rxnn 0.1.12__tar.gz → 0.1.13__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {rxnn-0.1.12 → rxnn-0.1.13}/PKG-INFO +1 -1
  2. {rxnn-0.1.12 → rxnn-0.1.13}/pyproject.toml +1 -1
  3. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/layers.py +2 -2
  4. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/models.py +2 -2
  5. {rxnn-0.1.12 → rxnn-0.1.13}/LICENSE +0 -0
  6. {rxnn-0.1.12 → rxnn-0.1.13}/README.md +0 -0
  7. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/__init__.py +0 -0
  8. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/experimental/__init__.py +0 -0
  9. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/experimental/attention.py +0 -0
  10. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/memory/__init__.py +0 -0
  11. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/memory/norm.py +0 -0
  12. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/memory/stm.py +0 -0
  13. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/rxt/__init__.py +0 -0
  14. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/rxt/models.py +0 -0
  15. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/__init__.py +0 -0
  16. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/base.py +0 -0
  17. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/bml.py +0 -0
  18. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/callbacks.py +0 -0
  19. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/dataset.py +0 -0
  20. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/scheduler.py +0 -0
  21. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/training/tokenizer.py +0 -0
  22. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/__init__.py +0 -0
  23. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/attention.py +0 -0
  24. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/ff.py +0 -0
  25. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/mask.py +0 -0
  26. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/moe.py +0 -0
  27. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/positional.py +0 -0
  28. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/transformers/sampler.py +0 -0
  29. {rxnn-0.1.12 → rxnn-0.1.13}/src/rxnn/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.1.12
3
+ Version: 0.1.13
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "rxnn"
7
- version = "0.1.12"
7
+ version = "0.1.13"
8
8
  description = "RxNN: Reactive Neural Networks Platform"
9
9
 
10
10
  license = "Apache-2.0"
@@ -59,7 +59,7 @@ class ReactiveTransformerLayer(nn.Module):
59
59
  for param in self.memory_cross_attention.parameters():
60
60
  param.requires_grad_(is_trainable)
61
61
 
62
- def moe_router_loss_(self):
62
+ def moe_router_loss(self):
63
63
  return self.ff.router_loss() if self.use_moe else None
64
64
 
65
65
  def forward(self, x: torch.Tensor, stm: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
@@ -135,7 +135,7 @@ class ClassicTransformerLayer(nn.Module):
135
135
  self.use_post_norm = use_post_norm
136
136
  self.use_moe = use_moe
137
137
 
138
- def moe_router_loss_(self):
138
+ def moe_router_loss(self):
139
139
  return self.ff.router_loss() if self.use_moe else torch.tensor(0.0)
140
140
 
141
141
  def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
@@ -37,7 +37,7 @@ class ReactiveTransformerBase(nn.Module):
37
37
  for i in range(self.num_own_layers):
38
38
  self.layers[i].trainable_cross_attention_(is_trainable)
39
39
 
40
- def moe_router_loss_(self):
40
+ def moe_router_loss(self):
41
41
  return torch.stack([self.layers[i].moe_router_loss() for i in range(self.num_own_layers) if self.layers[i].use_moe] + [
42
42
  self.shared_layers[i].moe_router_loss() for i in range(self.num_shared_layers) if self.shared_layers[i].use_moe]).mean()
43
43
 
@@ -123,7 +123,7 @@ class ClassicTransformerBase(nn.Module):
123
123
  self.layers = layers
124
124
  self.num_layers = len(layers) if layers else 0
125
125
 
126
- def moe_router_loss_(self):
126
+ def moe_router_loss(self):
127
127
  return torch.stack([self.layers[i].moe_router_loss() for i in range(self.num_layers) if self.layers[i].use_moe]).mean()
128
128
 
129
129
  def forward(self, x: torch.Tensor) -> torch.Tensor:
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes