sagemaker-core 1.0.17__tar.gz → 1.0.19__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

Files changed (43) hide show
  1. {sagemaker_core-1.0.17/src/sagemaker_core.egg-info → sagemaker_core-1.0.19}/PKG-INFO +2 -2
  2. sagemaker_core-1.0.19/VERSION +1 -0
  3. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/shape_dag.py +6 -0
  4. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/resources.py +59 -44
  5. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/shapes.py +74 -62
  6. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/user_agent.py +1 -1
  7. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19/src/sagemaker_core.egg-info}/PKG-INFO +2 -2
  8. sagemaker_core-1.0.17/VERSION +0 -1
  9. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/LICENSE +0 -0
  10. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/MANIFEST.in +0 -0
  11. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/README.rst +0 -0
  12. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/pyproject.toml +0 -0
  13. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/setup.cfg +0 -0
  14. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/__init__.py +0 -0
  15. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/_version.py +0 -0
  16. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/helper/__init__.py +0 -0
  17. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/helper/session_helper.py +0 -0
  18. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/__init__.py +0 -0
  19. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
  20. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/base.py +0 -0
  21. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/codec.py +0 -0
  22. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/constants.py +0 -0
  23. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/config_schema.py +0 -0
  24. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/exceptions.py +0 -0
  25. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/intelligent_defaults_helper.py +0 -0
  26. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/logs.py +0 -0
  27. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/utils.py +0 -0
  28. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/resources/__init__.py +0 -0
  29. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/shapes/__init__.py +0 -0
  30. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/__init__.py +0 -0
  31. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/codegen.py +0 -0
  32. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/constants.py +0 -0
  33. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/data_extractor.py +0 -0
  34. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/method.py +0 -0
  35. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/resources_codegen.py +0 -0
  36. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/resources_extractor.py +0 -0
  37. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
  38. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
  39. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/templates.py +0 -0
  40. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
  41. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
  42. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/requires.txt +0 -0
  43. {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: sagemaker-core
3
- Version: 1.0.17
3
+ Version: 1.0.19
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -0,0 +1 @@
1
+ 1.0.19
@@ -101,6 +101,7 @@ SHAPE_DAG = {
101
101
  {"name": "S3DataType", "shape": "AdditionalS3DataSourceDataType", "type": "string"},
102
102
  {"name": "S3Uri", "shape": "S3Uri", "type": "string"},
103
103
  {"name": "CompressionType", "shape": "CompressionType", "type": "string"},
104
+ {"name": "ETag", "shape": "String", "type": "string"},
104
105
  ],
105
106
  "type": "structure",
106
107
  },
@@ -1355,6 +1356,7 @@ SHAPE_DAG = {
1355
1356
  "type": "list",
1356
1357
  },
1357
1358
  {"name": "PrivatePrimaryIp", "shape": "ClusterPrivatePrimaryIp", "type": "string"},
1359
+ {"name": "PrivatePrimaryIpv6", "shape": "ClusterPrivatePrimaryIpv6", "type": "string"},
1358
1360
  {"name": "PrivateDnsHostname", "shape": "ClusterPrivateDnsHostname", "type": "string"},
1359
1361
  {"name": "Placement", "shape": "ClusterInstancePlacement", "type": "structure"},
1360
1362
  ],
@@ -10717,6 +10719,7 @@ SHAPE_DAG = {
10717
10719
  "shape": "AdditionalS3DataSource",
10718
10720
  "type": "structure",
10719
10721
  },
10722
+ {"name": "ModelDataETag", "shape": "String", "type": "string"},
10720
10723
  ],
10721
10724
  "type": "structure",
10722
10725
  },
@@ -13137,6 +13140,8 @@ SHAPE_DAG = {
13137
13140
  {"name": "ModelAccessConfig", "shape": "ModelAccessConfig", "type": "structure"},
13138
13141
  {"name": "HubAccessConfig", "shape": "InferenceHubAccessConfig", "type": "structure"},
13139
13142
  {"name": "ManifestS3Uri", "shape": "S3ModelUri", "type": "string"},
13143
+ {"name": "ETag", "shape": "String", "type": "string"},
13144
+ {"name": "ManifestEtag", "shape": "String", "type": "string"},
13140
13145
  ],
13141
13146
  "type": "structure",
13142
13147
  },
@@ -13449,6 +13454,7 @@ SHAPE_DAG = {
13449
13454
  "members": [
13450
13455
  {"name": "ModelDataUrl", "shape": "Url", "type": "string"},
13451
13456
  {"name": "ModelDataSource", "shape": "ModelDataSource", "type": "structure"},
13457
+ {"name": "ModelDataETag", "shape": "String", "type": "string"},
13452
13458
  {"name": "AlgorithmName", "shape": "ArnOrName", "type": "string"},
13453
13459
  ],
13454
13460
  "type": "structure",
@@ -975,10 +975,10 @@ class App(Base):
975
975
  space_name: The name of the space. If this value is not set, then UserProfileName must be set.
976
976
  status: The status.
977
977
  last_health_check_timestamp: The timestamp of the last health check.
978
- last_user_activity_timestamp: The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.
979
- creation_time: The creation time of the application. After an application has been shut down for 24 hours, SageMaker deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
978
+ last_user_activity_timestamp: The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker AI performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.
979
+ creation_time: The creation time of the application. After an application has been shut down for 24 hours, SageMaker AI deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
980
980
  failure_reason: The failure reason.
981
- resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
981
+ resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
982
982
  built_in_lifecycle_config_arn: The lifecycle configuration that runs before the default lifecycle configuration
983
983
 
984
984
  """
@@ -1037,7 +1037,7 @@ class App(Base):
1037
1037
  user_profile_name: The user profile name. If this value is not set, then SpaceName must be set.
1038
1038
  space_name: The name of the space. If this value is not set, then UserProfileName must be set.
1039
1039
  tags: Each tag consists of a key and an optional value. Tag keys must be unique per resource.
1040
- resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
1040
+ resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
1041
1041
  session: Boto3 session.
1042
1042
  region: Region name.
1043
1043
 
@@ -2371,7 +2371,7 @@ class AutoMLJob(Base):
2371
2371
  end_time: Returns the end time of the AutoML job.
2372
2372
  failure_reason: Returns the failure reason for an AutoML job, when applicable.
2373
2373
  partial_failure_reasons: Returns a list of reasons for partial failures within an AutoML job.
2374
- best_candidate: The best model candidate selected by SageMaker Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
2374
+ best_candidate: The best model candidate selected by SageMaker AI Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
2375
2375
  generate_candidate_definitions_only: Indicates whether the output for an AutoML job generates candidate definitions only.
2376
2376
  auto_ml_job_artifacts: Returns information on the job's artifacts found in AutoMLJobArtifacts.
2377
2377
  resolved_attributes: Contains ProblemType, AutoMLJobObjective, and CompletionCriteria. If you do not provide these values, they are inferred.
@@ -4768,16 +4768,16 @@ class CompilationJob(Base):
4768
4768
  compilation_job_name: The name of the model compilation job.
4769
4769
  compilation_job_arn: The Amazon Resource Name (ARN) of the model compilation job.
4770
4770
  compilation_job_status: The status of the model compilation job.
4771
- stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
4771
+ stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
4772
4772
  creation_time: The time that the model compilation job was created.
4773
4773
  last_modified_time: The time that the status of the model compilation job was last modified.
4774
4774
  failure_reason: If a model compilation job failed, the reason it failed.
4775
4775
  model_artifacts: Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
4776
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
4776
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI assumes to perform the model compilation job.
4777
4777
  input_config: Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
4778
4778
  output_config: Information about the output location for the compiled model and the target device that the model runs on.
4779
4779
  compilation_start_time: The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.
4780
- compilation_end_time: The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.
4780
+ compilation_end_time: The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker AI detected that the job failed.
4781
4781
  inference_image: The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.
4782
4782
  model_package_version_arn: The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.
4783
4783
  model_digests: Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.
@@ -4867,9 +4867,9 @@ class CompilationJob(Base):
4867
4867
 
4868
4868
  Parameters:
4869
4869
  compilation_job_name: A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.
4870
- role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model compilation, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
4870
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf. During model compilation, Amazon SageMaker AI needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker AI Roles.
4871
4871
  output_config: Provides information about the output location for the compiled model and the target device the model runs on.
4872
- stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
4872
+ stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
4873
4873
  model_package_version_arn: The Amazon Resource Name (ARN) of a versioned model package. Provide either a ModelPackageVersionArn or an InputConfig object in the request syntax. The presence of both objects in the CreateCompilationJob request will return an exception.
4874
4874
  input_config: Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
4875
4875
  vpc_config: A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
@@ -6116,7 +6116,7 @@ class DataQualityJobDefinition(Base):
6116
6116
  data_quality_job_input: The list of inputs for the data quality monitoring job. Currently endpoints are supported.
6117
6117
  data_quality_job_output_config:
6118
6118
  job_resources:
6119
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
6119
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
6120
6120
  data_quality_baseline_config: The constraints and baselines for the data quality monitoring job definition.
6121
6121
  network_config: The networking configuration for the data quality monitoring job.
6122
6122
  stopping_condition:
@@ -6216,7 +6216,7 @@ class DataQualityJobDefinition(Base):
6216
6216
  data_quality_job_input: A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.
6217
6217
  data_quality_job_output_config:
6218
6218
  job_resources:
6219
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
6219
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
6220
6220
  data_quality_baseline_config: Configures the constraints and baselines for the monitoring job.
6221
6221
  network_config: Specifies networking configuration for the monitoring job.
6222
6222
  stopping_condition:
@@ -7249,7 +7249,7 @@ class Domain(Base):
7249
7249
  domain_name: The domain name.
7250
7250
  home_efs_file_system_id: The ID of the Amazon Elastic File System managed by this Domain.
7251
7251
  single_sign_on_managed_application_instance_id: The IAM Identity Center managed application instance ID.
7252
- single_sign_on_application_arn: The ARN of the application managed by SageMaker in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
7252
+ single_sign_on_application_arn: The ARN of the application managed by SageMaker AI in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
7253
7253
  status: The status.
7254
7254
  creation_time: The creation time.
7255
7255
  last_modified_time: The last modified time.
@@ -7258,7 +7258,7 @@ class Domain(Base):
7258
7258
  auth_mode: The domain's authentication mode.
7259
7259
  default_user_settings: Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.
7260
7260
  domain_settings: A collection of Domain settings.
7261
- app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
7261
+ app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
7262
7262
  home_efs_file_system_kms_key_id: Use KmsKeyId.
7263
7263
  subnet_ids: The VPC subnets that the domain uses for communication.
7264
7264
  url: The domain's URL.
@@ -7406,9 +7406,9 @@ class Domain(Base):
7406
7406
  vpc_id: The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
7407
7407
  domain_settings: A collection of Domain settings.
7408
7408
  tags: Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API. Tags that you specify for the Domain are also added to all Apps that the Domain launches.
7409
- app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
7409
+ app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
7410
7410
  home_efs_file_system_kms_key_id: Use KmsKeyId.
7411
- kms_key_id: SageMaker uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
7411
+ kms_key_id: SageMaker AI uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
7412
7412
  app_security_group_management: The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.
7413
7413
  tag_propagation: Indicates whether custom tag propagation is supported for the domain. Defaults to DISABLED.
7414
7414
  default_space_settings: The default settings for shared spaces that users create in the domain.
@@ -9702,7 +9702,7 @@ class EndpointConfig(Base):
9702
9702
  async_inference_config: Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
9703
9703
  explainer_config: A member of CreateEndpointConfig that enables explainers.
9704
9704
  shadow_production_variants: An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
9705
- execution_role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform actions on your behalf. For more information, see SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this action must have the iam:PassRole permission.
9705
+ execution_role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform actions on your behalf. For more information, see SageMaker AI Roles. To be able to pass this role to Amazon SageMaker AI, the caller of this action must have the iam:PassRole permission.
9706
9706
  vpc_config:
9707
9707
  enable_network_isolation: Sets whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
9708
9708
  session: Boto3 session.
@@ -13743,7 +13743,7 @@ class Image(Base):
13743
13743
  image_name: The name of the image.
13744
13744
  image_status: The status of the image.
13745
13745
  last_modified_time: When the image was last modified.
13746
- role_arn: The ARN of the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
13746
+ role_arn: The ARN of the IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
13747
13747
 
13748
13748
  """
13749
13749
 
@@ -13804,7 +13804,7 @@ class Image(Base):
13804
13804
 
13805
13805
  Parameters:
13806
13806
  image_name: The name of the image. Must be unique to your account.
13807
- role_arn: The ARN of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
13807
+ role_arn: The ARN of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
13808
13808
  description: The description of the image.
13809
13809
  display_name: The display name of the image. If not provided, ImageName is displayed.
13810
13810
  tags: A list of tags to apply to the image.
@@ -14313,7 +14313,7 @@ class ImageVersion(Base):
14313
14313
  last_modified_time: When the version was last modified.
14314
14314
  version: The version number.
14315
14315
  vendor_guidance: The stability of the image version specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
14316
- job_type: Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
14316
+ job_type: Indicates SageMaker AI job type compatibility. TRAINING: The image version is compatible with SageMaker AI training jobs. INFERENCE: The image version is compatible with SageMaker AI inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.
14317
14317
  ml_framework: The machine learning framework vended in the image version.
14318
14318
  programming_lang: The supported programming language and its version.
14319
14319
  processor: Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
@@ -14383,7 +14383,7 @@ class ImageVersion(Base):
14383
14383
  image_name: The ImageName of the Image to create a version of.
14384
14384
  aliases: A list of aliases created with the image version.
14385
14385
  vendor_guidance: The stability of the image version, specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
14386
- job_type: Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
14386
+ job_type: Indicates SageMaker AI job type compatibility. TRAINING: The image version is compatible with SageMaker AI training jobs. INFERENCE: The image version is compatible with SageMaker AI inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.
14387
14387
  ml_framework: The machine learning framework vended in the image version.
14388
14388
  programming_lang: The supported programming language and its version.
14389
14389
  processor: Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
@@ -18124,7 +18124,7 @@ class ModelBiasJobDefinition(Base):
18124
18124
  model_bias_job_input: Inputs for the model bias job.
18125
18125
  model_bias_job_output_config:
18126
18126
  job_resources:
18127
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
18127
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
18128
18128
  model_bias_baseline_config: The baseline configuration for a model bias job.
18129
18129
  network_config: Networking options for a model bias job.
18130
18130
  stopping_condition:
@@ -19348,7 +19348,7 @@ class ModelExplainabilityJobDefinition(Base):
19348
19348
  model_explainability_job_input: Inputs for the model explainability job.
19349
19349
  model_explainability_job_output_config:
19350
19350
  job_resources:
19351
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
19351
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
19352
19352
  model_explainability_baseline_config: The baseline configuration for a model explainability job.
19353
19353
  network_config: Networking options for a model explainability job.
19354
19354
  stopping_condition:
@@ -20864,7 +20864,7 @@ class ModelQualityJobDefinition(Base):
20864
20864
  model_quality_job_input: Inputs for the model quality job.
20865
20865
  model_quality_job_output_config:
20866
20866
  job_resources:
20867
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
20867
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
20868
20868
  model_quality_baseline_config: The baseline configuration for a model quality job.
20869
20869
  network_config: Networking options for a model quality job.
20870
20870
  stopping_condition:
@@ -20964,7 +20964,7 @@ class ModelQualityJobDefinition(Base):
20964
20964
  model_quality_job_input: A list of the inputs that are monitored. Currently endpoints are supported.
20965
20965
  model_quality_job_output_config:
20966
20966
  job_resources:
20967
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
20967
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
20968
20968
  model_quality_baseline_config: Specifies the constraints and baselines for the monitoring job.
20969
20969
  network_config: Specifies the network configuration for the monitoring job.
20970
20970
  stopping_condition:
@@ -22073,7 +22073,7 @@ class NotebookInstance(Base):
22073
22073
 
22074
22074
  Attributes:
22075
22075
  notebook_instance_arn: The Amazon Resource Name (ARN) of the notebook instance.
22076
- notebook_instance_name: The name of the SageMaker notebook instance.
22076
+ notebook_instance_name: The name of the SageMaker AI notebook instance.
22077
22077
  notebook_instance_status: The status of the notebook instance.
22078
22078
  failure_reason: If status is Failed, the reason it failed.
22079
22079
  url: The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
@@ -22081,16 +22081,16 @@ class NotebookInstance(Base):
22081
22081
  subnet_id: The ID of the VPC subnet.
22082
22082
  security_groups: The IDs of the VPC security groups.
22083
22083
  role_arn: The Amazon Resource Name (ARN) of the IAM role associated with the instance.
22084
- kms_key_id: The Amazon Web Services KMS key ID SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
22085
- network_interface_id: The network interface IDs that SageMaker created at the time of creating the instance.
22084
+ kms_key_id: The Amazon Web Services KMS key ID SageMaker AI uses to encrypt data when storing it on the ML storage volume attached to the instance.
22085
+ network_interface_id: The network interface IDs that SageMaker AI created at the time of creating the instance.
22086
22086
  last_modified_time: A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
22087
22087
  creation_time: A timestamp. Use this parameter to return the time when the notebook instance was created
22088
22088
  notebook_instance_lifecycle_config_name: Returns the name of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
22089
- direct_internet_access: Describes whether SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
22089
+ direct_internet_access: Describes whether SageMaker AI provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker AI training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
22090
22090
  volume_size_in_gb: The size, in GB, of the ML storage volume attached to the notebook instance.
22091
22091
  accelerator_types: This parameter is no longer supported. Elastic Inference (EI) is no longer available. This parameter was used to specify a list of the EI instance types associated with this notebook instance.
22092
- default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
22093
- additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
22092
+ default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
22093
+ additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
22094
22094
  root_access: Whether root access is enabled or disabled for users of the notebook instance. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
22095
22095
  platform_identifier: The platform identifier of the notebook instance runtime environment.
22096
22096
  instance_metadata_service_configuration: Information on the IMDS configuration of the notebook instance
@@ -22188,17 +22188,17 @@ class NotebookInstance(Base):
22188
22188
  Parameters:
22189
22189
  notebook_instance_name: The name of the new notebook instance.
22190
22190
  instance_type: The type of ML compute instance to launch for the notebook instance.
22191
- role_arn: When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker can perform these tasks. The policy must allow the SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker Roles. To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.
22191
+ role_arn: When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker AI assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker AI can perform these tasks. The policy must allow the SageMaker AI service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker AI Roles. To be able to pass this role to SageMaker AI, the caller of this API must have the iam:PassRole permission.
22192
22192
  subnet_id: The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
22193
22193
  security_group_ids: The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
22194
- kms_key_id: The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
22194
+ kms_key_id: The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker AI uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
22195
22195
  tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
22196
22196
  lifecycle_config_name: The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
22197
- direct_internet_access: Sets whether SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker training and endpoint services unless you configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
22197
+ direct_internet_access: Sets whether SageMaker AI provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker AI training and endpoint services unless you configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
22198
22198
  volume_size_in_gb: The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
22199
22199
  accelerator_types: This parameter is no longer supported. Elastic Inference (EI) is no longer available. This parameter was used to specify a list of EI instance types to associate with this notebook instance.
22200
- default_code_repository: A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
22201
- additional_code_repositories: An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
22200
+ default_code_repository: A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
22201
+ additional_code_repositories: An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
22202
22202
  root_access: Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
22203
22203
  platform_identifier: The platform identifier of the notebook instance runtime environment.
22204
22204
  instance_metadata_service_configuration: Information on the IMDS configuration of the notebook instance
@@ -23149,7 +23149,7 @@ class OptimizationJob(Base):
23149
23149
 
23150
23150
  Parameters:
23151
23151
  optimization_job_name: A custom name for the new optimization job.
23152
- role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model optimization, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
23152
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf. During model optimization, Amazon SageMaker AI needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker AI Roles.
23153
23153
  model_source: The location of the source model to optimize with an optimization job.
23154
23154
  deployment_instance_type: The type of instance that hosts the optimized model that you create with the optimization job.
23155
23155
  optimization_configs: Settings for each of the optimization techniques that the job applies.
@@ -23559,7 +23559,21 @@ class PartnerApp(Base):
23559
23559
  logger.error("Name attribute not found for object partner_app")
23560
23560
  return None
23561
23561
 
23562
+ def populate_inputs_decorator(create_func):
23563
+ @functools.wraps(create_func)
23564
+ def wrapper(*args, **kwargs):
23565
+ config_schema_for_resource = {"execution_role_arn": {"type": "string"}}
23566
+ return create_func(
23567
+ *args,
23568
+ **Base.get_updated_kwargs_with_configured_attributes(
23569
+ config_schema_for_resource, "PartnerApp", **kwargs
23570
+ ),
23571
+ )
23572
+
23573
+ return wrapper
23574
+
23562
23575
  @classmethod
23576
+ @populate_inputs_decorator
23563
23577
  @Base.add_validate_call
23564
23578
  def create(
23565
23579
  cls,
@@ -23734,6 +23748,7 @@ class PartnerApp(Base):
23734
23748
  transform(response, "DescribePartnerAppResponse", self)
23735
23749
  return self
23736
23750
 
23751
+ @populate_inputs_decorator
23737
23752
  @Base.add_validate_call
23738
23753
  def update(
23739
23754
  self,
@@ -27107,10 +27122,10 @@ class StudioLifecycleConfig(Base):
27107
27122
 
27108
27123
  Attributes:
27109
27124
  studio_lifecycle_config_arn: The ARN of the Lifecycle Configuration to describe.
27110
- studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration that is described.
27111
- creation_time: The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
27112
- last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
27113
- studio_lifecycle_config_content: The content of your Amazon SageMaker Studio Lifecycle Configuration script.
27125
+ studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration that is described.
27126
+ creation_time: The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
27127
+ last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
27128
+ studio_lifecycle_config_content: The content of your Amazon SageMaker AI Studio Lifecycle Configuration script.
27114
27129
  studio_lifecycle_config_app_type: The App type that the Lifecycle Configuration is attached to.
27115
27130
 
27116
27131
  """
@@ -27153,8 +27168,8 @@ class StudioLifecycleConfig(Base):
27153
27168
  Create a StudioLifecycleConfig resource
27154
27169
 
27155
27170
  Parameters:
27156
- studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration to create.
27157
- studio_lifecycle_config_content: The content of your Amazon SageMaker Studio Lifecycle Configuration script. This content must be base64 encoded.
27171
+ studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration to create.
27172
+ studio_lifecycle_config_content: The content of your Amazon SageMaker AI Studio Lifecycle Configuration script. This content must be base64 encoded.
27158
27173
  studio_lifecycle_config_app_type: The App type that the Lifecycle Configuration is attached to.
27159
27174
  tags: Tags to be associated with the Lifecycle Configuration. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
27160
27175
  session: Boto3 session.
@@ -27222,7 +27237,7 @@ class StudioLifecycleConfig(Base):
27222
27237
  Get a StudioLifecycleConfig resource
27223
27238
 
27224
27239
  Parameters:
27225
- studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration to describe.
27240
+ studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration to describe.
27226
27241
  session: Boto3 session.
27227
27242
  region: Region name.
27228
27243
 
@@ -548,6 +548,8 @@ class S3ModelDataSource(Base):
548
548
  model_access_config: Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
549
549
  hub_access_config: Configuration information for hub access.
550
550
  manifest_s3_uri: The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
551
+ e_tag: The ETag associated with S3 URI.
552
+ manifest_etag: The ETag associated with Manifest S3 URI.
551
553
  """
552
554
 
553
555
  s3_uri: str
@@ -556,6 +558,8 @@ class S3ModelDataSource(Base):
556
558
  model_access_config: Optional[ModelAccessConfig] = Unassigned()
557
559
  hub_access_config: Optional[InferenceHubAccessConfig] = Unassigned()
558
560
  manifest_s3_uri: Optional[str] = Unassigned()
561
+ e_tag: Optional[str] = Unassigned()
562
+ manifest_etag: Optional[str] = Unassigned()
559
563
 
560
564
 
561
565
  class ModelDataSource(Base):
@@ -594,11 +598,13 @@ class AdditionalS3DataSource(Base):
594
598
  s3_data_type: The data type of the additional data source that you specify for use in inference or training.
595
599
  s3_uri: The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
596
600
  compression_type: The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
601
+ e_tag: The ETag associated with S3 URI.
597
602
  """
598
603
 
599
604
  s3_data_type: str
600
605
  s3_uri: str
601
606
  compression_type: Optional[str] = Unassigned()
607
+ e_tag: Optional[str] = Unassigned()
602
608
 
603
609
 
604
610
  class ModelPackageContainerDefinition(Base):
@@ -609,7 +615,7 @@ class ModelPackageContainerDefinition(Base):
609
615
  Attributes
610
616
  ----------------------
611
617
  container_hostname: The DNS host name for the Docker container.
612
- image: The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
618
+ image: The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
613
619
  image_digest: An MD5 hash of the training algorithm that identifies the Docker image used for training.
614
620
  model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the model package.
615
621
  model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
@@ -620,6 +626,7 @@ class ModelPackageContainerDefinition(Base):
620
626
  framework_version: The framework version of the Model Package Container Image.
621
627
  nearest_model_name: The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
622
628
  additional_s3_data_source: The additional data source that is used during inference in the Docker container for your model package.
629
+ model_data_e_tag: The ETag associated with Model Data URL.
623
630
  """
624
631
 
625
632
  image: str
@@ -634,6 +641,7 @@ class ModelPackageContainerDefinition(Base):
634
641
  framework_version: Optional[str] = Unassigned()
635
642
  nearest_model_name: Optional[str] = Unassigned()
636
643
  additional_s3_data_source: Optional[AdditionalS3DataSource] = Unassigned()
644
+ model_data_e_tag: Optional[str] = Unassigned()
637
645
 
638
646
 
639
647
  class AdditionalInferenceSpecificationDefinition(Base):
@@ -750,7 +758,7 @@ class TrainingImageConfig(Base):
750
758
  class AlgorithmSpecification(Base):
751
759
  """
752
760
  AlgorithmSpecification
753
- Specifies the training algorithm to use in a CreateTrainingJob request. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
761
+ Specifies the training algorithm to use in a CreateTrainingJob request. SageMaker uses its own SageMaker account credentials to pull and access built-in algorithms so built-in algorithms are universally accessible across all Amazon Web Services accounts. As a result, built-in algorithms have standard, unrestricted access. You cannot restrict built-in algorithms using IAM roles. Use custom algorithms if you require specific access controls. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
754
762
 
755
763
  Attributes
756
764
  ----------------------
@@ -1190,11 +1198,11 @@ class AnnotationConsolidationConfig(Base):
1190
1198
  class ResourceSpec(Base):
1191
1199
  """
1192
1200
  ResourceSpec
1193
- Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
1201
+ Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.
1194
1202
 
1195
1203
  Attributes
1196
1204
  ----------------------
1197
- sage_maker_image_arn: The ARN of the SageMaker image that the image version belongs to.
1205
+ sage_maker_image_arn: The ARN of the SageMaker AI image that the image version belongs to.
1198
1206
  sage_maker_image_version_arn: The ARN of the image version created on the instance.
1199
1207
  sage_maker_image_version_alias: The SageMakerImageVersionAlias of the image to launch with. This value is in SemVer 2.0.0 versioning format.
1200
1208
  instance_type: The instance type that the image version runs on. JupyterServer apps only support the system value. For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.
@@ -1211,7 +1219,7 @@ class ResourceSpec(Base):
1211
1219
  class AppDetails(Base):
1212
1220
  """
1213
1221
  AppDetails
1214
- Details about an Amazon SageMaker app.
1222
+ Details about an Amazon SageMaker AI app.
1215
1223
 
1216
1224
  Attributes
1217
1225
  ----------------------
@@ -1253,7 +1261,7 @@ class KernelSpec(Base):
1253
1261
  class FileSystemConfig(Base):
1254
1262
  """
1255
1263
  FileSystemConfig
1256
- The Amazon Elastic File System storage configuration for a SageMaker image.
1264
+ The Amazon Elastic File System storage configuration for a SageMaker AI image.
1257
1265
 
1258
1266
  Attributes
1259
1267
  ----------------------
@@ -1270,12 +1278,12 @@ class FileSystemConfig(Base):
1270
1278
  class KernelGatewayImageConfig(Base):
1271
1279
  """
1272
1280
  KernelGatewayImageConfig
1273
- The configuration for the file system and kernels in a SageMaker image running as a KernelGateway app.
1281
+ The configuration for the file system and kernels in a SageMaker AI image running as a KernelGateway app.
1274
1282
 
1275
1283
  Attributes
1276
1284
  ----------------------
1277
1285
  kernel_specs: The specification of the Jupyter kernels in the image.
1278
- file_system_config: The Amazon Elastic File System storage configuration for a SageMaker image.
1286
+ file_system_config: The Amazon Elastic File System storage configuration for a SageMaker AI image.
1279
1287
  """
1280
1288
 
1281
1289
  kernel_specs: List[KernelSpec]
@@ -1302,7 +1310,7 @@ class ContainerConfig(Base):
1302
1310
  class JupyterLabAppImageConfig(Base):
1303
1311
  """
1304
1312
  JupyterLabAppImageConfig
1305
- The configuration for the file system and kernels in a SageMaker image running as a JupyterLab app. The FileSystemConfig object is not supported.
1313
+ The configuration for the file system and kernels in a SageMaker AI image running as a JupyterLab app. The FileSystemConfig object is not supported.
1306
1314
 
1307
1315
  Attributes
1308
1316
  ----------------------
@@ -1332,7 +1340,7 @@ class CodeEditorAppImageConfig(Base):
1332
1340
  class AppImageConfigDetails(Base):
1333
1341
  """
1334
1342
  AppImageConfigDetails
1335
- The configuration for running a SageMaker image as a KernelGateway app.
1343
+ The configuration for running a SageMaker AI image as a KernelGateway app.
1336
1344
 
1337
1345
  Attributes
1338
1346
  ----------------------
@@ -1340,7 +1348,7 @@ class AppImageConfigDetails(Base):
1340
1348
  app_image_config_name: The name of the AppImageConfig. Must be unique to your account.
1341
1349
  creation_time: When the AppImageConfig was created.
1342
1350
  last_modified_time: When the AppImageConfig was last modified.
1343
- kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker image.
1351
+ kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker AI image.
1344
1352
  jupyter_lab_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
1345
1353
  code_editor_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
1346
1354
  """
@@ -1788,7 +1796,7 @@ class AutoMLS3DataSource(Base):
1788
1796
 
1789
1797
  Attributes
1790
1798
  ----------------------
1791
- s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
1799
+ s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
1792
1800
  s3_uri: The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
1793
1801
  """
1794
1802
 
@@ -2849,12 +2857,12 @@ class CanvasAppSettings(Base):
2849
2857
  class CaptureContentTypeHeader(Base):
2850
2858
  """
2851
2859
  CaptureContentTypeHeader
2852
- Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
2860
+ Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker AI will by default base64 encode when capturing the data.
2853
2861
 
2854
2862
  Attributes
2855
2863
  ----------------------
2856
- csv_content_types: The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
2857
- json_content_types: The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
2864
+ csv_content_types: The list of all content type headers that Amazon SageMaker AI will treat as CSV and capture accordingly.
2865
+ json_content_types: The list of all content type headers that SageMaker AI will treat as JSON and capture accordingly.
2858
2866
  """
2859
2867
 
2860
2868
  csv_content_types: Optional[List[str]] = Unassigned()
@@ -3241,6 +3249,7 @@ class ClusterNodeDetails(Base):
3241
3249
  threads_per_core: The number of threads per CPU core you specified under CreateCluster.
3242
3250
  instance_storage_configs: The configurations of additional storage specified to the instance group where the instance (node) is launched.
3243
3251
  private_primary_ip: The private primary IP address of the SageMaker HyperPod cluster node.
3252
+ private_primary_ipv6: The private primary IPv6 address of the SageMaker HyperPod cluster node.
3244
3253
  private_dns_hostname: The private DNS hostname of the SageMaker HyperPod cluster node.
3245
3254
  placement: The placement details of the SageMaker HyperPod cluster node.
3246
3255
  """
@@ -3255,6 +3264,7 @@ class ClusterNodeDetails(Base):
3255
3264
  threads_per_core: Optional[int] = Unassigned()
3256
3265
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3257
3266
  private_primary_ip: Optional[str] = Unassigned()
3267
+ private_primary_ipv6: Optional[str] = Unassigned()
3258
3268
  private_dns_hostname: Optional[str] = Unassigned()
3259
3269
  placement: Optional[ClusterInstancePlacement] = Unassigned()
3260
3270
 
@@ -3357,7 +3367,7 @@ class ClusterSummary(Base):
3357
3367
  class CustomImage(Base):
3358
3368
  """
3359
3369
  CustomImage
3360
- A custom SageMaker image. For more information, see Bring your own SageMaker image.
3370
+ A custom SageMaker AI image. For more information, see Bring your own SageMaker AI image.
3361
3371
 
3362
3372
  Attributes
3363
3373
  ----------------------
@@ -3395,7 +3405,7 @@ class CodeEditorAppSettings(Base):
3395
3405
  class CodeRepository(Base):
3396
3406
  """
3397
3407
  CodeRepository
3398
- A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
3408
+ A Git repository that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
3399
3409
 
3400
3410
  Attributes
3401
3411
  ----------------------
@@ -4047,11 +4057,11 @@ class OutputConfig(Base):
4047
4057
 
4048
4058
  Attributes
4049
4059
  ----------------------
4050
- s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
4060
+ s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
4051
4061
  target_device: Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform. Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.
4052
4062
  target_platform: Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms: Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']} Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"} ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
4053
4063
  compiler_options: Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI Reference Guide. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
4054
- kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4064
+ kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4055
4065
  """
4056
4066
 
4057
4067
  s3_output_location: str
@@ -4064,7 +4074,7 @@ class OutputConfig(Base):
4064
4074
  class NeoVpcConfig(Base):
4065
4075
  """
4066
4076
  NeoVpcConfig
4067
- The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs Access to Resources in Your Amazon VPC.
4077
+ The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker AI Compilation Jobs Access to Resources in Your Amazon VPC.
4068
4078
 
4069
4079
  Attributes
4070
4080
  ----------------------
@@ -4197,8 +4207,8 @@ class MonitoringS3Output(Base):
4197
4207
 
4198
4208
  Attributes
4199
4209
  ----------------------
4200
- s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
4201
- local_path: The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
4210
+ s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job.
4211
+ local_path: The local path to the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job. LocalPath is an absolute path for the output data.
4202
4212
  s3_upload_mode: Whether to upload the results of the monitoring job continuously or after the job completes.
4203
4213
  """
4204
4214
 
@@ -4228,7 +4238,7 @@ class MonitoringOutputConfig(Base):
4228
4238
  Attributes
4229
4239
  ----------------------
4230
4240
  monitoring_outputs: Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
4231
- kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
4241
+ kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
4232
4242
  """
4233
4243
 
4234
4244
  monitoring_outputs: List[MonitoringOutput]
@@ -4245,7 +4255,7 @@ class MonitoringClusterConfig(Base):
4245
4255
  instance_count: The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
4246
4256
  instance_type: The ML compute instance type for the processing job.
4247
4257
  volume_size_in_gb: The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
4248
- volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
4258
+ volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
4249
4259
  """
4250
4260
 
4251
4261
  instance_count: int
@@ -4319,7 +4329,7 @@ class EdgeOutputConfig(Base):
4319
4329
  class SharingSettings(Base):
4320
4330
  """
4321
4331
  SharingSettings
4322
- Specifies options for sharing Amazon SageMaker Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
4332
+ Specifies options for sharing Amazon SageMaker AI Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
4323
4333
 
4324
4334
  Attributes
4325
4335
  ----------------------
@@ -4340,9 +4350,9 @@ class JupyterServerAppSettings(Base):
4340
4350
 
4341
4351
  Attributes
4342
4352
  ----------------------
4343
- default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
4353
+ default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
4344
4354
  lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
4345
- code_repositories: A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
4355
+ code_repositories: A list of Git repositories that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
4346
4356
  """
4347
4357
 
4348
4358
  default_resource_spec: Optional[ResourceSpec] = Unassigned()
@@ -4357,8 +4367,8 @@ class KernelGatewayAppSettings(Base):
4357
4367
 
4358
4368
  Attributes
4359
4369
  ----------------------
4360
- default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
4361
- custom_images: A list of custom SageMaker images that are configured to run as a KernelGateway app.
4370
+ default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app. The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
4371
+ custom_images: A list of custom SageMaker AI images that are configured to run as a KernelGateway app.
4362
4372
  lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
4363
4373
  """
4364
4374
 
@@ -4374,7 +4384,7 @@ class TensorBoardAppSettings(Base):
4374
4384
 
4375
4385
  Attributes
4376
4386
  ----------------------
4377
- default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
4387
+ default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
4378
4388
  """
4379
4389
 
4380
4390
  default_resource_spec: Optional[ResourceSpec] = Unassigned()
@@ -4403,7 +4413,7 @@ class RSessionAppSettings(Base):
4403
4413
  Attributes
4404
4414
  ----------------------
4405
4415
  default_resource_spec
4406
- custom_images: A list of custom SageMaker images that are configured to run as a RSession app.
4416
+ custom_images: A list of custom SageMaker AI images that are configured to run as a RSession app.
4407
4417
  """
4408
4418
 
4409
4419
  default_resource_spec: Optional[ResourceSpec] = Unassigned()
@@ -4496,12 +4506,12 @@ class CustomPosixUserConfig(Base):
4496
4506
  class EFSFileSystemConfig(Base):
4497
4507
  """
4498
4508
  EFSFileSystemConfig
4499
- The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker Domain.
4509
+ The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker AI Domain.
4500
4510
 
4501
4511
  Attributes
4502
4512
  ----------------------
4503
4513
  file_system_id: The ID of your Amazon EFS file system.
4504
- file_system_path: The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
4514
+ file_system_path: The path to the file system directory that is accessible in Amazon SageMaker AI Studio. Permitted users can access only this directory and below.
4505
4515
  """
4506
4516
 
4507
4517
  file_system_id: str
@@ -4526,7 +4536,7 @@ class FSxLustreFileSystemConfig(Base):
4526
4536
  class CustomFileSystemConfig(Base):
4527
4537
  """
4528
4538
  CustomFileSystemConfig
4529
- The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
4539
+ The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
4530
4540
 
4531
4541
  Attributes
4532
4542
  ----------------------
@@ -4580,8 +4590,8 @@ class UserSettings(Base):
4580
4590
  Attributes
4581
4591
  ----------------------
4582
4592
  execution_role: The execution role for the user. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
4583
- security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4584
- sharing_settings: Specifies options for sharing Amazon SageMaker Studio notebooks.
4593
+ security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4594
+ sharing_settings: Specifies options for sharing Amazon SageMaker AI Studio notebooks.
4585
4595
  jupyter_server_app_settings: The Jupyter server's app settings.
4586
4596
  kernel_gateway_app_settings: The kernel gateway app settings.
4587
4597
  tensor_board_app_settings: The TensorBoard app settings.
@@ -4594,7 +4604,7 @@ class UserSettings(Base):
4594
4604
  default_landing_uri: The default experience that the user is directed to when accessing the domain. The supported values are: studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED. app:JupyterServer:: Indicates that Studio Classic is the default experience.
4595
4605
  studio_web_portal: Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
4596
4606
  custom_posix_user_config: Details about the POSIX identity that is used for file system operations. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4597
- custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4607
+ custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker AI Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4598
4608
  studio_web_portal_settings: Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
4599
4609
  auto_mount_home_efs: Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
4600
4610
  """
@@ -4662,7 +4672,7 @@ class DomainSettings(Base):
4662
4672
  ----------------------
4663
4673
  security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
4664
4674
  r_studio_server_pro_domain_settings: A collection of settings that configure the RStudioServerPro Domain-level app.
4665
- execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
4675
+ execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key.
4666
4676
  docker_settings: A collection of settings that configure the domain's Docker interaction.
4667
4677
  amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
4668
4678
  """
@@ -4688,7 +4698,7 @@ class DefaultSpaceSettings(Base):
4688
4698
  jupyter_lab_app_settings
4689
4699
  space_storage_settings
4690
4700
  custom_posix_user_config
4691
- custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker Studio.
4701
+ custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
4692
4702
  """
4693
4703
 
4694
4704
  execution_role: Optional[str] = Unassigned()
@@ -4871,16 +4881,16 @@ class ProductionVariant(Base):
4871
4881
  class DataCaptureConfig(Base):
4872
4882
  """
4873
4883
  DataCaptureConfig
4874
- Configuration to control how SageMaker captures inference data.
4884
+ Configuration to control how SageMaker AI captures inference data.
4875
4885
 
4876
4886
  Attributes
4877
4887
  ----------------------
4878
4888
  enable_capture: Whether data capture should be enabled or disabled (defaults to enabled).
4879
- initial_sampling_percentage: The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
4889
+ initial_sampling_percentage: The percentage of requests SageMaker AI will capture. A lower value is recommended for Endpoints with high traffic.
4880
4890
  destination_s3_uri: The Amazon S3 location used to capture the data.
4881
- kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4891
+ kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker AI uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4882
4892
  capture_options: Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
4883
- capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
4893
+ capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker AI will by default base64 encode when capturing the data.
4884
4894
  """
4885
4895
 
4886
4896
  initial_sampling_percentage: int
@@ -5534,7 +5544,7 @@ class InferenceComponentSpecification(Base):
5534
5544
 
5535
5545
  Attributes
5536
5546
  ----------------------
5537
- model_name: The name of an existing SageMaker model object in your account that you want to deploy with the inference component.
5547
+ model_name: The name of an existing SageMaker AI model object in your account that you want to deploy with the inference component.
5538
5548
  container: Defines a container that provides the runtime environment for a model that you deploy with an inference component.
5539
5549
  startup_parameters: Settings that take effect while the model container starts up.
5540
5550
  compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
@@ -6305,12 +6315,14 @@ class SourceAlgorithm(Base):
6305
6315
  ----------------------
6306
6316
  model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.
6307
6317
  model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
6318
+ model_data_e_tag: The ETag associated with Model Data URL.
6308
6319
  algorithm_name: The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
6309
6320
  """
6310
6321
 
6311
6322
  algorithm_name: Union[str, object]
6312
6323
  model_data_url: Optional[str] = Unassigned()
6313
6324
  model_data_source: Optional[ModelDataSource] = Unassigned()
6325
+ model_data_e_tag: Optional[str] = Unassigned()
6314
6326
 
6315
6327
 
6316
6328
  class SourceAlgorithmSpecification(Base):
@@ -6595,7 +6607,7 @@ class ScheduleConfig(Base):
6595
6607
 
6596
6608
  Attributes
6597
6609
  ----------------------
6598
- schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
6610
+ schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker AI will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
6599
6611
  data_analysis_start_time: Sets the start time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to monitor the five hours of data in your dataset that precede the start of each monitoring job, you would specify: "-PT5H". The start time that you specify must not precede the end time that you specify by more than 24 hours. You specify the end time with the DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
6600
6612
  data_analysis_end_time: Sets the end time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to end the window one hour before the start of each monitoring job, you would specify: "-PT1H". The end time that you specify must not follow the start time that you specify by more than 24 hours. You specify the start time with the DataAnalysisStartTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
6601
6613
  """
@@ -6683,14 +6695,14 @@ class MonitoringJobDefinition(Base):
6683
6695
  Attributes
6684
6696
  ----------------------
6685
6697
  baseline_config: Baseline configuration used to validate that the data conforms to the specified constraints and statistics
6686
- monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
6698
+ monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker AI Endpoint.
6687
6699
  monitoring_output_config: The array of outputs from the monitoring job to be uploaded to Amazon S3.
6688
6700
  monitoring_resources: Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
6689
6701
  monitoring_app_specification: Configures the monitoring job to run a specified Docker container image.
6690
6702
  stopping_condition: Specifies a time limit for how long the monitoring job is allowed to run.
6691
6703
  environment: Sets the environment variables in the Docker container.
6692
6704
  network_config: Specifies networking options for an monitoring job.
6693
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
6705
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
6694
6706
  """
6695
6707
 
6696
6708
  monitoring_inputs: List[MonitoringInput]
@@ -7281,7 +7293,7 @@ class SpaceStorageSettings(Base):
7281
7293
  class EFSFileSystem(Base):
7282
7294
  """
7283
7295
  EFSFileSystem
7284
- A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
7296
+ A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
7285
7297
 
7286
7298
  Attributes
7287
7299
  ----------------------
@@ -7307,7 +7319,7 @@ class FSxLustreFileSystem(Base):
7307
7319
  class CustomFileSystem(Base):
7308
7320
  """
7309
7321
  CustomFileSystem
7310
- A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
7322
+ A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
7311
7323
 
7312
7324
  Attributes
7313
7325
  ----------------------
@@ -7330,9 +7342,9 @@ class SpaceSettings(Base):
7330
7342
  kernel_gateway_app_settings
7331
7343
  code_editor_app_settings: The Code Editor application settings.
7332
7344
  jupyter_lab_app_settings: The settings for the JupyterLab application.
7333
- app_type: The type of app created within the space.
7345
+ app_type: The type of app created within the space. If using the UpdateSpace API, you can't change the app type of your space by specifying a different value for this field.
7334
7346
  space_storage_settings: The storage settings for a space.
7335
- custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
7347
+ custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
7336
7348
  """
7337
7349
 
7338
7350
  jupyter_server_app_settings: Optional[JupyterServerAppSettings] = Unassigned()
@@ -8361,7 +8373,7 @@ class InferenceComponentSpecificationSummary(Base):
8361
8373
 
8362
8374
  Attributes
8363
8375
  ----------------------
8364
- model_name: The name of the SageMaker model object that is deployed with the inference component.
8376
+ model_name: The name of the SageMaker AI model object that is deployed with the inference component.
8365
8377
  container: Details about the container that provides the runtime environment for the model that is deployed with the inference component.
8366
8378
  startup_parameters: Settings that take effect while the model container starts up.
8367
8379
  compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
@@ -9286,7 +9298,7 @@ class DomainSettingsForUpdate(Base):
9286
9298
  Attributes
9287
9299
  ----------------------
9288
9300
  r_studio_server_pro_domain_settings_for_update: A collection of RStudioServerPro Domain-level app settings to update. A single RStudioServerPro application is created for a domain.
9289
- execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
9301
+ execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
9290
9302
  security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
9291
9303
  docker_settings: A collection of settings that configure the domain's Docker interaction.
9292
9304
  amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain.
@@ -10103,7 +10115,7 @@ class HyperParameterTuningJobSummary(Base):
10103
10115
  class Image(Base):
10104
10116
  """
10105
10117
  Image
10106
- A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion.
10118
+ A SageMaker AI image. A SageMaker AI image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker AI ImageVersion.
10107
10119
 
10108
10120
  Attributes
10109
10121
  ----------------------
@@ -10130,7 +10142,7 @@ class Image(Base):
10130
10142
  class ImageVersion(Base):
10131
10143
  """
10132
10144
  ImageVersion
10133
- A version of a SageMaker Image. A version represents an existing container image.
10145
+ A version of a SageMaker AI Image. A version represents an existing container image.
10134
10146
 
10135
10147
  Attributes
10136
10148
  ----------------------
@@ -10748,7 +10760,7 @@ class NotebookInstanceLifecycleConfigSummary(Base):
10748
10760
  class NotebookInstanceSummary(Base):
10749
10761
  """
10750
10762
  NotebookInstanceSummary
10751
- Provides summary information for an SageMaker notebook instance.
10763
+ Provides summary information for an SageMaker AI notebook instance.
10752
10764
 
10753
10765
  Attributes
10754
10766
  ----------------------
@@ -10760,8 +10772,8 @@ class NotebookInstanceSummary(Base):
10760
10772
  creation_time: A timestamp that shows when the notebook instance was created.
10761
10773
  last_modified_time: A timestamp that shows when the notebook instance was last modified.
10762
10774
  notebook_instance_lifecycle_config_name: The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
10763
- default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
10764
- additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
10775
+ default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
10776
+ additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
10765
10777
  """
10766
10778
 
10767
10779
  notebook_instance_name: Union[str, object]
@@ -11231,14 +11243,14 @@ class SpaceDetails(Base):
11231
11243
  class StudioLifecycleConfigDetails(Base):
11232
11244
  """
11233
11245
  StudioLifecycleConfigDetails
11234
- Details of the Amazon SageMaker Studio Lifecycle Configuration.
11246
+ Details of the Amazon SageMaker AI Studio Lifecycle Configuration.
11235
11247
 
11236
11248
  Attributes
11237
11249
  ----------------------
11238
11250
  studio_lifecycle_config_arn: The Amazon Resource Name (ARN) of the Lifecycle Configuration.
11239
- studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration.
11240
- creation_time: The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
11241
- last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
11251
+ studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration.
11252
+ creation_time: The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
11253
+ last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
11242
11254
  studio_lifecycle_config_app_type: The App type to which the Lifecycle Configuration is attached.
11243
11255
  """
11244
11256
 
@@ -24,7 +24,7 @@ NOTEBOOK_PREFIX = "AWS-SageMaker-Notebook-Instance"
24
24
  NOTEBOOK_METADATA_FILE = "/etc/opt/ml/sagemaker-notebook-instance-version.txt"
25
25
  STUDIO_METADATA_FILE = "/opt/ml/metadata/resource-metadata.json"
26
26
 
27
- SagemakerCore_VERSION = "v0.1.6"
27
+ SagemakerCore_VERSION = importlib_metadata.version("sagemaker-core")
28
28
 
29
29
 
30
30
  def process_notebook_metadata_file() -> str:
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: sagemaker-core
3
- Version: 1.0.17
3
+ Version: 1.0.19
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -1 +0,0 @@
1
- 1.0.17
File without changes