rxnn 0.1.4__tar.gz → 0.1.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {rxnn-0.1.4 → rxnn-0.1.6}/PKG-INFO +1 -1
  2. {rxnn-0.1.4 → rxnn-0.1.6}/pyproject.toml +1 -1
  3. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/experimental/attention.py +1 -1
  4. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/rxt/models.py +7 -7
  5. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/base.py +1 -1
  6. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/bml.py +2 -2
  7. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/callbacks.py +1 -2
  8. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/attention.py +1 -1
  9. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/layers.py +3 -3
  10. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/models.py +3 -3
  11. {rxnn-0.1.4 → rxnn-0.1.6}/LICENSE +0 -0
  12. {rxnn-0.1.4 → rxnn-0.1.6}/README.md +0 -0
  13. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/__init__.py +0 -0
  14. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/experimental/__init__.py +0 -0
  15. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/memory/__init__.py +0 -0
  16. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/memory/norm.py +0 -0
  17. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/memory/stm.py +0 -0
  18. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/rxt/__init__.py +0 -0
  19. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/__init__.py +0 -0
  20. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/dataset.py +0 -0
  21. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/scheduler.py +0 -0
  22. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/training/tokenizer.py +0 -0
  23. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/__init__.py +0 -0
  24. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/ff.py +0 -0
  25. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/mask.py +0 -0
  26. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/moe.py +0 -0
  27. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/positional.py +0 -0
  28. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/transformers/sampler.py +0 -0
  29. {rxnn-0.1.4 → rxnn-0.1.6}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.1.4"
7
+ version = "0.1.6"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -1,6 +1,6 @@
1
1
  import torch
2
2
  from torch import nn
3
- from src.rxnn.transformers.attention import MultiHeadAttention
3
+ from rxnn.transformers.attention import MultiHeadAttention
4
4
 
5
5
  class FlexAttention(MultiHeadAttention):
6
6
  def __init__(
@@ -2,13 +2,13 @@ import torch
2
2
  from torch import nn
3
3
  from typing import TypedDict, Union
4
4
  from huggingface_hub import PyTorchModelHubMixin
5
- from src.rxnn.transformers.positional import RotaryPositionalEmbedding
6
- from src.rxnn.transformers.attention import init_attention
7
- from src.rxnn.transformers.layers import ReactiveTransformerLayer
8
- from src.rxnn.transformers.models import ReactiveTransformerBase, ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
- from src.rxnn.transformers.ff import get_activation_layer
10
- from src.rxnn.memory.stm import ShortTermMemory
11
- from src.rxnn.utils import get_model_size
5
+ from ..transformers.positional import RotaryPositionalEmbedding
6
+ from ..transformers.attention import init_attention
7
+ from ..transformers.layers import ReactiveTransformerLayer
8
+ from ..transformers.models import ReactiveTransformerBase, ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
+ from ..transformers.ff import get_activation_layer
10
+ from ..memory.stm import ShortTermMemory
11
+ from ..utils import get_model_size
12
12
 
13
13
 
14
14
  class RxTAlphaComponentConfig(TypedDict):
@@ -7,7 +7,7 @@ from torch.utils.tensorboard import SummaryWriter
7
7
  import torch.distributed as dist
8
8
  from torch.nn.parallel import DistributedDataParallel
9
9
  from typing import Callable
10
- from callbacks import TrainerCallback
10
+ from .callbacks import TrainerCallback
11
11
 
12
12
 
13
13
  class BaseTrainer(ABC):
@@ -5,8 +5,8 @@ import math
5
5
  from huggingface_hub import PyTorchModelHubMixin
6
6
  from typing import Union
7
7
  import torch.distributed as dist
8
- from src.rxnn.transformers.models import ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
- from src.rxnn.training.base import BaseTrainer
8
+ from ..transformers.models import ReactiveTransformerEncoder, ReactiveTransformerDecoder
9
+ from ..training.base import BaseTrainer
10
10
 
11
11
  class MLMHead(nn.Module, PyTorchModelHubMixin, license="apache-2.0"):
12
12
  def __init__(self, embed_dim: int, vocab_size: int, *args, **kwargs):
@@ -3,10 +3,9 @@ import numpy as np
3
3
  import torch
4
4
  import torch.nn as nn
5
5
  from typing import Union
6
- from src.rxnn.utils import human_format
7
6
  from torch.nn.parallel import DistributedDataParallel
8
7
  from huggingface_hub import PyTorchModelHubMixin
9
-
8
+ from ..utils import human_format
10
9
 
11
10
  class TrainerCallback:
12
11
  def on_epoch_start(self, model: torch.nn.Module, epoch: int) -> None:
@@ -2,7 +2,7 @@ import torch
2
2
  import torch.nn as nn
3
3
  import torch.nn.functional as F
4
4
  import math
5
- from positional import RotaryPositionalEmbedding, RelativePositionalEmbedding
5
+ from .positional import RotaryPositionalEmbedding, RelativePositionalEmbedding
6
6
 
7
7
 
8
8
  class MultiHeadAttention(nn.Module):
@@ -1,8 +1,8 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
- from attention import MultiHeadAttention
4
- from ff import FeedForward, GatedFeedForward
5
- from moe import MoeFeedForward, GatedMoeFeedForward
3
+ from .attention import MultiHeadAttention
4
+ from .ff import FeedForward, GatedFeedForward
5
+ from .moe import MoeFeedForward, GatedMoeFeedForward
6
6
 
7
7
 
8
8
  class ReactiveTransformerLayer(nn.Module):
@@ -1,8 +1,8 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
- from positional import AbsolutePositionalEmbedding
4
- from mask import create_causal_mask
5
- from src.rxnn.memory.stm import ShortTermMemory
3
+ from .positional import AbsolutePositionalEmbedding
4
+ from .mask import create_causal_mask
5
+ from ..memory.stm import ShortTermMemory
6
6
 
7
7
 
8
8
  class ReactiveTransformerBase(nn.Module):
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes