rwlenspy 1.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rwlenspy-1.1.1/LICENSE +21 -0
- rwlenspy-1.1.1/PKG-INFO +46 -0
- rwlenspy-1.1.1/README.md +25 -0
- rwlenspy-1.1.1/build.py +60 -0
- rwlenspy-1.1.1/examples/example_animate_multilens.py +368 -0
- rwlenspy-1.1.1/examples/example_animate_singlelens.py +339 -0
- rwlenspy-1.1.1/examples/example_transfer_multilens.py +197 -0
- rwlenspy-1.1.1/examples/example_transfer_singlelens.py +175 -0
- rwlenspy-1.1.1/pyproject.toml +45 -0
- rwlenspy-1.1.1/rwlenspy/__init__.py +0 -0
- rwlenspy-1.1.1/rwlenspy/lensing.pxd +224 -0
- rwlenspy-1.1.1/rwlenspy/lensing.pyx +839 -0
- rwlenspy-1.1.1/rwlenspy/rwlens.cpp +844 -0
- rwlenspy-1.1.1/rwlenspy/rwlens.h +264 -0
- rwlenspy-1.1.1/rwlenspy/utils.py +557 -0
- rwlenspy-1.1.1/setup.py +36 -0
- rwlenspy-1.1.1/tests/__init__.py +0 -0
- rwlenspy-1.1.1/tests/test_rwlens.py +395 -0
rwlenspy-1.1.1/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2023 Zarif Kader
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
rwlenspy-1.1.1/PKG-INFO
ADDED
@@ -0,0 +1,46 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: rwlenspy
|
3
|
+
Version: 1.1.1
|
4
|
+
Summary: Lensing simulation from Fermat Potenials
|
5
|
+
Author: Zarif Kader
|
6
|
+
Author-email: kader.zarif@gmail.com
|
7
|
+
Requires-Python: >=3.9
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
9
|
+
Classifier: Programming Language :: Python :: 3.9
|
10
|
+
Classifier: Programming Language :: Python :: 3.10
|
11
|
+
Classifier: Programming Language :: Python :: 3.11
|
12
|
+
Classifier: Programming Language :: Python :: 3.12
|
13
|
+
Requires-Dist: Cython (>=0.29.33)
|
14
|
+
Requires-Dist: astropy (>=6.0.0)
|
15
|
+
Requires-Dist: matplotlib (>=3.8.2)
|
16
|
+
Requires-Dist: numpy (>=1.21.0)
|
17
|
+
Requires-Dist: scipy (>=1.7.0)
|
18
|
+
Requires-Dist: setuptools (>=66.1.1)
|
19
|
+
Description-Content-Type: text/markdown
|
20
|
+
|
21
|
+
# RWLensPy
|
22
|
+
|
23
|
+
This is a python package that generates observed morphologies and propagation transfer functions for radio wave propgation recorded by a radio telescope.
|
24
|
+
|
25
|
+
The code can be installed with:
|
26
|
+
|
27
|
+
`pip install rwlenspy`
|
28
|
+
|
29
|
+
## Examples
|
30
|
+
|
31
|
+
For examples see `examples/`. The image ray trace is shown in the `example_animate_*.py` files and how to get the coherent transfer function for a baseband simulation is shown in `example_transfer*.py`.
|
32
|
+
|
33
|
+
<img src="./examples/plots/singelens_spatial_freqslice.gif" width=42%> <img src="./examples/plots/singlelens_baseband_spatial_arrival.gif" width=42%>
|
34
|
+
|
35
|
+
## Custom/Dev Install
|
36
|
+
|
37
|
+
The package is built with Poetry and Cython using C++11 and OpenMP. This requires having a compiler like `gcc` if one is editing the code. If one requires a dev install, this can be done with:
|
38
|
+
|
39
|
+
`poetry install --with test,dev`
|
40
|
+
|
41
|
+
`poetry run python`
|
42
|
+
|
43
|
+
Once installed, tests can be run with:
|
44
|
+
|
45
|
+
`poetry run pytest`
|
46
|
+
|
rwlenspy-1.1.1/README.md
ADDED
@@ -0,0 +1,25 @@
|
|
1
|
+
# RWLensPy
|
2
|
+
|
3
|
+
This is a python package that generates observed morphologies and propagation transfer functions for radio wave propgation recorded by a radio telescope.
|
4
|
+
|
5
|
+
The code can be installed with:
|
6
|
+
|
7
|
+
`pip install rwlenspy`
|
8
|
+
|
9
|
+
## Examples
|
10
|
+
|
11
|
+
For examples see `examples/`. The image ray trace is shown in the `example_animate_*.py` files and how to get the coherent transfer function for a baseband simulation is shown in `example_transfer*.py`.
|
12
|
+
|
13
|
+
<img src="./examples/plots/singelens_spatial_freqslice.gif" width=42%> <img src="./examples/plots/singlelens_baseband_spatial_arrival.gif" width=42%>
|
14
|
+
|
15
|
+
## Custom/Dev Install
|
16
|
+
|
17
|
+
The package is built with Poetry and Cython using C++11 and OpenMP. This requires having a compiler like `gcc` if one is editing the code. If one requires a dev install, this can be done with:
|
18
|
+
|
19
|
+
`poetry install --with test,dev`
|
20
|
+
|
21
|
+
`poetry run python`
|
22
|
+
|
23
|
+
Once installed, tests can be run with:
|
24
|
+
|
25
|
+
`poetry run pytest`
|
rwlenspy-1.1.1/build.py
ADDED
@@ -0,0 +1,60 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
import numpy
|
4
|
+
from setuptools.command.build_ext import build_ext
|
5
|
+
from setuptools import Extension
|
6
|
+
|
7
|
+
from pathlib import Path
|
8
|
+
|
9
|
+
root = Path(__file__).parent
|
10
|
+
|
11
|
+
print("Build File Imported")
|
12
|
+
|
13
|
+
# See if Cython is installed
|
14
|
+
try:
|
15
|
+
from Cython.Build import cythonize
|
16
|
+
# If Cython is not available
|
17
|
+
except ImportError:
|
18
|
+
def build(setup_kwargs):
|
19
|
+
print("Build without Cython")
|
20
|
+
ext_modules = [
|
21
|
+
Extension(
|
22
|
+
"rwlenspy.lensing",
|
23
|
+
["rwlenspy/lensing.cpp"],
|
24
|
+
)
|
25
|
+
]
|
26
|
+
setup_kwargs.update(
|
27
|
+
{
|
28
|
+
"ext_modules": ext_modules,
|
29
|
+
"include_dirs": [numpy.get_include()],
|
30
|
+
}
|
31
|
+
)
|
32
|
+
# Cython is installed, Compile.
|
33
|
+
else:
|
34
|
+
# This function will be executed in setup.py:
|
35
|
+
def build(setup_kwargs):
|
36
|
+
print("Build with Cython")
|
37
|
+
# The files you want to compile
|
38
|
+
ext_modules = [
|
39
|
+
Extension(
|
40
|
+
"rwlenspy.lensing",
|
41
|
+
sources=["rwlenspy/lensing.pyx", "rwlenspy/rwlens.cpp"],
|
42
|
+
include_dirs=[numpy.get_include()],
|
43
|
+
extra_compile_args=["-fopenmp", "-std=c++11"],
|
44
|
+
extra_link_args=["-fopenmp"],
|
45
|
+
define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")],
|
46
|
+
language="c++"
|
47
|
+
)
|
48
|
+
]
|
49
|
+
|
50
|
+
# Build
|
51
|
+
setup_kwargs.update(
|
52
|
+
{
|
53
|
+
"ext_modules": cythonize(
|
54
|
+
ext_modules,
|
55
|
+
language_level=3,
|
56
|
+
compiler_directives={"linetrace": True},
|
57
|
+
),
|
58
|
+
"cmdclass": {"build_ext": build_ext},
|
59
|
+
}
|
60
|
+
)
|
@@ -0,0 +1,368 @@
|
|
1
|
+
from pathlib import Path
|
2
|
+
from time import time
|
3
|
+
|
4
|
+
import matplotlib as mpl
|
5
|
+
import matplotlib.animation
|
6
|
+
import matplotlib.cm as cmaps
|
7
|
+
import matplotlib.pyplot as plt
|
8
|
+
import numpy as np
|
9
|
+
from astropy import constants as c
|
10
|
+
from astropy import cosmology
|
11
|
+
from astropy import units as u
|
12
|
+
from matplotlib.colors import LogNorm
|
13
|
+
from scipy.fft import rfftfreq
|
14
|
+
|
15
|
+
import rwlenspy.lensing as rwl
|
16
|
+
from rwlenspy.utils import LogLens, RandomGaussianLens
|
17
|
+
|
18
|
+
# Matplotlib setup
|
19
|
+
GREYMAP = mpl.cm.__dict__["Greys"]
|
20
|
+
mpl.rcParams["figure.figsize"] = [8.0, 6.0]
|
21
|
+
mpl.rcParams["figure.dpi"] = 80
|
22
|
+
mpl.rcParams["savefig.dpi"] = 100
|
23
|
+
mpl.rcParams["font.size"] = 12
|
24
|
+
mpl.rcParams["legend.fontsize"] = "large"
|
25
|
+
mpl.rcParams["figure.titlesize"] = "large"
|
26
|
+
mpl.rcParams["agg.path.chunksize"] = 10000
|
27
|
+
plt.rcParams["savefig.dpi"] = 70
|
28
|
+
|
29
|
+
"""
|
30
|
+
############################
|
31
|
+
#### Lensing Ray Trace #####
|
32
|
+
############################
|
33
|
+
"""
|
34
|
+
|
35
|
+
"""
|
36
|
+
Diagram of Lensing System setup.
|
37
|
+
############################################################
|
38
|
+
# | | | |
|
39
|
+
# | | | |
|
40
|
+
# | | | |
|
41
|
+
# | | | |
|
42
|
+
# obs r1 r2 src
|
43
|
+
############################################################
|
44
|
+
"""
|
45
|
+
# Memory in bytes
|
46
|
+
max_memory = 4e9
|
47
|
+
|
48
|
+
cosmo = cosmology.Planck18
|
49
|
+
|
50
|
+
# Comoving
|
51
|
+
D_obs_src = 1 * u.Gpc
|
52
|
+
D_obs_r1 = D_obs_src / 2
|
53
|
+
D_obs_r2 = 3 * D_obs_src / 4
|
54
|
+
|
55
|
+
# redshift
|
56
|
+
z_obs_r1 = cosmology.z_at_value(cosmo.comoving_distance, D_obs_r1)
|
57
|
+
z_obs_r2 = cosmology.z_at_value(cosmo.comoving_distance, D_obs_r2)
|
58
|
+
z_obs_src = cosmology.z_at_value(cosmo.comoving_distance, D_obs_src)
|
59
|
+
|
60
|
+
# Ang. Diam. Distance
|
61
|
+
D_obs_r1 = cosmo.angular_diameter_distance(z_obs_r1)
|
62
|
+
D_obs_r2 = cosmo.angular_diameter_distance(z_obs_r2)
|
63
|
+
D_r1_r2 = cosmo.angular_diameter_distance_z1z2(z_obs_r1, z_obs_r2)
|
64
|
+
D_obs_src = cosmo.angular_diameter_distance(z_obs_src)
|
65
|
+
D_r2_src = cosmo.angular_diameter_distance_z1z2(z_obs_r2, z_obs_src)
|
66
|
+
|
67
|
+
# Physical Lens (r2) Params
|
68
|
+
r_e = c.alpha**2 * c.a0 # classical electron radius
|
69
|
+
kdm = (
|
70
|
+
(r_e * c.c / (2 * np.pi)).to(u.cm**2 / u.s)
|
71
|
+
* ((1.0 * u.pc / u.cm).to(u.m / u.m)).value
|
72
|
+
).value
|
73
|
+
const_Dr2 = D_r2_src / (D_obs_r2 * D_obs_src)
|
74
|
+
lens_r2_scale = (5000 * u.AU / D_obs_r2).to(u.m / u.m)
|
75
|
+
scale_r2 = lens_r2_scale.value
|
76
|
+
sig_DM = 0.0005
|
77
|
+
geom_const_r2 = ((1 / (const_Dr2 * c.c)).to(u.s)).value
|
78
|
+
geom_const_r2 = geom_const_r2 * scale_r2**2
|
79
|
+
lens_const_r2 = kdm * sig_DM
|
80
|
+
freq_power_r2 = -2.0
|
81
|
+
beta_r2_x = 0.0
|
82
|
+
beta_r2_y = 0.0
|
83
|
+
|
84
|
+
# Physical Lens (r1) Params
|
85
|
+
Eins_time_const = 4 * c.G * c.M_sun / c.c**3
|
86
|
+
const_Dr1 = D_r1_r2 / (D_obs_r1 * D_obs_r2)
|
87
|
+
mass = 1 # solar mass
|
88
|
+
lens_r1_scale = np.sqrt(mass * Eins_time_const * c.c * const_Dr1).to(u.m / u.m)
|
89
|
+
scale_r1 = lens_r1_scale.value
|
90
|
+
geom_const_r1 = ((1 / (const_Dr1 * c.c)).to(u.s)).value
|
91
|
+
geom_const_r1 = geom_const_r1 * scale_r1**2
|
92
|
+
lens_const_r1 = mass * Eins_time_const.to(u.s).value
|
93
|
+
freq_power_r1 = 0
|
94
|
+
beta_r1_x = 1.5
|
95
|
+
beta_r1_y = 0.0
|
96
|
+
|
97
|
+
# Sim Parameters
|
98
|
+
freq_ref = 800e6
|
99
|
+
freqs = 800e6 - rfftfreq(2048, d=1 / (800e6)) # MHz
|
100
|
+
nyqalias = True
|
101
|
+
|
102
|
+
# Grid Parameters
|
103
|
+
max_fres = 5
|
104
|
+
theta_min = -max_fres
|
105
|
+
theta_max = max_fres
|
106
|
+
theta_N = 251
|
107
|
+
|
108
|
+
# Spatial Grid
|
109
|
+
x1 = np.arange(theta_N) * (theta_max - theta_min) / (theta_N - 1) + theta_min
|
110
|
+
|
111
|
+
# Lens functions
|
112
|
+
seed = 4321
|
113
|
+
lens_arr_r2 = RandomGaussianLens(theta_N, theta_N, 1, seed=seed)
|
114
|
+
lens_arr_r1 = -1.0 * LogLens(x1[:, None], x1[None, :])
|
115
|
+
|
116
|
+
lens_arr_r2 = lens_arr_r2.astype(np.double).ravel(order="C")
|
117
|
+
lens_arr_r1 = lens_arr_r1.astype(np.double).ravel(order="C")
|
118
|
+
freqs = freqs.astype(np.double).ravel(order="C")
|
119
|
+
|
120
|
+
# Get Images
|
121
|
+
print("Getting the Images")
|
122
|
+
t1 = time()
|
123
|
+
txvals, tyvals, fvals, delayvals, magvals = rwl.GetMultiplaneFreqStationaryPoints(
|
124
|
+
theta_min,
|
125
|
+
theta_max,
|
126
|
+
theta_N,
|
127
|
+
freqs,
|
128
|
+
freq_ref,
|
129
|
+
lens_arr_r2,
|
130
|
+
scale_r2,
|
131
|
+
beta_r2_x,
|
132
|
+
beta_r2_y,
|
133
|
+
geom_const_r2,
|
134
|
+
lens_const_r2,
|
135
|
+
freq_power_r2,
|
136
|
+
lens_arr_r1,
|
137
|
+
scale_r1,
|
138
|
+
beta_r1_x,
|
139
|
+
beta_r1_y,
|
140
|
+
geom_const_r1,
|
141
|
+
lens_const_r1,
|
142
|
+
freq_power_r1,
|
143
|
+
max_memory
|
144
|
+
)
|
145
|
+
tv = time() - t1
|
146
|
+
print("Total Time :", tv, "s", " | ", tv / 60, "min", tv / 3600, "hr")
|
147
|
+
|
148
|
+
txvals = np.asarray(txvals)
|
149
|
+
tyvals = np.asarray(tyvals)
|
150
|
+
fvals = np.asarray(fvals)
|
151
|
+
delayvals = np.asarray(delayvals)
|
152
|
+
magvals = np.asarray(magvals)
|
153
|
+
|
154
|
+
"""
|
155
|
+
##########################
|
156
|
+
#### Animate Spatial #####
|
157
|
+
##########################
|
158
|
+
"""
|
159
|
+
# Spatial Animation setup
|
160
|
+
num_frames = freqs.size
|
161
|
+
|
162
|
+
# Setup plot
|
163
|
+
fig = plt.figure()
|
164
|
+
ax = fig.add_subplot(111)
|
165
|
+
axsc = ax.scatter([], [], s=4)
|
166
|
+
axisscale = 1e-6
|
167
|
+
axisstr = "milli"
|
168
|
+
framescale = 1e6
|
169
|
+
framestr = "M"
|
170
|
+
scaling = scale_r1 * 206264.806247 / axisscale
|
171
|
+
|
172
|
+
|
173
|
+
# Select largest spatial extent
|
174
|
+
cut1 = fvals == np.amin(fvals) # lowest freq for scattering
|
175
|
+
maxv_ = (
|
176
|
+
max(np.amax(np.abs(txvals[cut1])), np.amax(np.abs(tyvals[cut1]))) * scaling * 1.1
|
177
|
+
)
|
178
|
+
|
179
|
+
# Set axes and plot
|
180
|
+
ax.set_ylim(-maxv_, maxv_)
|
181
|
+
ax.set_xlim(-maxv_, maxv_)
|
182
|
+
ax.set_ylabel(f"$\\theta_Y$ [{axisstr}arcsec]", size=14)
|
183
|
+
ax.set_xlabel(f"$\\theta_X$ [{axisstr}arcsec]", size=14)
|
184
|
+
ax.set_facecolor("black")
|
185
|
+
cmap = cmaps.gray
|
186
|
+
norm = LogNorm(vmin=1e-3, vmax=1)
|
187
|
+
axsc.set_cmap(cmap)
|
188
|
+
axsc.set_norm(norm)
|
189
|
+
cb = fig.colorbar(cmaps.ScalarMappable(norm=norm, cmap=cmap), ax=ax)
|
190
|
+
cb.ax.set_title("Img. Mag.", y=1.02)
|
191
|
+
|
192
|
+
|
193
|
+
# frame animation
|
194
|
+
def update(i):
|
195
|
+
tcutt = fvals == freqs[i]
|
196
|
+
data = np.stack([txvals[tcutt] * scaling, tyvals[tcutt] * scaling]).T
|
197
|
+
axsc.set_offsets(data)
|
198
|
+
axsc.set_array(np.abs(magvals[tcutt]))
|
199
|
+
ax.set_title(f"Freq: {freqs[i]/framescale:.0f} [{framestr}Hz]", size=14)
|
200
|
+
return (axsc,)
|
201
|
+
|
202
|
+
|
203
|
+
# image framing
|
204
|
+
image_duration = 2 # seconds
|
205
|
+
frame_interval = 30e-3 # seconds between frames
|
206
|
+
total_aniframes = image_duration / frame_interval
|
207
|
+
stepsize = np.ceil(freqs.size / total_aniframes).astype(int)
|
208
|
+
|
209
|
+
if stepsize == 0:
|
210
|
+
stepsize = 1
|
211
|
+
|
212
|
+
frame_numbers = np.arange(0, freqs.size, step=stepsize)
|
213
|
+
|
214
|
+
ani = matplotlib.animation.FuncAnimation(
|
215
|
+
fig, update, frames=frame_numbers, interval=30, blit=True
|
216
|
+
)
|
217
|
+
|
218
|
+
# save
|
219
|
+
save_path = Path.cwd()
|
220
|
+
save_path = save_path / "multilens_spatial_freqslice.gif"
|
221
|
+
ani.save(filename=str(save_path), writer="pillow")
|
222
|
+
|
223
|
+
|
224
|
+
"""
|
225
|
+
###########################
|
226
|
+
#### Animate Temporal #####
|
227
|
+
###########################
|
228
|
+
"""
|
229
|
+
# setup time
|
230
|
+
total_frames = 100
|
231
|
+
left_edge = -total_frames // 4
|
232
|
+
right_edge = total_frames + left_edge
|
233
|
+
time_res = 2.56e-6 # s
|
234
|
+
trange = np.arange(-1, total_frames + 2) * time_res + left_edge * time_res
|
235
|
+
|
236
|
+
# setup figure
|
237
|
+
fig = plt.figure()
|
238
|
+
ax = fig.add_subplot(111)
|
239
|
+
axsc = ax.scatter([], [], s=4)
|
240
|
+
time_axis_scale = 1e-3
|
241
|
+
time_axis_str = "m"
|
242
|
+
freq_axis_scale = 1e6
|
243
|
+
freq_axis_str = "M"
|
244
|
+
ax.set_ylim(400, 800)
|
245
|
+
ax.set_xlim(
|
246
|
+
left_edge * time_res / time_axis_scale, right_edge * time_res / time_axis_scale
|
247
|
+
)
|
248
|
+
ax.set_ylabel(f"Freq. [{freq_axis_str}Hz]")
|
249
|
+
ax.set_xlabel(f"Time [{time_axis_str}s]")
|
250
|
+
cmap = cmaps.binary
|
251
|
+
norm = LogNorm(vmin=1e-3, vmax=1)
|
252
|
+
axsc.set_cmap(cmap)
|
253
|
+
axsc.set_norm(norm)
|
254
|
+
cb = fig.colorbar(cmaps.ScalarMappable(norm=norm, cmap=cmap), ax=ax)
|
255
|
+
cb.ax.set_title("Img. Mag.")
|
256
|
+
|
257
|
+
# image framing
|
258
|
+
image_duration = 2 # seconds
|
259
|
+
frame_interval = 30e-3 # seconds between frames
|
260
|
+
total_aniframes = image_duration / frame_interval
|
261
|
+
stepsize = np.ceil((trange.size - 1) / total_aniframes).astype(int)
|
262
|
+
|
263
|
+
if stepsize == 0:
|
264
|
+
stepsize = 1
|
265
|
+
|
266
|
+
trange_inds = np.arange(0, trange.size - 1, step=stepsize)
|
267
|
+
|
268
|
+
|
269
|
+
# animate frame
|
270
|
+
def update(i):
|
271
|
+
tcutt = (delayvals > trange[trange_inds[i]]) * (
|
272
|
+
delayvals <= trange[trange_inds[i + 1]]
|
273
|
+
)
|
274
|
+
data = np.stack(
|
275
|
+
[delayvals[tcutt] / time_axis_scale, fvals[tcutt] / freq_axis_scale]
|
276
|
+
).T
|
277
|
+
axsc.set_offsets(data)
|
278
|
+
axsc.set_array(np.abs(magvals[tcutt]))
|
279
|
+
return (axsc,)
|
280
|
+
|
281
|
+
|
282
|
+
# animate
|
283
|
+
ani = matplotlib.animation.FuncAnimation(
|
284
|
+
fig, update, frames=trange_inds.size - 1, interval=30, blit=True
|
285
|
+
)
|
286
|
+
|
287
|
+
# save
|
288
|
+
save_path = Path.cwd()
|
289
|
+
save_path = save_path / "multilens_baseband_arrival.gif"
|
290
|
+
ani.save(filename=str(save_path), writer="pillow")
|
291
|
+
|
292
|
+
|
293
|
+
"""
|
294
|
+
#######################################
|
295
|
+
#### Animate Temporal and Spatial #####
|
296
|
+
#######################################
|
297
|
+
"""
|
298
|
+
# setup time
|
299
|
+
total_frames = 100
|
300
|
+
left_edge = -total_frames // 4
|
301
|
+
right_edge = total_frames + left_edge
|
302
|
+
time_res = 2.56e-6 # s
|
303
|
+
trange = np.arange(-1, total_frames + 2) * time_res + left_edge * time_res
|
304
|
+
fmin = np.amin(fvals)
|
305
|
+
|
306
|
+
# Setup plot
|
307
|
+
fig = plt.figure()
|
308
|
+
ax = fig.add_subplot(111)
|
309
|
+
axsc = ax.scatter([], [], s=4)
|
310
|
+
axisscale = 1e-6
|
311
|
+
axisstr = "milli"
|
312
|
+
framescale = 1e6
|
313
|
+
framestr = "M"
|
314
|
+
scaling = scale_r1 * 206264.806247 / axisscale
|
315
|
+
|
316
|
+
# Select largest spatial extent
|
317
|
+
cut1 = fvals == np.amin(fmin) # lowest freq for scattering
|
318
|
+
maxv_ = (
|
319
|
+
max(np.amax(np.abs(txvals[cut1])), np.amax(np.abs(tyvals[cut1]))) * scaling * 1.1
|
320
|
+
)
|
321
|
+
|
322
|
+
# Set axes and plot
|
323
|
+
ax.set_ylim(-maxv_, maxv_)
|
324
|
+
ax.set_xlim(-maxv_, maxv_)
|
325
|
+
ax.set_ylabel(f"$\\theta_Y$ [{axisstr}arcsec]", size=14)
|
326
|
+
ax.set_xlabel(f"$\\theta_X$ [{axisstr}arcsec]", size=14)
|
327
|
+
ax.set_facecolor("black")
|
328
|
+
cmap = cmaps.gray
|
329
|
+
norm = LogNorm(vmin=1e-3, vmax=1)
|
330
|
+
axsc.set_cmap(cmap)
|
331
|
+
axsc.set_norm(norm)
|
332
|
+
cb = fig.colorbar(cmaps.ScalarMappable(norm=norm, cmap=cmap), ax=ax)
|
333
|
+
cb.ax.set_title("Img. Mag.", y=1.02)
|
334
|
+
|
335
|
+
# image framing
|
336
|
+
image_duration = 2 # seconds
|
337
|
+
frame_interval = 30e-3 # seconds between frames
|
338
|
+
total_aniframes = image_duration / frame_interval
|
339
|
+
stepsize = np.ceil((trange.size - 1) / total_aniframes).astype(int)
|
340
|
+
|
341
|
+
if stepsize == 0:
|
342
|
+
stepsize = 1
|
343
|
+
|
344
|
+
trange_inds = np.arange(0, trange.size - 1, step=stepsize)
|
345
|
+
|
346
|
+
|
347
|
+
# frame animation
|
348
|
+
def update(i):
|
349
|
+
tcutt = (delayvals[cut1] > trange[trange_inds[i]]) * (
|
350
|
+
delayvals[cut1] <= trange[trange_inds[i + 1]]
|
351
|
+
)
|
352
|
+
|
353
|
+
data = np.stack([txvals[cut1][tcutt] * scaling, tyvals[cut1][tcutt] * scaling]).T
|
354
|
+
axsc.set_offsets(data)
|
355
|
+
axsc.set_array(np.abs(magvals[cut1][tcutt]))
|
356
|
+
ax.set_title(f"Freq: {fmin/framescale:.0f} [{framestr}Hz] ", size=14)
|
357
|
+
return (axsc,)
|
358
|
+
|
359
|
+
|
360
|
+
# animate
|
361
|
+
ani = matplotlib.animation.FuncAnimation(
|
362
|
+
fig, update, frames=trange_inds.size - 1, interval=30, blit=True
|
363
|
+
)
|
364
|
+
|
365
|
+
# save
|
366
|
+
save_path = Path.cwd()
|
367
|
+
save_path = save_path / "multilens_baseband_spatial_arrival.gif"
|
368
|
+
ani.save(filename=str(save_path), writer="pillow")
|