rxnn 0.1.5__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {rxnn-0.1.5 → rxnn-0.1.7}/PKG-INFO +3 -3
  2. {rxnn-0.1.5 → rxnn-0.1.7}/README.md +2 -2
  3. {rxnn-0.1.5 → rxnn-0.1.7}/pyproject.toml +1 -1
  4. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/rxt/models.py +7 -7
  5. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/base.py +2 -2
  6. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/bml.py +2 -2
  7. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/callbacks.py +1 -2
  8. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/attention.py +1 -1
  9. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/layers.py +3 -3
  10. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/models.py +3 -3
  11. {rxnn-0.1.5 → rxnn-0.1.7}/LICENSE +0 -0
  12. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/__init__.py +0 -0
  13. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/experimental/__init__.py +0 -0
  14. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/experimental/attention.py +0 -0
  15. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/memory/__init__.py +0 -0
  16. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/memory/norm.py +0 -0
  17. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/memory/stm.py +0 -0
  18. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/rxt/__init__.py +0 -0
  19. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/__init__.py +0 -0
  20. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/dataset.py +0 -0
  21. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/scheduler.py +0 -0
  22. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/training/tokenizer.py +0 -0
  23. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/__init__.py +0 -0
  24. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/ff.py +0 -0
  25. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/mask.py +0 -0
  26. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/moe.py +0 -0
  27. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/positional.py +0 -0
  28. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/transformers/sampler.py +0 -0
  29. {rxnn-0.1.5 → rxnn-0.1.7}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.1.5
3
+ Version: 0.1.7
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -24,8 +24,8 @@ Project-URL: Homepage, https://rxai.dev/rxnn
24
24
  Project-URL: Repository, https://github.com/RxAI-dev/rxnn/python
25
25
  Description-Content-Type: text/markdown
26
26
 
27
- <img src="logo_rxai.webp" width="300" />
28
- <img src="logo_rxnn.webp" width="300" />
27
+ <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxai.webp" width="300" />
28
+ <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxnn.webp" width="300" />
29
29
 
30
30
  # Reactive AI - RxNN
31
31
  ## Reactive Neural Networks Platform
@@ -1,5 +1,5 @@
1
- <img src="logo_rxai.webp" width="300" />
2
- <img src="logo_rxnn.webp" width="300" />
1
+ <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxai.webp" width="300" />
2
+ <img src="https://github.com/RxAI-dev/rxnn/tree/main/assets/logo_rxnn.webp" width="300" />
3
3
 
4
4
  # Reactive AI - RxNN
5
5
  ## Reactive Neural Networks Platform
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.1.5"
7
+ version = "0.1.7"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -2,13 +2,13 @@ import torch
2
2
  from torch import nn
3
3
  from typing import TypedDict, Union
4
4
  from huggingface_hub import PyTorchModelHubMixin
5
- from rxnn.transformers.positional import RotaryPositionalEmbedding
6
- from rxnn.transformers.attention import init_attention
7
- from rxnn.transformers.layers import ReactiveTransformerLayer
8
- from rxnn.transformers.models import ReactiveTransformerBase, ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
- from rxnn.transformers.ff import get_activation_layer
10
- from rxnn.memory.stm import ShortTermMemory
11
- from rxnn.utils import get_model_size
5
+ from ..transformers.positional import RotaryPositionalEmbedding
6
+ from ..transformers.attention import init_attention
7
+ from ..transformers.layers import ReactiveTransformerLayer
8
+ from ..transformers.models import ReactiveTransformerBase, ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
+ from ..transformers.ff import get_activation_layer
10
+ from ..memory.stm import ShortTermMemory
11
+ from ..utils import get_model_size
12
12
 
13
13
 
14
14
  class RxTAlphaComponentConfig(TypedDict):
@@ -7,7 +7,7 @@ from torch.utils.tensorboard import SummaryWriter
7
7
  import torch.distributed as dist
8
8
  from torch.nn.parallel import DistributedDataParallel
9
9
  from typing import Callable
10
- from callbacks import TrainerCallback
10
+ from .callbacks import TrainerCallback
11
11
 
12
12
 
13
13
  class BaseTrainer(ABC):
@@ -192,7 +192,7 @@ class BaseTrainer(ABC):
192
192
  epoch * len(dataloader) + batch_idx)
193
193
 
194
194
  for callback in self.callbacks:
195
- should_stop = callback.on_batch_end(self.model, batch_idx, loss.item(), batch)
195
+ should_stop = callback.on_batch_end(self.model, batch_idx, loss.item() * self.gradient_accumulation_steps, batch)
196
196
  if should_stop:
197
197
  self.is_running = False
198
198
 
@@ -5,8 +5,8 @@ import math
5
5
  from huggingface_hub import PyTorchModelHubMixin
6
6
  from typing import Union
7
7
  import torch.distributed as dist
8
- from rxnn.transformers.models import ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
- from rxnn.training.base import BaseTrainer
8
+ from ..transformers.models import ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
+ from ..training.base import BaseTrainer
10
10
 
11
11
  class MLMHead(nn.Module, PyTorchModelHubMixin, license="apache-2.0"):
12
12
  def __init__(self, embed_dim: int, vocab_size: int, *args, **kwargs):
@@ -3,10 +3,9 @@ import numpy as np
3
3
  import torch
4
4
  import torch.nn as nn
5
5
  from typing import Union
6
- from rxnn.utils import human_format
7
6
  from torch.nn.parallel import DistributedDataParallel
8
7
  from huggingface_hub import PyTorchModelHubMixin
9
-
8
+ from ..utils import human_format
10
9
 
11
10
  class TrainerCallback:
12
11
  def on_epoch_start(self, model: torch.nn.Module, epoch: int) -> None:
@@ -2,7 +2,7 @@ import torch
2
2
  import torch.nn as nn
3
3
  import torch.nn.functional as F
4
4
  import math
5
- from positional import RotaryPositionalEmbedding, RelativePositionalEmbedding
5
+ from .positional import RotaryPositionalEmbedding, RelativePositionalEmbedding
6
6
 
7
7
 
8
8
  class MultiHeadAttention(nn.Module):
@@ -1,8 +1,8 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
- from attention import MultiHeadAttention
4
- from ff import FeedForward, GatedFeedForward
5
- from moe import MoeFeedForward, GatedMoeFeedForward
3
+ from .attention import MultiHeadAttention
4
+ from .ff import FeedForward, GatedFeedForward
5
+ from .moe import MoeFeedForward, GatedMoeFeedForward
6
6
 
7
7
 
8
8
  class ReactiveTransformerLayer(nn.Module):
@@ -1,8 +1,8 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
- from positional import AbsolutePositionalEmbedding
4
- from mask import create_causal_mask
5
- from rxnn.memory.stm import ShortTermMemory
3
+ from .positional import AbsolutePositionalEmbedding
4
+ from .mask import create_causal_mask
5
+ from ..memory.stm import ShortTermMemory
6
6
 
7
7
 
8
8
  class ReactiveTransformerBase(nn.Module):
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes