rxnn 0.2.9__tar.gz → 0.2.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. {rxnn-0.2.9 → rxnn-0.2.10}/PKG-INFO +1 -1
  2. {rxnn-0.2.9 → rxnn-0.2.10}/pyproject.toml +1 -1
  3. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/reward.py +2 -2
  4. {rxnn-0.2.9 → rxnn-0.2.10}/LICENSE +0 -0
  5. {rxnn-0.2.9 → rxnn-0.2.10}/README.md +0 -0
  6. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/.DS_Store +0 -0
  7. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/__init__.py +0 -0
  8. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/experimental/__init__.py +0 -0
  9. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/experimental/attention.py +0 -0
  10. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/experimental/models.py +0 -0
  11. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/experimental/moe.py +0 -0
  12. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/memory/__init__.py +0 -0
  13. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/memory/attention.py +0 -0
  14. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/memory/norm.py +0 -0
  15. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/memory/stm.py +0 -0
  16. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/rxt/__init__.py +0 -0
  17. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/rxt/models.py +0 -0
  18. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/__init__.py +0 -0
  19. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/base.py +0 -0
  20. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/bml.py +0 -0
  21. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/callbacks.py +0 -0
  22. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/dataset.py +0 -0
  23. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/models.py +0 -0
  24. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/mrl.py +0 -0
  25. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/rl.py +0 -0
  26. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/scheduler.py +0 -0
  27. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/tokenizer.py +0 -0
  28. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/training/utils.py +0 -0
  29. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/__init__.py +0 -0
  30. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/attention.py +0 -0
  31. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/ff.py +0 -0
  32. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/layers.py +0 -0
  33. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/mask.py +0 -0
  34. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/models.py +0 -0
  35. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/moe.py +0 -0
  36. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/positional.py +0 -0
  37. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/transformers/sampler.py +0 -0
  38. {rxnn-0.2.9 → rxnn-0.2.10}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.2.9
3
+ Version: 0.2.10
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.2.9"
7
+ version = "0.2.10"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -103,9 +103,9 @@ class MrlRewardModel:
103
103
  if mode == MrlRewardMode.STANDARD or mode == MrlRewardMode.LONG_RANGE:
104
104
  bleu = self.batch_bleu(generated['input_ids'], reference['input_ids'], saved_data['input_ids'])
105
105
  cosine = self.batch_cosine(generated['input_ids'], reference['input_ids'], saved_data['input_ids'])
106
- return (self.bleu_factor * torch.tensor(bleu) + self.cos_factor * cosine).tolist()
106
+ return (self.bleu_factor * torch.tensor(bleu, device=self.device) + self.cos_factor * cosine).tolist()
107
107
  else:
108
108
  bleu = self.batch_bleu(generated['input_ids'], reference['input_ids'], saved_data['input_ids'])
109
109
  cosine = self.negative_cosine(generated['input_ids'], reference['input_ids'], saved_data['input_ids'])
110
- return (self.neg_bleu_factor * torch.tensor(bleu) + self.neg_cos_factor * cosine).tolist()
110
+ return (self.neg_bleu_factor * torch.tensor(bleu, device=self.device) + self.neg_cos_factor * cosine).tolist()
111
111
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes