rxnn 0.1.75__tar.gz → 0.1.76__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. {rxnn-0.1.75 → rxnn-0.1.76}/PKG-INFO +1 -1
  2. {rxnn-0.1.75 → rxnn-0.1.76}/pyproject.toml +1 -1
  3. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/dataset.py +63 -18
  4. {rxnn-0.1.75 → rxnn-0.1.76}/LICENSE +0 -0
  5. {rxnn-0.1.75 → rxnn-0.1.76}/README.md +0 -0
  6. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/__init__.py +0 -0
  7. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/experimental/__init__.py +0 -0
  8. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/experimental/attention.py +0 -0
  9. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/experimental/models.py +0 -0
  10. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/experimental/moe.py +0 -0
  11. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/memory/__init__.py +0 -0
  12. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/memory/norm.py +0 -0
  13. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/memory/stm.py +0 -0
  14. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/rxt/__init__.py +0 -0
  15. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/rxt/models.py +0 -0
  16. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/__init__.py +0 -0
  17. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/base.py +0 -0
  18. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/bml.py +0 -0
  19. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/callbacks.py +0 -0
  20. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/scheduler.py +0 -0
  21. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/training/tokenizer.py +0 -0
  22. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/__init__.py +0 -0
  23. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/attention.py +0 -0
  24. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/ff.py +0 -0
  25. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/layers.py +0 -0
  26. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/mask.py +0 -0
  27. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/models.py +0 -0
  28. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/moe.py +0 -0
  29. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/positional.py +0 -0
  30. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/transformers/sampler.py +0 -0
  31. {rxnn-0.1.75 → rxnn-0.1.76}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.1.75
3
+ Version: 0.1.76
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.1.75"
7
+ version = "0.1.76"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -16,6 +16,8 @@ class BaseDataset(Dataset):
16
16
  hf_field: str = 'text',
17
17
  cache_tokenized: bool = False,
18
18
  cache_remove_text: bool = True,
19
+ tokenize_in_background: bool = False,
20
+ batch_size: int = 1,
19
21
  *args,
20
22
  **kwargs
21
23
  ):
@@ -28,6 +30,17 @@ class BaseDataset(Dataset):
28
30
  self.cache_tokenized = cache_tokenized
29
31
  self.cache_remove_text = cache_remove_text
30
32
  self.inputs = []
33
+ self.is_txt_list = isinstance(self.texts, list)
34
+ self.tokenize_in_background = tokenize_in_background
35
+ self.bg_next = []
36
+ self.bg_queue = None
37
+ self.batch_size = batch_size
38
+ self.last_idx = 0
39
+ if tokenize_in_background:
40
+ for i in range(self.batch_size):
41
+ self.bg_next.append(self.get_tokenized_text(i))
42
+ self.last_idx = self.batch_size - 1
43
+
31
44
 
32
45
  def __len__(self):
33
46
  return len(self.texts if not self.is_pre_tokenized else self.inputs)
@@ -35,10 +48,50 @@ class BaseDataset(Dataset):
35
48
  def get_tokenized_text(self, idx: int, txt: str = None):
36
49
  if self.is_pre_tokenized:
37
50
  return self.inputs[idx]
51
+ elif self.tokenize_in_background:
52
+ if idx == self.last_idx - self.batch_size:
53
+ if self.bg_queue is not None:
54
+ self.bg_next = self.bg_queue
55
+ self.bg_queue = None
56
+ # TODO: schedule tokenizing a batch in background
57
+ elif idx == self.last_idx:
58
+ item = self.bg_next[idx]
59
+ self.bg_next = []
60
+ return item
61
+
62
+ if idx <= self.last_idx:
63
+ if self.bg_queue is not None:
64
+ self.bg_next = self.bg_queue
65
+ self.bg_queue = None
66
+
67
+ new_idx = idx - (self.last_idx - self.batch_size)
68
+ if new_idx in self.bg_next:
69
+ return self.bg_next[new_idx]
70
+ else:
71
+ if self.is_txt_list:
72
+ text = self.texts[idx]
73
+ else:
74
+ text = self.texts[idx][self.hf_field]
75
+
76
+ inputs = self.tokenizer(
77
+ text,
78
+ max_length=self.max_seq_len,
79
+ truncation=True,
80
+ padding='max_length',
81
+ return_tensors='pt',
82
+ return_attention_mask=True
83
+ )
84
+ if not (inputs['input_ids'][0] < self.tokenizer.vocab_size).all():
85
+ inputs['input_ids'][0][
86
+ (inputs['input_ids'][0] >= self.tokenizer.vocab_size)] = self.tokenizer.unk_token_id
87
+ if not (inputs['input_ids'][0] >= 0).all():
88
+ inputs['input_ids'][0][inputs['input_ids'][0] < 0] = self.tokenizer.unk_token_id
89
+
90
+ return inputs
38
91
  else:
39
- if txt:
92
+ if txt is not None:
40
93
  text = txt
41
- elif isinstance(self.texts, list):
94
+ elif self.is_txt_list:
42
95
  text = self.texts[idx]
43
96
  else:
44
97
  text = self.texts[idx][self.hf_field]
@@ -92,22 +145,14 @@ class BaseDataset(Dataset):
92
145
  """
93
146
  if not self.is_pre_tokenized:
94
147
  num_texts = len(self.texts)
95
- is_txt_list = isinstance(self.texts, list)
96
- if is_txt_list or map_hf_ds_to_list:
97
- txts = self.texts if is_txt_list else self.texts.to_list()
98
- del self.texts
99
- self.texts = None
100
- for index in range(num_texts):
101
- item = txts.pop() if is_txt_list else txts.pop()[self.hf_field]
102
- self.inputs.append(self.get_tokenized_text(index, txt=item))
103
- if verbose and index % log_interval == 0:
104
- print(f'Processed {index + 1}/{num_texts}')
105
- else:
106
- for index in range(num_texts):
107
- self.inputs.append(self.get_tokenized_text(index))
108
- del self.texts[index]
109
- if verbose and index % log_interval == 0:
110
- print(f'Processed {index + 1}/{num_texts}')
148
+ txts = self.texts if self.is_txt_list else self.texts.to_list()
149
+ del self.texts
150
+ self.texts = None
151
+ for index in range(num_texts):
152
+ item = txts.pop() if self.is_txt_list else txts.pop()[self.hf_field]
153
+ self.inputs.append(self.get_tokenized_text(index, txt=item))
154
+ if verbose and index % log_interval == 0:
155
+ print(f'Processed {index + 1}/{num_texts}')
111
156
  self.is_pre_tokenized = True
112
157
 
113
158
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes