rxnn 0.1.7__tar.gz → 0.1.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {rxnn-0.1.7 → rxnn-0.1.9}/PKG-INFO +3 -3
  2. {rxnn-0.1.7 → rxnn-0.1.9}/README.md +2 -2
  3. {rxnn-0.1.7 → rxnn-0.1.9}/pyproject.toml +1 -1
  4. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/base.py +3 -2
  5. {rxnn-0.1.7 → rxnn-0.1.9}/LICENSE +0 -0
  6. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/__init__.py +0 -0
  7. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/experimental/__init__.py +0 -0
  8. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/experimental/attention.py +0 -0
  9. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/memory/__init__.py +0 -0
  10. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/memory/norm.py +0 -0
  11. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/memory/stm.py +0 -0
  12. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/rxt/__init__.py +0 -0
  13. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/rxt/models.py +0 -0
  14. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/__init__.py +0 -0
  15. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/bml.py +0 -0
  16. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/callbacks.py +0 -0
  17. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/dataset.py +0 -0
  18. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/scheduler.py +0 -0
  19. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/training/tokenizer.py +0 -0
  20. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/__init__.py +0 -0
  21. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/attention.py +0 -0
  22. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/ff.py +0 -0
  23. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/layers.py +0 -0
  24. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/mask.py +0 -0
  25. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/models.py +0 -0
  26. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/moe.py +0 -0
  27. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/positional.py +0 -0
  28. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/transformers/sampler.py +0 -0
  29. {rxnn-0.1.7 → rxnn-0.1.9}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.1.7
3
+ Version: 0.1.9
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -24,8 +24,8 @@ Project-URL: Homepage, https://rxai.dev/rxnn
24
24
  Project-URL: Repository, https://github.com/RxAI-dev/rxnn/python
25
25
  Description-Content-Type: text/markdown
26
26
 
27
- <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxai.webp" width="300" />
28
- <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxnn.webp" width="300" />
27
+ <img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo_rxai.webp" width="300" />
28
+ <img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo_rxnn.webp" width="300" />
29
29
 
30
30
  # Reactive AI - RxNN
31
31
  ## Reactive Neural Networks Platform
@@ -1,5 +1,5 @@
1
- <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxai.webp" width="300" />
2
- <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxnn.webp" width="300" />
1
+ <img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo_rxai.webp" width="300" />
2
+ <img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo_rxnn.webp" width="300" />
3
3
 
4
4
  # Reactive AI - RxNN
5
5
  ## Reactive Neural Networks Platform
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.1.7"
7
+ version = "0.1.9"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -141,7 +141,8 @@ class BaseTrainer(ABC):
141
141
  callback.on_batch_start(self.model, batch_idx, batch)
142
142
  if self.get_batch_size(batch) == batch_size:
143
143
  loss = self.train_step(batch, batch_idx)
144
- self.accumulated_loss += loss.item()
144
+ orig_loss = loss.item()
145
+ self.accumulated_loss += orig_loss
145
146
  loss = loss / self.gradient_accumulation_steps
146
147
 
147
148
  if self.use_amp:
@@ -192,7 +193,7 @@ class BaseTrainer(ABC):
192
193
  epoch * len(dataloader) + batch_idx)
193
194
 
194
195
  for callback in self.callbacks:
195
- should_stop = callback.on_batch_end(self.model, batch_idx, loss.item() * self.gradient_accumulation_steps, batch)
196
+ should_stop = callback.on_batch_end(self.model, batch_idx, orig_loss, batch)
196
197
  if should_stop:
197
198
  self.is_running = False
198
199
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes