sagemaker-core 1.0.17__tar.gz → 1.0.19__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- {sagemaker_core-1.0.17/src/sagemaker_core.egg-info → sagemaker_core-1.0.19}/PKG-INFO +2 -2
- sagemaker_core-1.0.19/VERSION +1 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/shape_dag.py +6 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/resources.py +59 -44
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/shapes.py +74 -62
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/user_agent.py +1 -1
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19/src/sagemaker_core.egg-info}/PKG-INFO +2 -2
- sagemaker_core-1.0.17/VERSION +0 -1
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/LICENSE +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/MANIFEST.in +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/README.rst +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/pyproject.toml +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/setup.cfg +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/_version.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/helper/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/helper/session_helper.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/base.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/codec.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/constants.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/config_schema.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/exceptions.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/intelligent_defaults_helper.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/logs.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/utils.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/resources/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/shapes/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/__init__.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/codegen.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/constants.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/data_extractor.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/method.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/resources_codegen.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/resources_extractor.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/shapes_codegen.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/shapes_extractor.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/templates.py +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/SOURCES.txt +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/dependency_links.txt +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/requires.txt +0 -0
- {sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: sagemaker-core
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.19
|
|
4
4
|
Summary: An python package for sagemaker core functionalities
|
|
5
5
|
Author-email: AWS <sagemaker-interests@amazon.com>
|
|
6
6
|
Project-URL: Repository, https://github.com/aws/sagemaker-core.git
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
1.0.19
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/shape_dag.py
RENAMED
|
@@ -101,6 +101,7 @@ SHAPE_DAG = {
|
|
|
101
101
|
{"name": "S3DataType", "shape": "AdditionalS3DataSourceDataType", "type": "string"},
|
|
102
102
|
{"name": "S3Uri", "shape": "S3Uri", "type": "string"},
|
|
103
103
|
{"name": "CompressionType", "shape": "CompressionType", "type": "string"},
|
|
104
|
+
{"name": "ETag", "shape": "String", "type": "string"},
|
|
104
105
|
],
|
|
105
106
|
"type": "structure",
|
|
106
107
|
},
|
|
@@ -1355,6 +1356,7 @@ SHAPE_DAG = {
|
|
|
1355
1356
|
"type": "list",
|
|
1356
1357
|
},
|
|
1357
1358
|
{"name": "PrivatePrimaryIp", "shape": "ClusterPrivatePrimaryIp", "type": "string"},
|
|
1359
|
+
{"name": "PrivatePrimaryIpv6", "shape": "ClusterPrivatePrimaryIpv6", "type": "string"},
|
|
1358
1360
|
{"name": "PrivateDnsHostname", "shape": "ClusterPrivateDnsHostname", "type": "string"},
|
|
1359
1361
|
{"name": "Placement", "shape": "ClusterInstancePlacement", "type": "structure"},
|
|
1360
1362
|
],
|
|
@@ -10717,6 +10719,7 @@ SHAPE_DAG = {
|
|
|
10717
10719
|
"shape": "AdditionalS3DataSource",
|
|
10718
10720
|
"type": "structure",
|
|
10719
10721
|
},
|
|
10722
|
+
{"name": "ModelDataETag", "shape": "String", "type": "string"},
|
|
10720
10723
|
],
|
|
10721
10724
|
"type": "structure",
|
|
10722
10725
|
},
|
|
@@ -13137,6 +13140,8 @@ SHAPE_DAG = {
|
|
|
13137
13140
|
{"name": "ModelAccessConfig", "shape": "ModelAccessConfig", "type": "structure"},
|
|
13138
13141
|
{"name": "HubAccessConfig", "shape": "InferenceHubAccessConfig", "type": "structure"},
|
|
13139
13142
|
{"name": "ManifestS3Uri", "shape": "S3ModelUri", "type": "string"},
|
|
13143
|
+
{"name": "ETag", "shape": "String", "type": "string"},
|
|
13144
|
+
{"name": "ManifestEtag", "shape": "String", "type": "string"},
|
|
13140
13145
|
],
|
|
13141
13146
|
"type": "structure",
|
|
13142
13147
|
},
|
|
@@ -13449,6 +13454,7 @@ SHAPE_DAG = {
|
|
|
13449
13454
|
"members": [
|
|
13450
13455
|
{"name": "ModelDataUrl", "shape": "Url", "type": "string"},
|
|
13451
13456
|
{"name": "ModelDataSource", "shape": "ModelDataSource", "type": "structure"},
|
|
13457
|
+
{"name": "ModelDataETag", "shape": "String", "type": "string"},
|
|
13452
13458
|
{"name": "AlgorithmName", "shape": "ArnOrName", "type": "string"},
|
|
13453
13459
|
],
|
|
13454
13460
|
"type": "structure",
|
|
@@ -975,10 +975,10 @@ class App(Base):
|
|
|
975
975
|
space_name: The name of the space. If this value is not set, then UserProfileName must be set.
|
|
976
976
|
status: The status.
|
|
977
977
|
last_health_check_timestamp: The timestamp of the last health check.
|
|
978
|
-
last_user_activity_timestamp: The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.
|
|
979
|
-
creation_time: The creation time of the application. After an application has been shut down for 24 hours, SageMaker deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
|
|
978
|
+
last_user_activity_timestamp: The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker AI performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.
|
|
979
|
+
creation_time: The creation time of the application. After an application has been shut down for 24 hours, SageMaker AI deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
|
|
980
980
|
failure_reason: The failure reason.
|
|
981
|
-
resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
|
|
981
|
+
resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
|
|
982
982
|
built_in_lifecycle_config_arn: The lifecycle configuration that runs before the default lifecycle configuration
|
|
983
983
|
|
|
984
984
|
"""
|
|
@@ -1037,7 +1037,7 @@ class App(Base):
|
|
|
1037
1037
|
user_profile_name: The user profile name. If this value is not set, then SpaceName must be set.
|
|
1038
1038
|
space_name: The name of the space. If this value is not set, then UserProfileName must be set.
|
|
1039
1039
|
tags: Each tag consists of a key and an optional value. Tag keys must be unique per resource.
|
|
1040
|
-
resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
|
|
1040
|
+
resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
|
|
1041
1041
|
session: Boto3 session.
|
|
1042
1042
|
region: Region name.
|
|
1043
1043
|
|
|
@@ -2371,7 +2371,7 @@ class AutoMLJob(Base):
|
|
|
2371
2371
|
end_time: Returns the end time of the AutoML job.
|
|
2372
2372
|
failure_reason: Returns the failure reason for an AutoML job, when applicable.
|
|
2373
2373
|
partial_failure_reasons: Returns a list of reasons for partial failures within an AutoML job.
|
|
2374
|
-
best_candidate: The best model candidate selected by SageMaker Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
|
|
2374
|
+
best_candidate: The best model candidate selected by SageMaker AI Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
|
|
2375
2375
|
generate_candidate_definitions_only: Indicates whether the output for an AutoML job generates candidate definitions only.
|
|
2376
2376
|
auto_ml_job_artifacts: Returns information on the job's artifacts found in AutoMLJobArtifacts.
|
|
2377
2377
|
resolved_attributes: Contains ProblemType, AutoMLJobObjective, and CompletionCriteria. If you do not provide these values, they are inferred.
|
|
@@ -4768,16 +4768,16 @@ class CompilationJob(Base):
|
|
|
4768
4768
|
compilation_job_name: The name of the model compilation job.
|
|
4769
4769
|
compilation_job_arn: The Amazon Resource Name (ARN) of the model compilation job.
|
|
4770
4770
|
compilation_job_status: The status of the model compilation job.
|
|
4771
|
-
stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
|
|
4771
|
+
stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
|
|
4772
4772
|
creation_time: The time that the model compilation job was created.
|
|
4773
4773
|
last_modified_time: The time that the status of the model compilation job was last modified.
|
|
4774
4774
|
failure_reason: If a model compilation job failed, the reason it failed.
|
|
4775
4775
|
model_artifacts: Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
|
|
4776
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
|
|
4776
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI assumes to perform the model compilation job.
|
|
4777
4777
|
input_config: Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
|
|
4778
4778
|
output_config: Information about the output location for the compiled model and the target device that the model runs on.
|
|
4779
4779
|
compilation_start_time: The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.
|
|
4780
|
-
compilation_end_time: The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.
|
|
4780
|
+
compilation_end_time: The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker AI detected that the job failed.
|
|
4781
4781
|
inference_image: The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.
|
|
4782
4782
|
model_package_version_arn: The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.
|
|
4783
4783
|
model_digests: Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.
|
|
@@ -4867,9 +4867,9 @@ class CompilationJob(Base):
|
|
|
4867
4867
|
|
|
4868
4868
|
Parameters:
|
|
4869
4869
|
compilation_job_name: A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.
|
|
4870
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model compilation, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
|
|
4870
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf. During model compilation, Amazon SageMaker AI needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker AI Roles.
|
|
4871
4871
|
output_config: Provides information about the output location for the compiled model and the target device the model runs on.
|
|
4872
|
-
stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
|
|
4872
|
+
stopping_condition: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
|
|
4873
4873
|
model_package_version_arn: The Amazon Resource Name (ARN) of a versioned model package. Provide either a ModelPackageVersionArn or an InputConfig object in the request syntax. The presence of both objects in the CreateCompilationJob request will return an exception.
|
|
4874
4874
|
input_config: Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
|
|
4875
4875
|
vpc_config: A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
|
|
@@ -6116,7 +6116,7 @@ class DataQualityJobDefinition(Base):
|
|
|
6116
6116
|
data_quality_job_input: The list of inputs for the data quality monitoring job. Currently endpoints are supported.
|
|
6117
6117
|
data_quality_job_output_config:
|
|
6118
6118
|
job_resources:
|
|
6119
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
6119
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
6120
6120
|
data_quality_baseline_config: The constraints and baselines for the data quality monitoring job definition.
|
|
6121
6121
|
network_config: The networking configuration for the data quality monitoring job.
|
|
6122
6122
|
stopping_condition:
|
|
@@ -6216,7 +6216,7 @@ class DataQualityJobDefinition(Base):
|
|
|
6216
6216
|
data_quality_job_input: A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.
|
|
6217
6217
|
data_quality_job_output_config:
|
|
6218
6218
|
job_resources:
|
|
6219
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
6219
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
6220
6220
|
data_quality_baseline_config: Configures the constraints and baselines for the monitoring job.
|
|
6221
6221
|
network_config: Specifies networking configuration for the monitoring job.
|
|
6222
6222
|
stopping_condition:
|
|
@@ -7249,7 +7249,7 @@ class Domain(Base):
|
|
|
7249
7249
|
domain_name: The domain name.
|
|
7250
7250
|
home_efs_file_system_id: The ID of the Amazon Elastic File System managed by this Domain.
|
|
7251
7251
|
single_sign_on_managed_application_instance_id: The IAM Identity Center managed application instance ID.
|
|
7252
|
-
single_sign_on_application_arn: The ARN of the application managed by SageMaker in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
|
|
7252
|
+
single_sign_on_application_arn: The ARN of the application managed by SageMaker AI in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
|
|
7253
7253
|
status: The status.
|
|
7254
7254
|
creation_time: The creation time.
|
|
7255
7255
|
last_modified_time: The last modified time.
|
|
@@ -7258,7 +7258,7 @@ class Domain(Base):
|
|
|
7258
7258
|
auth_mode: The domain's authentication mode.
|
|
7259
7259
|
default_user_settings: Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.
|
|
7260
7260
|
domain_settings: A collection of Domain settings.
|
|
7261
|
-
app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
|
|
7261
|
+
app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
|
|
7262
7262
|
home_efs_file_system_kms_key_id: Use KmsKeyId.
|
|
7263
7263
|
subnet_ids: The VPC subnets that the domain uses for communication.
|
|
7264
7264
|
url: The domain's URL.
|
|
@@ -7406,9 +7406,9 @@ class Domain(Base):
|
|
|
7406
7406
|
vpc_id: The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
|
|
7407
7407
|
domain_settings: A collection of Domain settings.
|
|
7408
7408
|
tags: Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API. Tags that you specify for the Domain are also added to all Apps that the Domain launches.
|
|
7409
|
-
app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
|
|
7409
|
+
app_network_access_type: Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker AI, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
|
|
7410
7410
|
home_efs_file_system_kms_key_id: Use KmsKeyId.
|
|
7411
|
-
kms_key_id: SageMaker uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
|
|
7411
|
+
kms_key_id: SageMaker AI uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
|
|
7412
7412
|
app_security_group_management: The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.
|
|
7413
7413
|
tag_propagation: Indicates whether custom tag propagation is supported for the domain. Defaults to DISABLED.
|
|
7414
7414
|
default_space_settings: The default settings for shared spaces that users create in the domain.
|
|
@@ -9702,7 +9702,7 @@ class EndpointConfig(Base):
|
|
|
9702
9702
|
async_inference_config: Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
|
|
9703
9703
|
explainer_config: A member of CreateEndpointConfig that enables explainers.
|
|
9704
9704
|
shadow_production_variants: An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
|
|
9705
|
-
execution_role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform actions on your behalf. For more information, see SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this action must have the iam:PassRole permission.
|
|
9705
|
+
execution_role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform actions on your behalf. For more information, see SageMaker AI Roles. To be able to pass this role to Amazon SageMaker AI, the caller of this action must have the iam:PassRole permission.
|
|
9706
9706
|
vpc_config:
|
|
9707
9707
|
enable_network_isolation: Sets whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
|
|
9708
9708
|
session: Boto3 session.
|
|
@@ -13743,7 +13743,7 @@ class Image(Base):
|
|
|
13743
13743
|
image_name: The name of the image.
|
|
13744
13744
|
image_status: The status of the image.
|
|
13745
13745
|
last_modified_time: When the image was last modified.
|
|
13746
|
-
role_arn: The ARN of the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
|
|
13746
|
+
role_arn: The ARN of the IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
|
|
13747
13747
|
|
|
13748
13748
|
"""
|
|
13749
13749
|
|
|
@@ -13804,7 +13804,7 @@ class Image(Base):
|
|
|
13804
13804
|
|
|
13805
13805
|
Parameters:
|
|
13806
13806
|
image_name: The name of the image. Must be unique to your account.
|
|
13807
|
-
role_arn: The ARN of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
|
|
13807
|
+
role_arn: The ARN of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf.
|
|
13808
13808
|
description: The description of the image.
|
|
13809
13809
|
display_name: The display name of the image. If not provided, ImageName is displayed.
|
|
13810
13810
|
tags: A list of tags to apply to the image.
|
|
@@ -14313,7 +14313,7 @@ class ImageVersion(Base):
|
|
|
14313
14313
|
last_modified_time: When the version was last modified.
|
|
14314
14314
|
version: The version number.
|
|
14315
14315
|
vendor_guidance: The stability of the image version specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
|
|
14316
|
-
job_type: Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
|
|
14316
|
+
job_type: Indicates SageMaker AI job type compatibility. TRAINING: The image version is compatible with SageMaker AI training jobs. INFERENCE: The image version is compatible with SageMaker AI inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.
|
|
14317
14317
|
ml_framework: The machine learning framework vended in the image version.
|
|
14318
14318
|
programming_lang: The supported programming language and its version.
|
|
14319
14319
|
processor: Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
|
|
@@ -14383,7 +14383,7 @@ class ImageVersion(Base):
|
|
|
14383
14383
|
image_name: The ImageName of the Image to create a version of.
|
|
14384
14384
|
aliases: A list of aliases created with the image version.
|
|
14385
14385
|
vendor_guidance: The stability of the image version, specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
|
|
14386
|
-
job_type: Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
|
|
14386
|
+
job_type: Indicates SageMaker AI job type compatibility. TRAINING: The image version is compatible with SageMaker AI training jobs. INFERENCE: The image version is compatible with SageMaker AI inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker AI notebook kernels.
|
|
14387
14387
|
ml_framework: The machine learning framework vended in the image version.
|
|
14388
14388
|
programming_lang: The supported programming language and its version.
|
|
14389
14389
|
processor: Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
|
|
@@ -18124,7 +18124,7 @@ class ModelBiasJobDefinition(Base):
|
|
|
18124
18124
|
model_bias_job_input: Inputs for the model bias job.
|
|
18125
18125
|
model_bias_job_output_config:
|
|
18126
18126
|
job_resources:
|
|
18127
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
18127
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
18128
18128
|
model_bias_baseline_config: The baseline configuration for a model bias job.
|
|
18129
18129
|
network_config: Networking options for a model bias job.
|
|
18130
18130
|
stopping_condition:
|
|
@@ -19348,7 +19348,7 @@ class ModelExplainabilityJobDefinition(Base):
|
|
|
19348
19348
|
model_explainability_job_input: Inputs for the model explainability job.
|
|
19349
19349
|
model_explainability_job_output_config:
|
|
19350
19350
|
job_resources:
|
|
19351
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
19351
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
19352
19352
|
model_explainability_baseline_config: The baseline configuration for a model explainability job.
|
|
19353
19353
|
network_config: Networking options for a model explainability job.
|
|
19354
19354
|
stopping_condition:
|
|
@@ -20864,7 +20864,7 @@ class ModelQualityJobDefinition(Base):
|
|
|
20864
20864
|
model_quality_job_input: Inputs for the model quality job.
|
|
20865
20865
|
model_quality_job_output_config:
|
|
20866
20866
|
job_resources:
|
|
20867
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
20867
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
20868
20868
|
model_quality_baseline_config: The baseline configuration for a model quality job.
|
|
20869
20869
|
network_config: Networking options for a model quality job.
|
|
20870
20870
|
stopping_condition:
|
|
@@ -20964,7 +20964,7 @@ class ModelQualityJobDefinition(Base):
|
|
|
20964
20964
|
model_quality_job_input: A list of the inputs that are monitored. Currently endpoints are supported.
|
|
20965
20965
|
model_quality_job_output_config:
|
|
20966
20966
|
job_resources:
|
|
20967
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
20967
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
20968
20968
|
model_quality_baseline_config: Specifies the constraints and baselines for the monitoring job.
|
|
20969
20969
|
network_config: Specifies the network configuration for the monitoring job.
|
|
20970
20970
|
stopping_condition:
|
|
@@ -22073,7 +22073,7 @@ class NotebookInstance(Base):
|
|
|
22073
22073
|
|
|
22074
22074
|
Attributes:
|
|
22075
22075
|
notebook_instance_arn: The Amazon Resource Name (ARN) of the notebook instance.
|
|
22076
|
-
notebook_instance_name: The name of the SageMaker notebook instance.
|
|
22076
|
+
notebook_instance_name: The name of the SageMaker AI notebook instance.
|
|
22077
22077
|
notebook_instance_status: The status of the notebook instance.
|
|
22078
22078
|
failure_reason: If status is Failed, the reason it failed.
|
|
22079
22079
|
url: The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
|
|
@@ -22081,16 +22081,16 @@ class NotebookInstance(Base):
|
|
|
22081
22081
|
subnet_id: The ID of the VPC subnet.
|
|
22082
22082
|
security_groups: The IDs of the VPC security groups.
|
|
22083
22083
|
role_arn: The Amazon Resource Name (ARN) of the IAM role associated with the instance.
|
|
22084
|
-
kms_key_id: The Amazon Web Services KMS key ID SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
|
|
22085
|
-
network_interface_id: The network interface IDs that SageMaker created at the time of creating the instance.
|
|
22084
|
+
kms_key_id: The Amazon Web Services KMS key ID SageMaker AI uses to encrypt data when storing it on the ML storage volume attached to the instance.
|
|
22085
|
+
network_interface_id: The network interface IDs that SageMaker AI created at the time of creating the instance.
|
|
22086
22086
|
last_modified_time: A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
|
|
22087
22087
|
creation_time: A timestamp. Use this parameter to return the time when the notebook instance was created
|
|
22088
22088
|
notebook_instance_lifecycle_config_name: Returns the name of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
|
|
22089
|
-
direct_internet_access: Describes whether SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
|
|
22089
|
+
direct_internet_access: Describes whether SageMaker AI provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker AI training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
|
|
22090
22090
|
volume_size_in_gb: The size, in GB, of the ML storage volume attached to the notebook instance.
|
|
22091
22091
|
accelerator_types: This parameter is no longer supported. Elastic Inference (EI) is no longer available. This parameter was used to specify a list of the EI instance types associated with this notebook instance.
|
|
22092
|
-
default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
22093
|
-
additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
22092
|
+
default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
22093
|
+
additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
22094
22094
|
root_access: Whether root access is enabled or disabled for users of the notebook instance. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
|
|
22095
22095
|
platform_identifier: The platform identifier of the notebook instance runtime environment.
|
|
22096
22096
|
instance_metadata_service_configuration: Information on the IMDS configuration of the notebook instance
|
|
@@ -22188,17 +22188,17 @@ class NotebookInstance(Base):
|
|
|
22188
22188
|
Parameters:
|
|
22189
22189
|
notebook_instance_name: The name of the new notebook instance.
|
|
22190
22190
|
instance_type: The type of ML compute instance to launch for the notebook instance.
|
|
22191
|
-
role_arn: When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker can perform these tasks. The policy must allow the SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker Roles. To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.
|
|
22191
|
+
role_arn: When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker AI assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker AI can perform these tasks. The policy must allow the SageMaker AI service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker AI Roles. To be able to pass this role to SageMaker AI, the caller of this API must have the iam:PassRole permission.
|
|
22192
22192
|
subnet_id: The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
|
|
22193
22193
|
security_group_ids: The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
|
|
22194
|
-
kms_key_id: The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
|
|
22194
|
+
kms_key_id: The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker AI uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
|
|
22195
22195
|
tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
|
|
22196
22196
|
lifecycle_config_name: The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
|
|
22197
|
-
direct_internet_access: Sets whether SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker training and endpoint services unless you configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
|
|
22197
|
+
direct_internet_access: Sets whether SageMaker AI provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker AI training and endpoint services unless you configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
|
|
22198
22198
|
volume_size_in_gb: The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
|
|
22199
22199
|
accelerator_types: This parameter is no longer supported. Elastic Inference (EI) is no longer available. This parameter was used to specify a list of EI instance types to associate with this notebook instance.
|
|
22200
|
-
default_code_repository: A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
22201
|
-
additional_code_repositories: An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
22200
|
+
default_code_repository: A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
22201
|
+
additional_code_repositories: An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
22202
22202
|
root_access: Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
|
|
22203
22203
|
platform_identifier: The platform identifier of the notebook instance runtime environment.
|
|
22204
22204
|
instance_metadata_service_configuration: Information on the IMDS configuration of the notebook instance
|
|
@@ -23149,7 +23149,7 @@ class OptimizationJob(Base):
|
|
|
23149
23149
|
|
|
23150
23150
|
Parameters:
|
|
23151
23151
|
optimization_job_name: A custom name for the new optimization job.
|
|
23152
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model optimization, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
|
|
23152
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker AI to perform tasks on your behalf. During model optimization, Amazon SageMaker AI needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker AI, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker AI Roles.
|
|
23153
23153
|
model_source: The location of the source model to optimize with an optimization job.
|
|
23154
23154
|
deployment_instance_type: The type of instance that hosts the optimized model that you create with the optimization job.
|
|
23155
23155
|
optimization_configs: Settings for each of the optimization techniques that the job applies.
|
|
@@ -23559,7 +23559,21 @@ class PartnerApp(Base):
|
|
|
23559
23559
|
logger.error("Name attribute not found for object partner_app")
|
|
23560
23560
|
return None
|
|
23561
23561
|
|
|
23562
|
+
def populate_inputs_decorator(create_func):
|
|
23563
|
+
@functools.wraps(create_func)
|
|
23564
|
+
def wrapper(*args, **kwargs):
|
|
23565
|
+
config_schema_for_resource = {"execution_role_arn": {"type": "string"}}
|
|
23566
|
+
return create_func(
|
|
23567
|
+
*args,
|
|
23568
|
+
**Base.get_updated_kwargs_with_configured_attributes(
|
|
23569
|
+
config_schema_for_resource, "PartnerApp", **kwargs
|
|
23570
|
+
),
|
|
23571
|
+
)
|
|
23572
|
+
|
|
23573
|
+
return wrapper
|
|
23574
|
+
|
|
23562
23575
|
@classmethod
|
|
23576
|
+
@populate_inputs_decorator
|
|
23563
23577
|
@Base.add_validate_call
|
|
23564
23578
|
def create(
|
|
23565
23579
|
cls,
|
|
@@ -23734,6 +23748,7 @@ class PartnerApp(Base):
|
|
|
23734
23748
|
transform(response, "DescribePartnerAppResponse", self)
|
|
23735
23749
|
return self
|
|
23736
23750
|
|
|
23751
|
+
@populate_inputs_decorator
|
|
23737
23752
|
@Base.add_validate_call
|
|
23738
23753
|
def update(
|
|
23739
23754
|
self,
|
|
@@ -27107,10 +27122,10 @@ class StudioLifecycleConfig(Base):
|
|
|
27107
27122
|
|
|
27108
27123
|
Attributes:
|
|
27109
27124
|
studio_lifecycle_config_arn: The ARN of the Lifecycle Configuration to describe.
|
|
27110
|
-
studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration that is described.
|
|
27111
|
-
creation_time: The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
27112
|
-
last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
|
|
27113
|
-
studio_lifecycle_config_content: The content of your Amazon SageMaker Studio Lifecycle Configuration script.
|
|
27125
|
+
studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration that is described.
|
|
27126
|
+
creation_time: The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
27127
|
+
last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
|
|
27128
|
+
studio_lifecycle_config_content: The content of your Amazon SageMaker AI Studio Lifecycle Configuration script.
|
|
27114
27129
|
studio_lifecycle_config_app_type: The App type that the Lifecycle Configuration is attached to.
|
|
27115
27130
|
|
|
27116
27131
|
"""
|
|
@@ -27153,8 +27168,8 @@ class StudioLifecycleConfig(Base):
|
|
|
27153
27168
|
Create a StudioLifecycleConfig resource
|
|
27154
27169
|
|
|
27155
27170
|
Parameters:
|
|
27156
|
-
studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration to create.
|
|
27157
|
-
studio_lifecycle_config_content: The content of your Amazon SageMaker Studio Lifecycle Configuration script. This content must be base64 encoded.
|
|
27171
|
+
studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration to create.
|
|
27172
|
+
studio_lifecycle_config_content: The content of your Amazon SageMaker AI Studio Lifecycle Configuration script. This content must be base64 encoded.
|
|
27158
27173
|
studio_lifecycle_config_app_type: The App type that the Lifecycle Configuration is attached to.
|
|
27159
27174
|
tags: Tags to be associated with the Lifecycle Configuration. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
|
|
27160
27175
|
session: Boto3 session.
|
|
@@ -27222,7 +27237,7 @@ class StudioLifecycleConfig(Base):
|
|
|
27222
27237
|
Get a StudioLifecycleConfig resource
|
|
27223
27238
|
|
|
27224
27239
|
Parameters:
|
|
27225
|
-
studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration to describe.
|
|
27240
|
+
studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration to describe.
|
|
27226
27241
|
session: Boto3 session.
|
|
27227
27242
|
region: Region name.
|
|
27228
27243
|
|
|
@@ -548,6 +548,8 @@ class S3ModelDataSource(Base):
|
|
|
548
548
|
model_access_config: Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
|
|
549
549
|
hub_access_config: Configuration information for hub access.
|
|
550
550
|
manifest_s3_uri: The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
|
|
551
|
+
e_tag: The ETag associated with S3 URI.
|
|
552
|
+
manifest_etag: The ETag associated with Manifest S3 URI.
|
|
551
553
|
"""
|
|
552
554
|
|
|
553
555
|
s3_uri: str
|
|
@@ -556,6 +558,8 @@ class S3ModelDataSource(Base):
|
|
|
556
558
|
model_access_config: Optional[ModelAccessConfig] = Unassigned()
|
|
557
559
|
hub_access_config: Optional[InferenceHubAccessConfig] = Unassigned()
|
|
558
560
|
manifest_s3_uri: Optional[str] = Unassigned()
|
|
561
|
+
e_tag: Optional[str] = Unassigned()
|
|
562
|
+
manifest_etag: Optional[str] = Unassigned()
|
|
559
563
|
|
|
560
564
|
|
|
561
565
|
class ModelDataSource(Base):
|
|
@@ -594,11 +598,13 @@ class AdditionalS3DataSource(Base):
|
|
|
594
598
|
s3_data_type: The data type of the additional data source that you specify for use in inference or training.
|
|
595
599
|
s3_uri: The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
|
|
596
600
|
compression_type: The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
|
|
601
|
+
e_tag: The ETag associated with S3 URI.
|
|
597
602
|
"""
|
|
598
603
|
|
|
599
604
|
s3_data_type: str
|
|
600
605
|
s3_uri: str
|
|
601
606
|
compression_type: Optional[str] = Unassigned()
|
|
607
|
+
e_tag: Optional[str] = Unassigned()
|
|
602
608
|
|
|
603
609
|
|
|
604
610
|
class ModelPackageContainerDefinition(Base):
|
|
@@ -609,7 +615,7 @@ class ModelPackageContainerDefinition(Base):
|
|
|
609
615
|
Attributes
|
|
610
616
|
----------------------
|
|
611
617
|
container_hostname: The DNS host name for the Docker container.
|
|
612
|
-
image: The Amazon
|
|
618
|
+
image: The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
|
|
613
619
|
image_digest: An MD5 hash of the training algorithm that identifies the Docker image used for training.
|
|
614
620
|
model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the model package.
|
|
615
621
|
model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
|
|
@@ -620,6 +626,7 @@ class ModelPackageContainerDefinition(Base):
|
|
|
620
626
|
framework_version: The framework version of the Model Package Container Image.
|
|
621
627
|
nearest_model_name: The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
|
|
622
628
|
additional_s3_data_source: The additional data source that is used during inference in the Docker container for your model package.
|
|
629
|
+
model_data_e_tag: The ETag associated with Model Data URL.
|
|
623
630
|
"""
|
|
624
631
|
|
|
625
632
|
image: str
|
|
@@ -634,6 +641,7 @@ class ModelPackageContainerDefinition(Base):
|
|
|
634
641
|
framework_version: Optional[str] = Unassigned()
|
|
635
642
|
nearest_model_name: Optional[str] = Unassigned()
|
|
636
643
|
additional_s3_data_source: Optional[AdditionalS3DataSource] = Unassigned()
|
|
644
|
+
model_data_e_tag: Optional[str] = Unassigned()
|
|
637
645
|
|
|
638
646
|
|
|
639
647
|
class AdditionalInferenceSpecificationDefinition(Base):
|
|
@@ -750,7 +758,7 @@ class TrainingImageConfig(Base):
|
|
|
750
758
|
class AlgorithmSpecification(Base):
|
|
751
759
|
"""
|
|
752
760
|
AlgorithmSpecification
|
|
753
|
-
Specifies the training algorithm to use in a CreateTrainingJob request. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
|
|
761
|
+
Specifies the training algorithm to use in a CreateTrainingJob request. SageMaker uses its own SageMaker account credentials to pull and access built-in algorithms so built-in algorithms are universally accessible across all Amazon Web Services accounts. As a result, built-in algorithms have standard, unrestricted access. You cannot restrict built-in algorithms using IAM roles. Use custom algorithms if you require specific access controls. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
|
|
754
762
|
|
|
755
763
|
Attributes
|
|
756
764
|
----------------------
|
|
@@ -1190,11 +1198,11 @@ class AnnotationConsolidationConfig(Base):
|
|
|
1190
1198
|
class ResourceSpec(Base):
|
|
1191
1199
|
"""
|
|
1192
1200
|
ResourceSpec
|
|
1193
|
-
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
|
|
1201
|
+
Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.
|
|
1194
1202
|
|
|
1195
1203
|
Attributes
|
|
1196
1204
|
----------------------
|
|
1197
|
-
sage_maker_image_arn: The ARN of the SageMaker image that the image version belongs to.
|
|
1205
|
+
sage_maker_image_arn: The ARN of the SageMaker AI image that the image version belongs to.
|
|
1198
1206
|
sage_maker_image_version_arn: The ARN of the image version created on the instance.
|
|
1199
1207
|
sage_maker_image_version_alias: The SageMakerImageVersionAlias of the image to launch with. This value is in SemVer 2.0.0 versioning format.
|
|
1200
1208
|
instance_type: The instance type that the image version runs on. JupyterServer apps only support the system value. For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.
|
|
@@ -1211,7 +1219,7 @@ class ResourceSpec(Base):
|
|
|
1211
1219
|
class AppDetails(Base):
|
|
1212
1220
|
"""
|
|
1213
1221
|
AppDetails
|
|
1214
|
-
Details about an Amazon SageMaker app.
|
|
1222
|
+
Details about an Amazon SageMaker AI app.
|
|
1215
1223
|
|
|
1216
1224
|
Attributes
|
|
1217
1225
|
----------------------
|
|
@@ -1253,7 +1261,7 @@ class KernelSpec(Base):
|
|
|
1253
1261
|
class FileSystemConfig(Base):
|
|
1254
1262
|
"""
|
|
1255
1263
|
FileSystemConfig
|
|
1256
|
-
The Amazon Elastic File System storage configuration for a SageMaker image.
|
|
1264
|
+
The Amazon Elastic File System storage configuration for a SageMaker AI image.
|
|
1257
1265
|
|
|
1258
1266
|
Attributes
|
|
1259
1267
|
----------------------
|
|
@@ -1270,12 +1278,12 @@ class FileSystemConfig(Base):
|
|
|
1270
1278
|
class KernelGatewayImageConfig(Base):
|
|
1271
1279
|
"""
|
|
1272
1280
|
KernelGatewayImageConfig
|
|
1273
|
-
The configuration for the file system and kernels in a SageMaker image running as a KernelGateway app.
|
|
1281
|
+
The configuration for the file system and kernels in a SageMaker AI image running as a KernelGateway app.
|
|
1274
1282
|
|
|
1275
1283
|
Attributes
|
|
1276
1284
|
----------------------
|
|
1277
1285
|
kernel_specs: The specification of the Jupyter kernels in the image.
|
|
1278
|
-
file_system_config: The Amazon Elastic File System storage configuration for a SageMaker image.
|
|
1286
|
+
file_system_config: The Amazon Elastic File System storage configuration for a SageMaker AI image.
|
|
1279
1287
|
"""
|
|
1280
1288
|
|
|
1281
1289
|
kernel_specs: List[KernelSpec]
|
|
@@ -1302,7 +1310,7 @@ class ContainerConfig(Base):
|
|
|
1302
1310
|
class JupyterLabAppImageConfig(Base):
|
|
1303
1311
|
"""
|
|
1304
1312
|
JupyterLabAppImageConfig
|
|
1305
|
-
The configuration for the file system and kernels in a SageMaker image running as a JupyterLab app. The FileSystemConfig object is not supported.
|
|
1313
|
+
The configuration for the file system and kernels in a SageMaker AI image running as a JupyterLab app. The FileSystemConfig object is not supported.
|
|
1306
1314
|
|
|
1307
1315
|
Attributes
|
|
1308
1316
|
----------------------
|
|
@@ -1332,7 +1340,7 @@ class CodeEditorAppImageConfig(Base):
|
|
|
1332
1340
|
class AppImageConfigDetails(Base):
|
|
1333
1341
|
"""
|
|
1334
1342
|
AppImageConfigDetails
|
|
1335
|
-
The configuration for running a SageMaker image as a KernelGateway app.
|
|
1343
|
+
The configuration for running a SageMaker AI image as a KernelGateway app.
|
|
1336
1344
|
|
|
1337
1345
|
Attributes
|
|
1338
1346
|
----------------------
|
|
@@ -1340,7 +1348,7 @@ class AppImageConfigDetails(Base):
|
|
|
1340
1348
|
app_image_config_name: The name of the AppImageConfig. Must be unique to your account.
|
|
1341
1349
|
creation_time: When the AppImageConfig was created.
|
|
1342
1350
|
last_modified_time: When the AppImageConfig was last modified.
|
|
1343
|
-
kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker image.
|
|
1351
|
+
kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker AI image.
|
|
1344
1352
|
jupyter_lab_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
|
|
1345
1353
|
code_editor_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
|
|
1346
1354
|
"""
|
|
@@ -1788,7 +1796,7 @@ class AutoMLS3DataSource(Base):
|
|
|
1788
1796
|
|
|
1789
1797
|
Attributes
|
|
1790
1798
|
----------------------
|
|
1791
|
-
s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
|
|
1799
|
+
s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
|
|
1792
1800
|
s3_uri: The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
|
|
1793
1801
|
"""
|
|
1794
1802
|
|
|
@@ -2849,12 +2857,12 @@ class CanvasAppSettings(Base):
|
|
|
2849
2857
|
class CaptureContentTypeHeader(Base):
|
|
2850
2858
|
"""
|
|
2851
2859
|
CaptureContentTypeHeader
|
|
2852
|
-
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
|
|
2860
|
+
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker AI will by default base64 encode when capturing the data.
|
|
2853
2861
|
|
|
2854
2862
|
Attributes
|
|
2855
2863
|
----------------------
|
|
2856
|
-
csv_content_types: The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
|
|
2857
|
-
json_content_types: The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
|
|
2864
|
+
csv_content_types: The list of all content type headers that Amazon SageMaker AI will treat as CSV and capture accordingly.
|
|
2865
|
+
json_content_types: The list of all content type headers that SageMaker AI will treat as JSON and capture accordingly.
|
|
2858
2866
|
"""
|
|
2859
2867
|
|
|
2860
2868
|
csv_content_types: Optional[List[str]] = Unassigned()
|
|
@@ -3241,6 +3249,7 @@ class ClusterNodeDetails(Base):
|
|
|
3241
3249
|
threads_per_core: The number of threads per CPU core you specified under CreateCluster.
|
|
3242
3250
|
instance_storage_configs: The configurations of additional storage specified to the instance group where the instance (node) is launched.
|
|
3243
3251
|
private_primary_ip: The private primary IP address of the SageMaker HyperPod cluster node.
|
|
3252
|
+
private_primary_ipv6: The private primary IPv6 address of the SageMaker HyperPod cluster node.
|
|
3244
3253
|
private_dns_hostname: The private DNS hostname of the SageMaker HyperPod cluster node.
|
|
3245
3254
|
placement: The placement details of the SageMaker HyperPod cluster node.
|
|
3246
3255
|
"""
|
|
@@ -3255,6 +3264,7 @@ class ClusterNodeDetails(Base):
|
|
|
3255
3264
|
threads_per_core: Optional[int] = Unassigned()
|
|
3256
3265
|
instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
|
|
3257
3266
|
private_primary_ip: Optional[str] = Unassigned()
|
|
3267
|
+
private_primary_ipv6: Optional[str] = Unassigned()
|
|
3258
3268
|
private_dns_hostname: Optional[str] = Unassigned()
|
|
3259
3269
|
placement: Optional[ClusterInstancePlacement] = Unassigned()
|
|
3260
3270
|
|
|
@@ -3357,7 +3367,7 @@ class ClusterSummary(Base):
|
|
|
3357
3367
|
class CustomImage(Base):
|
|
3358
3368
|
"""
|
|
3359
3369
|
CustomImage
|
|
3360
|
-
A custom SageMaker image. For more information, see Bring your own SageMaker image.
|
|
3370
|
+
A custom SageMaker AI image. For more information, see Bring your own SageMaker AI image.
|
|
3361
3371
|
|
|
3362
3372
|
Attributes
|
|
3363
3373
|
----------------------
|
|
@@ -3395,7 +3405,7 @@ class CodeEditorAppSettings(Base):
|
|
|
3395
3405
|
class CodeRepository(Base):
|
|
3396
3406
|
"""
|
|
3397
3407
|
CodeRepository
|
|
3398
|
-
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
|
|
3408
|
+
A Git repository that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
|
|
3399
3409
|
|
|
3400
3410
|
Attributes
|
|
3401
3411
|
----------------------
|
|
@@ -4047,11 +4057,11 @@ class OutputConfig(Base):
|
|
|
4047
4057
|
|
|
4048
4058
|
Attributes
|
|
4049
4059
|
----------------------
|
|
4050
|
-
s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
|
|
4060
|
+
s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
|
|
4051
4061
|
target_device: Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform. Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.
|
|
4052
4062
|
target_platform: Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms: Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']} Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"} ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
|
|
4053
4063
|
compiler_options: Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI Reference Guide. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
|
|
4054
|
-
kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4064
|
+
kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4055
4065
|
"""
|
|
4056
4066
|
|
|
4057
4067
|
s3_output_location: str
|
|
@@ -4064,7 +4074,7 @@ class OutputConfig(Base):
|
|
|
4064
4074
|
class NeoVpcConfig(Base):
|
|
4065
4075
|
"""
|
|
4066
4076
|
NeoVpcConfig
|
|
4067
|
-
The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs Access to Resources in Your Amazon VPC.
|
|
4077
|
+
The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker AI Compilation Jobs Access to Resources in Your Amazon VPC.
|
|
4068
4078
|
|
|
4069
4079
|
Attributes
|
|
4070
4080
|
----------------------
|
|
@@ -4197,8 +4207,8 @@ class MonitoringS3Output(Base):
|
|
|
4197
4207
|
|
|
4198
4208
|
Attributes
|
|
4199
4209
|
----------------------
|
|
4200
|
-
s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
|
|
4201
|
-
local_path: The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
|
|
4210
|
+
s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job.
|
|
4211
|
+
local_path: The local path to the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job. LocalPath is an absolute path for the output data.
|
|
4202
4212
|
s3_upload_mode: Whether to upload the results of the monitoring job continuously or after the job completes.
|
|
4203
4213
|
"""
|
|
4204
4214
|
|
|
@@ -4228,7 +4238,7 @@ class MonitoringOutputConfig(Base):
|
|
|
4228
4238
|
Attributes
|
|
4229
4239
|
----------------------
|
|
4230
4240
|
monitoring_outputs: Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
|
|
4231
|
-
kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
|
|
4241
|
+
kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
|
|
4232
4242
|
"""
|
|
4233
4243
|
|
|
4234
4244
|
monitoring_outputs: List[MonitoringOutput]
|
|
@@ -4245,7 +4255,7 @@ class MonitoringClusterConfig(Base):
|
|
|
4245
4255
|
instance_count: The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
|
|
4246
4256
|
instance_type: The ML compute instance type for the processing job.
|
|
4247
4257
|
volume_size_in_gb: The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
|
|
4248
|
-
volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
|
|
4258
|
+
volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
|
|
4249
4259
|
"""
|
|
4250
4260
|
|
|
4251
4261
|
instance_count: int
|
|
@@ -4319,7 +4329,7 @@ class EdgeOutputConfig(Base):
|
|
|
4319
4329
|
class SharingSettings(Base):
|
|
4320
4330
|
"""
|
|
4321
4331
|
SharingSettings
|
|
4322
|
-
Specifies options for sharing Amazon SageMaker Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
|
|
4332
|
+
Specifies options for sharing Amazon SageMaker AI Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
|
|
4323
4333
|
|
|
4324
4334
|
Attributes
|
|
4325
4335
|
----------------------
|
|
@@ -4340,9 +4350,9 @@ class JupyterServerAppSettings(Base):
|
|
|
4340
4350
|
|
|
4341
4351
|
Attributes
|
|
4342
4352
|
----------------------
|
|
4343
|
-
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
|
|
4353
|
+
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
|
|
4344
4354
|
lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
|
|
4345
|
-
code_repositories: A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
|
|
4355
|
+
code_repositories: A list of Git repositories that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
|
|
4346
4356
|
"""
|
|
4347
4357
|
|
|
4348
4358
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4357,8 +4367,8 @@ class KernelGatewayAppSettings(Base):
|
|
|
4357
4367
|
|
|
4358
4368
|
Attributes
|
|
4359
4369
|
----------------------
|
|
4360
|
-
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
|
|
4361
|
-
custom_images: A list of custom SageMaker images that are configured to run as a KernelGateway app.
|
|
4370
|
+
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app. The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
|
|
4371
|
+
custom_images: A list of custom SageMaker AI images that are configured to run as a KernelGateway app.
|
|
4362
4372
|
lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
|
|
4363
4373
|
"""
|
|
4364
4374
|
|
|
@@ -4374,7 +4384,7 @@ class TensorBoardAppSettings(Base):
|
|
|
4374
4384
|
|
|
4375
4385
|
Attributes
|
|
4376
4386
|
----------------------
|
|
4377
|
-
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
|
|
4387
|
+
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
|
|
4378
4388
|
"""
|
|
4379
4389
|
|
|
4380
4390
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4403,7 +4413,7 @@ class RSessionAppSettings(Base):
|
|
|
4403
4413
|
Attributes
|
|
4404
4414
|
----------------------
|
|
4405
4415
|
default_resource_spec
|
|
4406
|
-
custom_images: A list of custom SageMaker images that are configured to run as a RSession app.
|
|
4416
|
+
custom_images: A list of custom SageMaker AI images that are configured to run as a RSession app.
|
|
4407
4417
|
"""
|
|
4408
4418
|
|
|
4409
4419
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4496,12 +4506,12 @@ class CustomPosixUserConfig(Base):
|
|
|
4496
4506
|
class EFSFileSystemConfig(Base):
|
|
4497
4507
|
"""
|
|
4498
4508
|
EFSFileSystemConfig
|
|
4499
|
-
The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker Domain.
|
|
4509
|
+
The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker AI Domain.
|
|
4500
4510
|
|
|
4501
4511
|
Attributes
|
|
4502
4512
|
----------------------
|
|
4503
4513
|
file_system_id: The ID of your Amazon EFS file system.
|
|
4504
|
-
file_system_path: The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
|
|
4514
|
+
file_system_path: The path to the file system directory that is accessible in Amazon SageMaker AI Studio. Permitted users can access only this directory and below.
|
|
4505
4515
|
"""
|
|
4506
4516
|
|
|
4507
4517
|
file_system_id: str
|
|
@@ -4526,7 +4536,7 @@ class FSxLustreFileSystemConfig(Base):
|
|
|
4526
4536
|
class CustomFileSystemConfig(Base):
|
|
4527
4537
|
"""
|
|
4528
4538
|
CustomFileSystemConfig
|
|
4529
|
-
The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
4539
|
+
The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
4530
4540
|
|
|
4531
4541
|
Attributes
|
|
4532
4542
|
----------------------
|
|
@@ -4580,8 +4590,8 @@ class UserSettings(Base):
|
|
|
4580
4590
|
Attributes
|
|
4581
4591
|
----------------------
|
|
4582
4592
|
execution_role: The execution role for the user. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
|
|
4583
|
-
security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4584
|
-
sharing_settings: Specifies options for sharing Amazon SageMaker Studio notebooks.
|
|
4593
|
+
security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4594
|
+
sharing_settings: Specifies options for sharing Amazon SageMaker AI Studio notebooks.
|
|
4585
4595
|
jupyter_server_app_settings: The Jupyter server's app settings.
|
|
4586
4596
|
kernel_gateway_app_settings: The kernel gateway app settings.
|
|
4587
4597
|
tensor_board_app_settings: The TensorBoard app settings.
|
|
@@ -4594,7 +4604,7 @@ class UserSettings(Base):
|
|
|
4594
4604
|
default_landing_uri: The default experience that the user is directed to when accessing the domain. The supported values are: studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED. app:JupyterServer:: Indicates that Studio Classic is the default experience.
|
|
4595
4605
|
studio_web_portal: Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
|
|
4596
4606
|
custom_posix_user_config: Details about the POSIX identity that is used for file system operations. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4597
|
-
custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4607
|
+
custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker AI Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4598
4608
|
studio_web_portal_settings: Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
|
|
4599
4609
|
auto_mount_home_efs: Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
|
|
4600
4610
|
"""
|
|
@@ -4662,7 +4672,7 @@ class DomainSettings(Base):
|
|
|
4662
4672
|
----------------------
|
|
4663
4673
|
security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
|
|
4664
4674
|
r_studio_server_pro_domain_settings: A collection of settings that configure the RStudioServerPro Domain-level app.
|
|
4665
|
-
execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
|
|
4675
|
+
execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key.
|
|
4666
4676
|
docker_settings: A collection of settings that configure the domain's Docker interaction.
|
|
4667
4677
|
amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
|
|
4668
4678
|
"""
|
|
@@ -4688,7 +4698,7 @@ class DefaultSpaceSettings(Base):
|
|
|
4688
4698
|
jupyter_lab_app_settings
|
|
4689
4699
|
space_storage_settings
|
|
4690
4700
|
custom_posix_user_config
|
|
4691
|
-
custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
4701
|
+
custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
4692
4702
|
"""
|
|
4693
4703
|
|
|
4694
4704
|
execution_role: Optional[str] = Unassigned()
|
|
@@ -4871,16 +4881,16 @@ class ProductionVariant(Base):
|
|
|
4871
4881
|
class DataCaptureConfig(Base):
|
|
4872
4882
|
"""
|
|
4873
4883
|
DataCaptureConfig
|
|
4874
|
-
Configuration to control how SageMaker captures inference data.
|
|
4884
|
+
Configuration to control how SageMaker AI captures inference data.
|
|
4875
4885
|
|
|
4876
4886
|
Attributes
|
|
4877
4887
|
----------------------
|
|
4878
4888
|
enable_capture: Whether data capture should be enabled or disabled (defaults to enabled).
|
|
4879
|
-
initial_sampling_percentage: The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
|
|
4889
|
+
initial_sampling_percentage: The percentage of requests SageMaker AI will capture. A lower value is recommended for Endpoints with high traffic.
|
|
4880
4890
|
destination_s3_uri: The Amazon S3 location used to capture the data.
|
|
4881
|
-
kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4891
|
+
kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker AI uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4882
4892
|
capture_options: Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
|
|
4883
|
-
capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
|
|
4893
|
+
capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker AI will by default base64 encode when capturing the data.
|
|
4884
4894
|
"""
|
|
4885
4895
|
|
|
4886
4896
|
initial_sampling_percentage: int
|
|
@@ -5534,7 +5544,7 @@ class InferenceComponentSpecification(Base):
|
|
|
5534
5544
|
|
|
5535
5545
|
Attributes
|
|
5536
5546
|
----------------------
|
|
5537
|
-
model_name: The name of an existing SageMaker model object in your account that you want to deploy with the inference component.
|
|
5547
|
+
model_name: The name of an existing SageMaker AI model object in your account that you want to deploy with the inference component.
|
|
5538
5548
|
container: Defines a container that provides the runtime environment for a model that you deploy with an inference component.
|
|
5539
5549
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
5540
5550
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
|
|
@@ -6305,12 +6315,14 @@ class SourceAlgorithm(Base):
|
|
|
6305
6315
|
----------------------
|
|
6306
6316
|
model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.
|
|
6307
6317
|
model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
|
|
6318
|
+
model_data_e_tag: The ETag associated with Model Data URL.
|
|
6308
6319
|
algorithm_name: The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
|
|
6309
6320
|
"""
|
|
6310
6321
|
|
|
6311
6322
|
algorithm_name: Union[str, object]
|
|
6312
6323
|
model_data_url: Optional[str] = Unassigned()
|
|
6313
6324
|
model_data_source: Optional[ModelDataSource] = Unassigned()
|
|
6325
|
+
model_data_e_tag: Optional[str] = Unassigned()
|
|
6314
6326
|
|
|
6315
6327
|
|
|
6316
6328
|
class SourceAlgorithmSpecification(Base):
|
|
@@ -6595,7 +6607,7 @@ class ScheduleConfig(Base):
|
|
|
6595
6607
|
|
|
6596
6608
|
Attributes
|
|
6597
6609
|
----------------------
|
|
6598
|
-
schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
|
|
6610
|
+
schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker AI will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
|
|
6599
6611
|
data_analysis_start_time: Sets the start time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to monitor the five hours of data in your dataset that precede the start of each monitoring job, you would specify: "-PT5H". The start time that you specify must not precede the end time that you specify by more than 24 hours. You specify the end time with the DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
|
|
6600
6612
|
data_analysis_end_time: Sets the end time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to end the window one hour before the start of each monitoring job, you would specify: "-PT1H". The end time that you specify must not follow the start time that you specify by more than 24 hours. You specify the start time with the DataAnalysisStartTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
|
|
6601
6613
|
"""
|
|
@@ -6683,14 +6695,14 @@ class MonitoringJobDefinition(Base):
|
|
|
6683
6695
|
Attributes
|
|
6684
6696
|
----------------------
|
|
6685
6697
|
baseline_config: Baseline configuration used to validate that the data conforms to the specified constraints and statistics
|
|
6686
|
-
monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
|
|
6698
|
+
monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker AI Endpoint.
|
|
6687
6699
|
monitoring_output_config: The array of outputs from the monitoring job to be uploaded to Amazon S3.
|
|
6688
6700
|
monitoring_resources: Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
|
|
6689
6701
|
monitoring_app_specification: Configures the monitoring job to run a specified Docker container image.
|
|
6690
6702
|
stopping_condition: Specifies a time limit for how long the monitoring job is allowed to run.
|
|
6691
6703
|
environment: Sets the environment variables in the Docker container.
|
|
6692
6704
|
network_config: Specifies networking options for an monitoring job.
|
|
6693
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
6705
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
6694
6706
|
"""
|
|
6695
6707
|
|
|
6696
6708
|
monitoring_inputs: List[MonitoringInput]
|
|
@@ -7281,7 +7293,7 @@ class SpaceStorageSettings(Base):
|
|
|
7281
7293
|
class EFSFileSystem(Base):
|
|
7282
7294
|
"""
|
|
7283
7295
|
EFSFileSystem
|
|
7284
|
-
A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
7296
|
+
A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
7285
7297
|
|
|
7286
7298
|
Attributes
|
|
7287
7299
|
----------------------
|
|
@@ -7307,7 +7319,7 @@ class FSxLustreFileSystem(Base):
|
|
|
7307
7319
|
class CustomFileSystem(Base):
|
|
7308
7320
|
"""
|
|
7309
7321
|
CustomFileSystem
|
|
7310
|
-
A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
7322
|
+
A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
7311
7323
|
|
|
7312
7324
|
Attributes
|
|
7313
7325
|
----------------------
|
|
@@ -7330,9 +7342,9 @@ class SpaceSettings(Base):
|
|
|
7330
7342
|
kernel_gateway_app_settings
|
|
7331
7343
|
code_editor_app_settings: The Code Editor application settings.
|
|
7332
7344
|
jupyter_lab_app_settings: The settings for the JupyterLab application.
|
|
7333
|
-
app_type: The type of app created within the space.
|
|
7345
|
+
app_type: The type of app created within the space. If using the UpdateSpace API, you can't change the app type of your space by specifying a different value for this field.
|
|
7334
7346
|
space_storage_settings: The storage settings for a space.
|
|
7335
|
-
custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
7347
|
+
custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
7336
7348
|
"""
|
|
7337
7349
|
|
|
7338
7350
|
jupyter_server_app_settings: Optional[JupyterServerAppSettings] = Unassigned()
|
|
@@ -8361,7 +8373,7 @@ class InferenceComponentSpecificationSummary(Base):
|
|
|
8361
8373
|
|
|
8362
8374
|
Attributes
|
|
8363
8375
|
----------------------
|
|
8364
|
-
model_name: The name of the SageMaker model object that is deployed with the inference component.
|
|
8376
|
+
model_name: The name of the SageMaker AI model object that is deployed with the inference component.
|
|
8365
8377
|
container: Details about the container that provides the runtime environment for the model that is deployed with the inference component.
|
|
8366
8378
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
8367
8379
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
|
|
@@ -9286,7 +9298,7 @@ class DomainSettingsForUpdate(Base):
|
|
|
9286
9298
|
Attributes
|
|
9287
9299
|
----------------------
|
|
9288
9300
|
r_studio_server_pro_domain_settings_for_update: A collection of RStudioServerPro Domain-level app settings to update. A single RStudioServerPro application is created for a domain.
|
|
9289
|
-
execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
|
|
9301
|
+
execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
|
|
9290
9302
|
security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
|
|
9291
9303
|
docker_settings: A collection of settings that configure the domain's Docker interaction.
|
|
9292
9304
|
amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain.
|
|
@@ -10103,7 +10115,7 @@ class HyperParameterTuningJobSummary(Base):
|
|
|
10103
10115
|
class Image(Base):
|
|
10104
10116
|
"""
|
|
10105
10117
|
Image
|
|
10106
|
-
A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion.
|
|
10118
|
+
A SageMaker AI image. A SageMaker AI image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker AI ImageVersion.
|
|
10107
10119
|
|
|
10108
10120
|
Attributes
|
|
10109
10121
|
----------------------
|
|
@@ -10130,7 +10142,7 @@ class Image(Base):
|
|
|
10130
10142
|
class ImageVersion(Base):
|
|
10131
10143
|
"""
|
|
10132
10144
|
ImageVersion
|
|
10133
|
-
A version of a SageMaker Image. A version represents an existing container image.
|
|
10145
|
+
A version of a SageMaker AI Image. A version represents an existing container image.
|
|
10134
10146
|
|
|
10135
10147
|
Attributes
|
|
10136
10148
|
----------------------
|
|
@@ -10748,7 +10760,7 @@ class NotebookInstanceLifecycleConfigSummary(Base):
|
|
|
10748
10760
|
class NotebookInstanceSummary(Base):
|
|
10749
10761
|
"""
|
|
10750
10762
|
NotebookInstanceSummary
|
|
10751
|
-
Provides summary information for an SageMaker notebook instance.
|
|
10763
|
+
Provides summary information for an SageMaker AI notebook instance.
|
|
10752
10764
|
|
|
10753
10765
|
Attributes
|
|
10754
10766
|
----------------------
|
|
@@ -10760,8 +10772,8 @@ class NotebookInstanceSummary(Base):
|
|
|
10760
10772
|
creation_time: A timestamp that shows when the notebook instance was created.
|
|
10761
10773
|
last_modified_time: A timestamp that shows when the notebook instance was last modified.
|
|
10762
10774
|
notebook_instance_lifecycle_config_name: The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
|
|
10763
|
-
default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
10764
|
-
additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
10775
|
+
default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
10776
|
+
additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
10765
10777
|
"""
|
|
10766
10778
|
|
|
10767
10779
|
notebook_instance_name: Union[str, object]
|
|
@@ -11231,14 +11243,14 @@ class SpaceDetails(Base):
|
|
|
11231
11243
|
class StudioLifecycleConfigDetails(Base):
|
|
11232
11244
|
"""
|
|
11233
11245
|
StudioLifecycleConfigDetails
|
|
11234
|
-
Details of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
11246
|
+
Details of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
11235
11247
|
|
|
11236
11248
|
Attributes
|
|
11237
11249
|
----------------------
|
|
11238
11250
|
studio_lifecycle_config_arn: The Amazon Resource Name (ARN) of the Lifecycle Configuration.
|
|
11239
|
-
studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
11240
|
-
creation_time: The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
11241
|
-
last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
|
|
11251
|
+
studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
11252
|
+
creation_time: The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
11253
|
+
last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
|
|
11242
11254
|
studio_lifecycle_config_app_type: The App type to which the Lifecycle Configuration is attached.
|
|
11243
11255
|
"""
|
|
11244
11256
|
|
|
@@ -24,7 +24,7 @@ NOTEBOOK_PREFIX = "AWS-SageMaker-Notebook-Instance"
|
|
|
24
24
|
NOTEBOOK_METADATA_FILE = "/etc/opt/ml/sagemaker-notebook-instance-version.txt"
|
|
25
25
|
STUDIO_METADATA_FILE = "/opt/ml/metadata/resource-metadata.json"
|
|
26
26
|
|
|
27
|
-
SagemakerCore_VERSION =
|
|
27
|
+
SagemakerCore_VERSION = importlib_metadata.version("sagemaker-core")
|
|
28
28
|
|
|
29
29
|
|
|
30
30
|
def process_notebook_metadata_file() -> str:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: sagemaker-core
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.19
|
|
4
4
|
Summary: An python package for sagemaker core functionalities
|
|
5
5
|
Author-email: AWS <sagemaker-interests@amazon.com>
|
|
6
6
|
Project-URL: Repository, https://github.com/aws/sagemaker-core.git
|
sagemaker_core-1.0.17/VERSION
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
1.0.17
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/__init__.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/base.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/codec.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/main/code_injection/constants.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/resources_codegen.py
RENAMED
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/resources_extractor.py
RENAMED
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core/tools/shapes_extractor.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{sagemaker_core-1.0.17 → sagemaker_core-1.0.19}/src/sagemaker_core.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|