rxnn 0.2.21__tar.gz → 0.2.22__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. {rxnn-0.2.21 → rxnn-0.2.22}/PKG-INFO +1 -1
  2. {rxnn-0.2.21 → rxnn-0.2.22}/pyproject.toml +1 -1
  3. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/rl.py +0 -13
  4. {rxnn-0.2.21 → rxnn-0.2.22}/LICENSE +0 -0
  5. {rxnn-0.2.21 → rxnn-0.2.22}/README.md +0 -0
  6. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/.DS_Store +0 -0
  7. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/__init__.py +0 -0
  8. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/experimental/__init__.py +0 -0
  9. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/experimental/attention.py +0 -0
  10. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/experimental/models.py +0 -0
  11. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/experimental/moe.py +0 -0
  12. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/memory/__init__.py +0 -0
  13. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/memory/attention.py +0 -0
  14. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/memory/norm.py +0 -0
  15. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/memory/stm.py +0 -0
  16. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/rxt/__init__.py +0 -0
  17. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/rxt/models.py +0 -0
  18. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/__init__.py +0 -0
  19. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/base.py +0 -0
  20. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/bml.py +0 -0
  21. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/callbacks.py +0 -0
  22. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/dataset.py +0 -0
  23. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/models.py +0 -0
  24. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/mrl.py +0 -0
  25. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/reward.py +0 -0
  26. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/scheduler.py +0 -0
  27. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/tokenizer.py +0 -0
  28. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/training/utils.py +0 -0
  29. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/__init__.py +0 -0
  30. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/attention.py +0 -0
  31. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/ff.py +0 -0
  32. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/layers.py +0 -0
  33. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/mask.py +0 -0
  34. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/models.py +0 -0
  35. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/moe.py +0 -0
  36. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/positional.py +0 -0
  37. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/transformers/sampler.py +0 -0
  38. {rxnn-0.2.21 → rxnn-0.2.22}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.2.21
3
+ Version: 0.2.22
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.2.21"
7
+ version = "0.2.22"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -24,8 +24,6 @@ class RlAlgorithm(ABC):
24
24
  return self.critic_loss(rewards, values)
25
25
 
26
26
  class PPOConfig(TypedDict):
27
- gae_gamma: float
28
- gae_lambda: float
29
27
  clip_eps: float
30
28
 
31
29
  class PPOAlgorithm(RlAlgorithm):
@@ -33,8 +31,6 @@ class PPOAlgorithm(RlAlgorithm):
33
31
  super(PPOAlgorithm, self).__init__()
34
32
 
35
33
  # PPO Config
36
- self.gae_gamma = config.get('gae_gamma', 0.99)
37
- self.gae_lambda = config.get('gae_lambda', 0.95)
38
34
  self.clip_eps = config.get('clip_eps', 0.2)
39
35
 
40
36
  def policy_loss(self, query: TokenizedDict, answer: TokenizedDict, logits: torch.Tensor,
@@ -86,15 +82,6 @@ class PPOAlgorithm(RlAlgorithm):
86
82
 
87
83
  return policy_loss
88
84
 
89
- # def _compute_gae(self, rewards: torch.Tensor, values: torch.Tensor, next_value: torch.Tensor) -> torch.Tensor:
90
- # advantages = torch.zeros_like(rewards, device=values.device)
91
- # last_advantage = 0
92
- # for t in reversed(range(rewards.size(0))):
93
- # delta = rewards[t] + self.gae_gamma * next_value - values[t]
94
- # advantages[t] = delta + self.gae_gamma * self.gae_lambda * last_advantage
95
- # last_advantage = advantages[t]
96
- # return advantages
97
-
98
85
  def calculate_advantages(self, rewards: torch.Tensor, values: torch.Tensor) -> torch.Tensor:
99
86
  advantages = rewards - values
100
87
  normalized_advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes