes traffic to that fleet, and terminates capacity on the old endpoint fleet. The value must be between 5% to 50% of the copy count of the inference component.
8430
+ wait_interval_in_seconds: The length of the baking period, during which SageMaker AI monitors alarms for each batch on the new fleet.
8431
+ maximum_execution_timeout_in_seconds: The time limit for the total deployment. Exceeding this limit causes a timeout.
8432
+ rollback_maximum_batch_size: The batch size for a rollback to the old endpoint fleet. If this field is absent, the value is set to the default, which is 100% of the total capacity. When the default is used, SageMaker AI provisions the entire capacity of the old fleet at once during rollback.
8433
+ """
8434
+
8435
+ maximum_batch_size: InferenceComponentCapacitySize
8436
+ wait_interval_in_seconds: int
8437
+ maximum_execution_timeout_in_seconds: Optional[int] = Unassigned()
8438
+ rollback_maximum_batch_size: Optional[InferenceComponentCapacitySize] = Unassigned()
8439
+
8440
+
8441
+ class InferenceComponentDeploymentConfig(Base):
8442
+ """
8443
+ InferenceComponentDeploymentConfig
8444
+ The deployment configuration for an endpoint that hosts inference components. The configuration includes the desired deployment strategy and rollback settings.
8445
+
8446
+ Attributes
8447
+ ----------------------
8448
+ rolling_update_policy: Specifies a rolling deployment strategy for updating a SageMaker AI endpoint.
8449
+ auto_rollback_configuration
8450
+ """
8451
+
8452
+ rolling_update_policy: InferenceComponentRollingUpdatePolicy
8453
+ auto_rollback_configuration: Optional[AutoRollbackConfig] = Unassigned()
8454
+
8455
+
8407
8456
  class EndpointMetadata(Base):
8408
8457
  """
8409
8458
  EndpointMetadata
@@ -9638,7 +9687,7 @@ class EndpointSummary(Base):
9638
9687
  class Experiment(Base):
9639
9688
  """
9640
9689
  Experiment
9641
- The properties of an experiment as returned by the Search API.
9690
+ The properties of an experiment as returned by the Search API. For information about experiments, see the CreateExperiment API.
9642
9691
 
9643
9692
  Attributes
9644
9693
  ----------------------
@@ -11690,11 +11739,11 @@ class ModelDashboardModel(Base):
11690
11739
  class ModelPackage(Base):
11691
11740
  """
11692
11741
  ModelPackage
11693
- A versioned model that can be deployed for SageMaker inference.
11742
+ A container for your trained model that can be deployed for SageMaker inference. This can include inference code, artifacts, and metadata. The model package type can be one of the following. Versioned model: A part of a model package group in Model Registry. Unversioned model: Not part of a model package group and used in Amazon Web Services Marketplace. For more information, see CreateModelPackage .
11694
11743
 
11695
11744
  Attributes
11696
11745
  ----------------------
11697
- model_package_name: The name of the model.
11746
+ model_package_name: The name of the model package. The name can be as follows: For a versioned model, the name is automatically generated by SageMaker Model Registry and follows the format 'ModelPackageGroupName/ModelPackageVersion'. For an unversioned model, you must provide the name.
11698
11747
  model_package_group_name: The model group to which the model belongs.
11699
11748
  model_package_version: The version number of a versioned model.
11700
11749
  model_package_arn: The Amazon Resource Name (ARN) of the model package.
@@ -11765,7 +11814,7 @@ class ModelPackage(Base):
11765
11814
  class ModelPackageGroup(Base):
11766
11815
  """
11767
11816
  ModelPackageGroup
11768
- A group of versioned models in the model registry.
11817
+ A group of versioned models in the Model Registry.
11769
11818
 
11770
11819
  Attributes
11771
11820
  ----------------------
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: sagemaker-core
3
- Version: 1.0.24
3
+ Version: 1.0.25
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -1 +0,0 @@
1
- 1.0.24
File without changes