rxnn 0.1.63__tar.gz → 0.1.64__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. {rxnn-0.1.63 → rxnn-0.1.64}/PKG-INFO +1 -1
  2. {rxnn-0.1.63 → rxnn-0.1.64}/pyproject.toml +1 -1
  3. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/rxt/models.py +17 -13
  4. {rxnn-0.1.63 → rxnn-0.1.64}/LICENSE +0 -0
  5. {rxnn-0.1.63 → rxnn-0.1.64}/README.md +0 -0
  6. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/__init__.py +0 -0
  7. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/experimental/__init__.py +0 -0
  8. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/experimental/attention.py +0 -0
  9. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/experimental/models.py +0 -0
  10. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/experimental/moe.py +0 -0
  11. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/memory/__init__.py +0 -0
  12. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/memory/norm.py +0 -0
  13. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/memory/stm.py +0 -0
  14. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/rxt/__init__.py +0 -0
  15. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/__init__.py +0 -0
  16. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/base.py +0 -0
  17. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/bml.py +0 -0
  18. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/callbacks.py +0 -0
  19. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/dataset.py +0 -0
  20. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/scheduler.py +0 -0
  21. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/training/tokenizer.py +0 -0
  22. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/__init__.py +0 -0
  23. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/attention.py +0 -0
  24. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/ff.py +0 -0
  25. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/layers.py +0 -0
  26. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/mask.py +0 -0
  27. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/models.py +0 -0
  28. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/moe.py +0 -0
  29. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/positional.py +0 -0
  30. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/transformers/sampler.py +0 -0
  31. {rxnn-0.1.63 → rxnn-0.1.64}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.1.63
3
+ Version: 0.1.64
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.1.63"
7
+ version = "0.1.64"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -31,9 +31,11 @@ class RxTAlphaComponentConfig(TypedDict):
31
31
  moe_top_k: int
32
32
  self_att_type: str
33
33
  cross_att_type: str
34
- att_num_experts: int
35
- att_num_query_experts: int
36
- att_num_query_groups: int
34
+ att_experts: int
35
+ att_query_experts: int
36
+ att_query_groups: int
37
+ cross_att_groups: int
38
+ cross_att_query_groups: int
37
39
 
38
40
 
39
41
  class RxTAlphaComponentBase(nn.Module, PyTorchModelHubMixin):
@@ -61,9 +63,11 @@ class RxTAlphaComponentBase(nn.Module, PyTorchModelHubMixin):
61
63
  moe_top_k: int = 1,
62
64
  self_att_type: str = 'gqa',
63
65
  cross_att_type: str = 'mqa',
64
- att_num_experts: int = None,
65
- att_num_query_experts: int = None,
66
- att_num_query_groups: int = None,
66
+ att_experts: int = None,
67
+ att_query_experts: int = None,
68
+ att_query_groups: int = None,
69
+ cross_att_groups: int = None,
70
+ cross_att_query_groups: int = None,
67
71
  **kwargs
68
72
  ):
69
73
  super(RxTAlphaComponentBase, self).__init__(**kwargs)
@@ -86,20 +90,20 @@ class RxTAlphaComponentBase(nn.Module, PyTorchModelHubMixin):
86
90
  else:
87
91
  att_init = lambda: init_experimental_attention(embed_dim, att_heads, self_att_type, att_groups, rope=rope,
88
92
  use_flash_attention=use_flash_attention, dropout=att_dropout,
89
- max_seq_len=seq_len, is_causal=is_causal, num_experts=att_num_experts,
90
- num_query_experts=att_num_query_experts,
91
- num_query_groups=att_num_query_groups)
93
+ max_seq_len=seq_len, is_causal=is_causal, num_experts=att_experts,
94
+ num_query_experts=att_query_experts,
95
+ num_query_groups=att_query_groups)
92
96
 
93
97
  if cross_att_type in ['mha', 'gqa', 'mqa']:
94
98
  cross_att_init = lambda: init_attention(embed_dim, att_heads, cross_att_type, att_groups, rope=rope,
95
99
  use_flash_attention=use_flash_attention, dropout=att_dropout,
96
100
  max_seq_len=seq_len, is_causal=is_causal)
97
101
  else:
98
- cross_att_init = lambda: init_experimental_attention(embed_dim, att_heads, cross_att_type, att_groups, rope=rope,
102
+ cross_att_init = lambda: init_experimental_attention(embed_dim, att_heads, cross_att_type, cross_att_groups or att_groups, rope=rope,
99
103
  use_flash_attention=use_flash_attention, dropout=att_dropout,
100
- max_seq_len=seq_len, is_causal=is_causal, num_experts=att_num_experts,
101
- num_query_experts=att_num_query_experts,
102
- num_query_groups=att_num_query_groups)
104
+ max_seq_len=seq_len, is_causal=is_causal, num_experts=att_experts,
105
+ num_query_experts=att_query_experts,
106
+ num_query_groups=cross_att_query_groups or att_query_groups)
103
107
 
104
108
  layers = nn.ModuleList([
105
109
  ReactiveTransformerLayer(
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes