rxnn 0.2.4__tar.gz → 0.2.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. {rxnn-0.2.4 → rxnn-0.2.5}/PKG-INFO +1 -1
  2. {rxnn-0.2.4 → rxnn-0.2.5}/pyproject.toml +1 -1
  3. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/memory/stm.py +11 -7
  4. {rxnn-0.2.4 → rxnn-0.2.5}/LICENSE +0 -0
  5. {rxnn-0.2.4 → rxnn-0.2.5}/README.md +0 -0
  6. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/.DS_Store +0 -0
  7. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/__init__.py +0 -0
  8. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/experimental/__init__.py +0 -0
  9. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/experimental/attention.py +0 -0
  10. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/experimental/models.py +0 -0
  11. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/experimental/moe.py +0 -0
  12. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/memory/__init__.py +0 -0
  13. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/memory/attention.py +0 -0
  14. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/memory/norm.py +0 -0
  15. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/rxt/__init__.py +0 -0
  16. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/rxt/models.py +0 -0
  17. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/__init__.py +0 -0
  18. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/base.py +0 -0
  19. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/bml.py +0 -0
  20. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/callbacks.py +0 -0
  21. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/dataset.py +0 -0
  22. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/models.py +0 -0
  23. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/mrl.py +0 -0
  24. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/reward.py +0 -0
  25. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/rl.py +0 -0
  26. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/scheduler.py +0 -0
  27. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/tokenizer.py +0 -0
  28. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/training/utils.py +0 -0
  29. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/__init__.py +0 -0
  30. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/attention.py +0 -0
  31. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/ff.py +0 -0
  32. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/layers.py +0 -0
  33. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/mask.py +0 -0
  34. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/models.py +0 -0
  35. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/moe.py +0 -0
  36. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/positional.py +0 -0
  37. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/transformers/sampler.py +0 -0
  38. {rxnn-0.2.4 → rxnn-0.2.5}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.2.4
3
+ Version: 0.2.5
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.2.4"
7
+ version = "0.2.5"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -48,22 +48,23 @@ class ShortTermMemory(nn.Module):
48
48
  if not self.is_trainable:
49
49
  self.is_trainable = True
50
50
  initial_stm = self.memory.clone()
51
- del self.memory
51
+ delattr(self, 'memory')
52
52
  self.memory = nn.Parameter(initial_stm)
53
53
 
54
54
  def freeze(self):
55
55
  if self.is_trainable:
56
56
  self.requires_grad_(False)
57
57
  trained_stm = self.memory.clone()
58
- del self.memory
58
+ delattr(self, 'memory')
59
59
  self.register_buffer('memory', trained_stm)
60
60
 
61
61
  def reset(self, init_type: str = None):
62
- self.memory = self._init_tensor(init_type)
62
+ self.memory.copy_(self._init_tensor(init_type))
63
63
 
64
64
  def resize(self, new_stm_size: int, init_type: str = None):
65
65
  self.stm_size = new_stm_size
66
- self.memory = self._init_tensor(init_type)
66
+ delattr(self, 'memory')
67
+ self.register_buffer('memory', self._init_tensor(init_type))
67
68
 
68
69
  def batched_memory(self, batch_size: int, init_type: str = None):
69
70
  if init_type is not None:
@@ -71,7 +72,8 @@ class ShortTermMemory(nn.Module):
71
72
  'STM init type must be one of "normal", "standard", "uniform", "ones", "zeros"'
72
73
  self.init_type = init_type
73
74
  self.batch_size = batch_size
74
- self.memory = self._init_tensor()
75
+ delattr(self, 'memory')
76
+ self.register_buffer('memory', self._init_tensor())
75
77
 
76
78
  def single_memory(self, init_type: str = None, use_mean_from_batch: bool = False):
77
79
  if init_type is not None:
@@ -81,7 +83,9 @@ class ShortTermMemory(nn.Module):
81
83
  self.batch_size = 1
82
84
  if use_mean_from_batch:
83
85
  batch_mean = self.memory.mean(dim=(1, 2, 3), keepdim=True)
84
- self.memory = self._init_tensor()
86
+ delattr(self, 'memory')
87
+ self.register_buffer('memory', self._init_tensor())
85
88
  self.memory.copy_(batch_mean)
86
89
  else:
87
- self.memory = self._init_tensor()
90
+ delattr(self, 'memory')
91
+ self.register_buffer('memory', self._init_tensor())
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes