rsspolymlp 0.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rsspolymlp-0.0.2/LICENSE +21 -0
- rsspolymlp-0.0.2/PKG-INFO +95 -0
- rsspolymlp-0.0.2/README.md +67 -0
- rsspolymlp-0.0.2/pyproject.toml +49 -0
- rsspolymlp-0.0.2/setup.cfg +4 -0
- rsspolymlp-0.0.2/src/rsspolymlp/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/convex_hull.py +117 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/outlier_cands.py +76 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/plot/binary.py +114 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/rss_summarize.py +225 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/struct_matcher/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/struct_matcher/chiral_spg.py +80 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/struct_matcher/invert_and_permute.py +84 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/struct_matcher/irrep_position.py +285 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/struct_matcher/struct_match.py +145 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/struct_matcher/utils.py +57 -0
- rsspolymlp-0.0.2/src/rsspolymlp/analysis/unique_struct.py +216 -0
- rsspolymlp-0.0.2/src/rsspolymlp/common/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/common/comp_ratio.py +65 -0
- rsspolymlp-0.0.2/src/rsspolymlp/common/parse_arg.py +143 -0
- rsspolymlp-0.0.2/src/rsspolymlp/common/property.py +75 -0
- rsspolymlp-0.0.2/src/rsspolymlp/rss/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/rss/load_logfile.py +138 -0
- rsspolymlp-0.0.2/src/rsspolymlp/rss/random_struct.py +221 -0
- rsspolymlp-0.0.2/src/rsspolymlp/rss/rss_analysis.py +363 -0
- rsspolymlp-0.0.2/src/rsspolymlp/rss/rss_mlp.py +246 -0
- rsspolymlp-0.0.2/src/rsspolymlp/rss/rss_parallel.py +130 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/ground_state_e.py +35 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/lammps_utils.py +240 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/matplot_util/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/matplot_util/custom_plt.py +103 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/matplot_util/examples/__init__.py +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/matplot_util/examples/example.py +122 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/matplot_util/examples/template.py +72 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/matplot_util/make_plot.py +338 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/optimum.py +30 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/pymatgen_utils.py +143 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/spglib_utils.py +232 -0
- rsspolymlp-0.0.2/src/rsspolymlp/utils/wait_readfile.py +32 -0
- rsspolymlp-0.0.2/src/rsspolymlp.egg-info/PKG-INFO +95 -0
- rsspolymlp-0.0.2/src/rsspolymlp.egg-info/SOURCES.txt +45 -0
- rsspolymlp-0.0.2/src/rsspolymlp.egg-info/dependency_links.txt +1 -0
- rsspolymlp-0.0.2/src/rsspolymlp.egg-info/entry_points.txt +8 -0
- rsspolymlp-0.0.2/src/rsspolymlp.egg-info/requires.txt +20 -0
- rsspolymlp-0.0.2/src/rsspolymlp.egg-info/top_level.txt +1 -0
rsspolymlp-0.0.2/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Hayato Wakai
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: rsspolymlp
|
|
3
|
+
Version: 0.0.2
|
|
4
|
+
Summary: A framework for random structure search using polynomial MLPs
|
|
5
|
+
Author-email: Hayato Wakai <wakai@cms.mtl.kyoto-u.ac.jp>
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: homepage, https://github.com/hytwakai/rsspolymlp
|
|
8
|
+
Requires-Python: >=3.9
|
|
9
|
+
Description-Content-Type: text/markdown
|
|
10
|
+
License-File: LICENSE
|
|
11
|
+
Requires-Dist: numpy
|
|
12
|
+
Requires-Dist: scipy
|
|
13
|
+
Requires-Dist: pypolymlp
|
|
14
|
+
Requires-Dist: symfc
|
|
15
|
+
Requires-Dist: spglib
|
|
16
|
+
Requires-Dist: joblib
|
|
17
|
+
Provides-Extra: pymatgen
|
|
18
|
+
Requires-Dist: pymatgen; extra == "pymatgen"
|
|
19
|
+
Provides-Extra: matplotlib
|
|
20
|
+
Requires-Dist: matplotlib; extra == "matplotlib"
|
|
21
|
+
Provides-Extra: seaborn
|
|
22
|
+
Requires-Dist: seaborn; extra == "seaborn"
|
|
23
|
+
Provides-Extra: tools
|
|
24
|
+
Requires-Dist: pymatgen; extra == "tools"
|
|
25
|
+
Requires-Dist: matplotlib; extra == "tools"
|
|
26
|
+
Requires-Dist: seaborn; extra == "tools"
|
|
27
|
+
Dynamic: license-file
|
|
28
|
+
|
|
29
|
+
# A framework for random structure search (RSS) using polynomial MLPs
|
|
30
|
+
|
|
31
|
+
## Citation of rsspolymlp
|
|
32
|
+
|
|
33
|
+
If you use `rsspolymlp` in your study, please cite the following articles.
|
|
34
|
+
|
|
35
|
+
“Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system”, [J. Ceram. Soc. Jpn. 131, 762 (2023)](https://www.jstage.jst.go.jp/article/jcersj2/131/10/131_23053/_article/-char/ja/)
|
|
36
|
+
```
|
|
37
|
+
@article{HayatoWakai202323053,
|
|
38
|
+
title="{Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system}",
|
|
39
|
+
author={Hayato Wakai and Atsuto Seko and Isao Tanaka},
|
|
40
|
+
journal={J. Ceram. Soc. Jpn.},
|
|
41
|
+
volume={131},
|
|
42
|
+
number={10},
|
|
43
|
+
pages={762-766},
|
|
44
|
+
year={2023},
|
|
45
|
+
doi={10.2109/jcersj2.23053}
|
|
46
|
+
}
|
|
47
|
+
```
|
|
48
|
+
|
|
49
|
+
## Installation
|
|
50
|
+
|
|
51
|
+
### Required libraries and python modules
|
|
52
|
+
|
|
53
|
+
- python >= 3.9
|
|
54
|
+
- pypolymlp
|
|
55
|
+
- symfc
|
|
56
|
+
- spglib
|
|
57
|
+
- joblib
|
|
58
|
+
|
|
59
|
+
[Optional]
|
|
60
|
+
- matplotlib (if plotting RSS results)
|
|
61
|
+
- seaborn (if plotting RSS results)
|
|
62
|
+
|
|
63
|
+
### How to install
|
|
64
|
+
|
|
65
|
+
```shell
|
|
66
|
+
git clone https://github.com/hytwakai/rsspolymlp.git
|
|
67
|
+
cd rsspolymlp
|
|
68
|
+
conda create -n rsspolymlp
|
|
69
|
+
conda activate rsspolymlp
|
|
70
|
+
conda install -c conda-forge pypolymlp symfc spglib joblib
|
|
71
|
+
pip install .
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
## Usage
|
|
75
|
+
|
|
76
|
+
The command-line interface of `rsspolylmp` is organized into three sections, each corresponding to a different phase of the workflow:
|
|
77
|
+
1. Generating initial structures (`rss-init-struct`)
|
|
78
|
+
2. Performing parallel geometry optimization (`rss-parallel`)
|
|
79
|
+
3. Analyzing RSS results (`rss-analysis`)
|
|
80
|
+
|
|
81
|
+
### Example Commands
|
|
82
|
+
|
|
83
|
+
```shell
|
|
84
|
+
rss-init-struct --elements Al Cu --atom_counts 4 4 --num_init_str 2000
|
|
85
|
+
rss-parallel --pot polymlp.yaml --num_opt_str 1000
|
|
86
|
+
rss-analysis
|
|
87
|
+
```
|
|
88
|
+
|
|
89
|
+
#### Arguments
|
|
90
|
+
- `--elements`: List of element symbols (e.g., `Al Cu`).
|
|
91
|
+
- `--atom_counts`: Number of atoms for each element (must match the order of `--elements`).
|
|
92
|
+
- `--num_init_str`: Number of random initial structures to generate. *(default: 5000)*
|
|
93
|
+
- `--pot`: Path to the polynomial MLP potential file. *(default: polymlp.yaml)*
|
|
94
|
+
- `--num_opt_str`: Maximum number of optimized structures to obtain from RSS. *(default: 1000)*
|
|
95
|
+
- [Additional information is here](docs/rss.md)
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
# A framework for random structure search (RSS) using polynomial MLPs
|
|
2
|
+
|
|
3
|
+
## Citation of rsspolymlp
|
|
4
|
+
|
|
5
|
+
If you use `rsspolymlp` in your study, please cite the following articles.
|
|
6
|
+
|
|
7
|
+
“Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system”, [J. Ceram. Soc. Jpn. 131, 762 (2023)](https://www.jstage.jst.go.jp/article/jcersj2/131/10/131_23053/_article/-char/ja/)
|
|
8
|
+
```
|
|
9
|
+
@article{HayatoWakai202323053,
|
|
10
|
+
title="{Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system}",
|
|
11
|
+
author={Hayato Wakai and Atsuto Seko and Isao Tanaka},
|
|
12
|
+
journal={J. Ceram. Soc. Jpn.},
|
|
13
|
+
volume={131},
|
|
14
|
+
number={10},
|
|
15
|
+
pages={762-766},
|
|
16
|
+
year={2023},
|
|
17
|
+
doi={10.2109/jcersj2.23053}
|
|
18
|
+
}
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
## Installation
|
|
22
|
+
|
|
23
|
+
### Required libraries and python modules
|
|
24
|
+
|
|
25
|
+
- python >= 3.9
|
|
26
|
+
- pypolymlp
|
|
27
|
+
- symfc
|
|
28
|
+
- spglib
|
|
29
|
+
- joblib
|
|
30
|
+
|
|
31
|
+
[Optional]
|
|
32
|
+
- matplotlib (if plotting RSS results)
|
|
33
|
+
- seaborn (if plotting RSS results)
|
|
34
|
+
|
|
35
|
+
### How to install
|
|
36
|
+
|
|
37
|
+
```shell
|
|
38
|
+
git clone https://github.com/hytwakai/rsspolymlp.git
|
|
39
|
+
cd rsspolymlp
|
|
40
|
+
conda create -n rsspolymlp
|
|
41
|
+
conda activate rsspolymlp
|
|
42
|
+
conda install -c conda-forge pypolymlp symfc spglib joblib
|
|
43
|
+
pip install .
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
## Usage
|
|
47
|
+
|
|
48
|
+
The command-line interface of `rsspolylmp` is organized into three sections, each corresponding to a different phase of the workflow:
|
|
49
|
+
1. Generating initial structures (`rss-init-struct`)
|
|
50
|
+
2. Performing parallel geometry optimization (`rss-parallel`)
|
|
51
|
+
3. Analyzing RSS results (`rss-analysis`)
|
|
52
|
+
|
|
53
|
+
### Example Commands
|
|
54
|
+
|
|
55
|
+
```shell
|
|
56
|
+
rss-init-struct --elements Al Cu --atom_counts 4 4 --num_init_str 2000
|
|
57
|
+
rss-parallel --pot polymlp.yaml --num_opt_str 1000
|
|
58
|
+
rss-analysis
|
|
59
|
+
```
|
|
60
|
+
|
|
61
|
+
#### Arguments
|
|
62
|
+
- `--elements`: List of element symbols (e.g., `Al Cu`).
|
|
63
|
+
- `--atom_counts`: Number of atoms for each element (must match the order of `--elements`).
|
|
64
|
+
- `--num_init_str`: Number of random initial structures to generate. *(default: 5000)*
|
|
65
|
+
- `--pot`: Path to the polynomial MLP potential file. *(default: polymlp.yaml)*
|
|
66
|
+
- `--num_opt_str`: Maximum number of optimized structures to obtain from RSS. *(default: 1000)*
|
|
67
|
+
- [Additional information is here](docs/rss.md)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "rsspolymlp"
|
|
7
|
+
version = "0.0.2"
|
|
8
|
+
description = "A framework for random structure search using polynomial MLPs"
|
|
9
|
+
license = {text = "MIT"}
|
|
10
|
+
authors = [
|
|
11
|
+
{name = "Hayato Wakai", email = "wakai@cms.mtl.kyoto-u.ac.jp"},
|
|
12
|
+
]
|
|
13
|
+
readme = {file = "README.md", content-type = "text/markdown"}
|
|
14
|
+
requires-python = ">=3.9"
|
|
15
|
+
dependencies = [
|
|
16
|
+
"numpy",
|
|
17
|
+
"scipy",
|
|
18
|
+
"pypolymlp",
|
|
19
|
+
"symfc",
|
|
20
|
+
"spglib",
|
|
21
|
+
"joblib",
|
|
22
|
+
]
|
|
23
|
+
|
|
24
|
+
[project.optional-dependencies]
|
|
25
|
+
pymatgen = ["pymatgen"]
|
|
26
|
+
matplotlib = ["matplotlib"]
|
|
27
|
+
seaborn = ["seaborn"]
|
|
28
|
+
tools = ["pymatgen", "matplotlib", "seaborn"]
|
|
29
|
+
|
|
30
|
+
[project.urls]
|
|
31
|
+
homepage = "https://github.com/hytwakai/rsspolymlp"
|
|
32
|
+
|
|
33
|
+
[project.scripts]
|
|
34
|
+
rss-init-struct = "rsspolymlp.rss.random_struct:run"
|
|
35
|
+
rss-single-srun = "rsspolymlp.rss.rss_parallel:run_single_srun"
|
|
36
|
+
rss-parallel = "rsspolymlp.rss.rss_parallel:run"
|
|
37
|
+
rss-analysis = "rsspolymlp.rss.rss_analysis:run"
|
|
38
|
+
rss-summarize = "rsspolymlp.analysis.rss_summarize:run"
|
|
39
|
+
rss-outlier = "rsspolymlp.analysis.outlier_cands:run"
|
|
40
|
+
plot-binary = "rsspolymlp.analysis.plot.binary:run"
|
|
41
|
+
|
|
42
|
+
[tool.setuptools]
|
|
43
|
+
package-dir = {"" = "src"}
|
|
44
|
+
|
|
45
|
+
[tool.setuptools.packages.find]
|
|
46
|
+
where = ["src"]
|
|
47
|
+
|
|
48
|
+
[tool.setuptools.package-data]
|
|
49
|
+
rsspolymlp = ["py.typed"]
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# src/rss_polymlp/__init__.py
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# src/rss_polymlp/analysis/__init__.py
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from scipy.spatial import ConvexHull
|
|
3
|
+
|
|
4
|
+
from rsspolymlp.analysis.rss_summarize import (
|
|
5
|
+
extract_composition_ratio,
|
|
6
|
+
load_rss_results,
|
|
7
|
+
)
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class ConvexHullAnalyzer:
|
|
11
|
+
|
|
12
|
+
def __init__(self, elements, result_paths):
|
|
13
|
+
|
|
14
|
+
self.elements = elements
|
|
15
|
+
self.result_paths = result_paths
|
|
16
|
+
self.rss_result_fe = {}
|
|
17
|
+
self.ch_obj = None
|
|
18
|
+
self.fe_ch = None
|
|
19
|
+
self.comp_ch = None
|
|
20
|
+
self.poscar_ch = None
|
|
21
|
+
|
|
22
|
+
def run_calc(self):
|
|
23
|
+
self.calc_formation_e()
|
|
24
|
+
self.calc_convex_hull()
|
|
25
|
+
self.calc_fe_above_convex_hull()
|
|
26
|
+
|
|
27
|
+
def calc_formation_e(self):
|
|
28
|
+
for res_path in self.result_paths:
|
|
29
|
+
comp_res = extract_composition_ratio(res_path, self.elements)
|
|
30
|
+
comp_ratio = tuple(
|
|
31
|
+
np.round(np.array(comp_res.comp_ratio) / sum(comp_res.comp_ratio), 10)
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
rss_results = load_rss_results(
|
|
35
|
+
res_path, absolute_path=True, get_warning=True
|
|
36
|
+
)
|
|
37
|
+
rss_results_valid = [r for r in rss_results if not r["is_strong_outlier"]]
|
|
38
|
+
rss_results_array = {
|
|
39
|
+
"formation_e": np.array([r["enthalpy"] for r in rss_results_valid]),
|
|
40
|
+
"poscars": np.array([r["poscar"] for r in rss_results_valid]),
|
|
41
|
+
"is_outliers": np.array(
|
|
42
|
+
[r["is_weak_outlier"] for r in rss_results_valid]
|
|
43
|
+
),
|
|
44
|
+
}
|
|
45
|
+
self.rss_result_fe[comp_ratio] = rss_results_array
|
|
46
|
+
|
|
47
|
+
e_ends = []
|
|
48
|
+
keys = np.array(list(self.rss_result_fe))
|
|
49
|
+
valid_keys = keys[np.any(keys == 1, axis=1)]
|
|
50
|
+
sorted_keys = sorted(valid_keys, key=lambda x: np.argmax(x))
|
|
51
|
+
for key in sorted_keys:
|
|
52
|
+
key_tuple = tuple(key)
|
|
53
|
+
is_outlier = self.rss_result_fe[key_tuple]["is_outliers"]
|
|
54
|
+
first_valid_index = np.where(~is_outlier)[0][0]
|
|
55
|
+
energy = self.rss_result_fe[key_tuple]["formation_e"][first_valid_index]
|
|
56
|
+
e_ends.append(energy)
|
|
57
|
+
e_ends = np.array(e_ends)
|
|
58
|
+
|
|
59
|
+
for key in self.rss_result_fe:
|
|
60
|
+
self.rss_result_fe[key]["formation_e"] -= np.dot(e_ends, np.array(key))
|
|
61
|
+
|
|
62
|
+
def calc_convex_hull(self):
|
|
63
|
+
rss_result_fe = self.rss_result_fe
|
|
64
|
+
|
|
65
|
+
comp_list, e_min_list, label_list = [], [], []
|
|
66
|
+
for key, dicts in rss_result_fe.items():
|
|
67
|
+
comp_list.append(key)
|
|
68
|
+
first_idx = np.where(~dicts["is_outliers"])[0][0]
|
|
69
|
+
e_min_list.append(dicts["formation_e"][first_idx])
|
|
70
|
+
label_list.append(dicts["poscars"][first_idx])
|
|
71
|
+
|
|
72
|
+
comp_array = np.array(comp_list)
|
|
73
|
+
e_min_array = np.array(e_min_list).reshape(-1, 1)
|
|
74
|
+
label_array = np.array(label_list)
|
|
75
|
+
|
|
76
|
+
data_ch = np.hstack([comp_array[:, 1:], e_min_array])
|
|
77
|
+
self.ch_obj = ConvexHull(data_ch)
|
|
78
|
+
|
|
79
|
+
v_convex = np.unique(self.ch_obj.simplices)
|
|
80
|
+
_fe_ch = e_min_array[v_convex].astype(float)
|
|
81
|
+
mask = np.where(_fe_ch <= 1e-10)[0]
|
|
82
|
+
|
|
83
|
+
_comp_ch = comp_array[v_convex][mask]
|
|
84
|
+
sort_idx = np.lexsort(_comp_ch[:, ::-1].T)
|
|
85
|
+
|
|
86
|
+
self.fe_ch = _fe_ch[mask][sort_idx]
|
|
87
|
+
self.comp_ch = _comp_ch[sort_idx]
|
|
88
|
+
self.poscar_ch = label_array[v_convex][mask][sort_idx]
|
|
89
|
+
|
|
90
|
+
def calc_fe_above_convex_hull(self):
|
|
91
|
+
rss_result_fe = self.rss_result_fe
|
|
92
|
+
for key in rss_result_fe:
|
|
93
|
+
_ehull = self._calc_fe_convex_hull(key)
|
|
94
|
+
fe_above_ch = rss_result_fe[key]["formation_e"] - _ehull
|
|
95
|
+
rss_result_fe[key]["fe_above_ch"] = fe_above_ch
|
|
96
|
+
|
|
97
|
+
def _calc_fe_convex_hull(self, comp_ratio):
|
|
98
|
+
ehull = -1e10
|
|
99
|
+
for eq in self.ch_obj.equations:
|
|
100
|
+
face_val_comp = -(np.dot(eq[:-2], comp_ratio[1:]) + eq[-1])
|
|
101
|
+
ehull_trial = face_val_comp / eq[-2]
|
|
102
|
+
if ehull_trial > ehull and abs(ehull_trial) > 1e-8:
|
|
103
|
+
ehull = ehull_trial
|
|
104
|
+
|
|
105
|
+
return ehull
|
|
106
|
+
|
|
107
|
+
def get_struct_near_convex_hull(self, threshold):
|
|
108
|
+
near_ch = {}
|
|
109
|
+
rss_result_fe = self.rss_result_fe
|
|
110
|
+
for key in rss_result_fe:
|
|
111
|
+
is_near = rss_result_fe[key]["fe_above_ch"] < threshold / 1000
|
|
112
|
+
near_ch[key]["formation_e"] = rss_result_fe[key]["formation_e"][is_near]
|
|
113
|
+
near_ch[key]["poscars"] = rss_result_fe[key]["poscars"][is_near]
|
|
114
|
+
near_ch[key]["is_outliers"] = rss_result_fe[key]["is_outliers"][is_near]
|
|
115
|
+
near_ch[key]["fe_above_ch"] = rss_result_fe[key]["fe_above_ch"][is_near]
|
|
116
|
+
|
|
117
|
+
return near_ch
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
import os
|
|
3
|
+
import shutil
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def detect_outlier(energies: np.array):
|
|
9
|
+
"""
|
|
10
|
+
Detect outliers and potential outliers in a 1D energy array.
|
|
11
|
+
|
|
12
|
+
Returns
|
|
13
|
+
-------
|
|
14
|
+
is_strong_outlier: np.ndarray of bool
|
|
15
|
+
Boolean array marking strong outliers (energy diff > 1.0).
|
|
16
|
+
is_weak_outlier : np.ndarray of bool
|
|
17
|
+
Boolean array marking potential outliers (energy diff > 0.2).
|
|
18
|
+
"""
|
|
19
|
+
is_strong_outlier = np.full(energies.shape, False, dtype=bool)
|
|
20
|
+
is_weak_outlier = np.full(energies.shape, False, dtype=bool)
|
|
21
|
+
window = 5
|
|
22
|
+
|
|
23
|
+
n = len(energies)
|
|
24
|
+
if n < 2:
|
|
25
|
+
return is_strong_outlier, is_weak_outlier
|
|
26
|
+
|
|
27
|
+
for i in range(n - 1):
|
|
28
|
+
end = min(i + 1 + window, n)
|
|
29
|
+
energy_diff = np.abs(energies[i] - energies[i + 1 : end])
|
|
30
|
+
if np.any(energy_diff > 1.0):
|
|
31
|
+
is_strong_outlier[i] = True
|
|
32
|
+
if np.any(energy_diff > 0.1):
|
|
33
|
+
is_weak_outlier[i] = True
|
|
34
|
+
else:
|
|
35
|
+
break
|
|
36
|
+
|
|
37
|
+
return is_strong_outlier, is_weak_outlier
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def run():
|
|
41
|
+
from rsspolymlp.analysis.rss_summarize import load_rss_results
|
|
42
|
+
|
|
43
|
+
parser = argparse.ArgumentParser()
|
|
44
|
+
parser.add_argument(
|
|
45
|
+
"--result_paths",
|
|
46
|
+
nargs="*",
|
|
47
|
+
type=str,
|
|
48
|
+
required=True,
|
|
49
|
+
help="Path(s) to RSS result log file(s).",
|
|
50
|
+
)
|
|
51
|
+
args = parser.parse_args()
|
|
52
|
+
|
|
53
|
+
# Prepare output directory: remove existing files if already exists
|
|
54
|
+
out_dir = "outlier_candidates"
|
|
55
|
+
if os.path.exists(out_dir):
|
|
56
|
+
for filename in os.listdir(out_dir):
|
|
57
|
+
if "POSCAR" in filename:
|
|
58
|
+
file_path = os.path.join(out_dir, filename)
|
|
59
|
+
if os.path.isfile(file_path):
|
|
60
|
+
os.remove(file_path)
|
|
61
|
+
else:
|
|
62
|
+
os.makedirs(out_dir)
|
|
63
|
+
|
|
64
|
+
# Copy weak outlier POSCARs
|
|
65
|
+
for res_path in args.result_paths:
|
|
66
|
+
logname = os.path.basename(res_path).split(".log")[0]
|
|
67
|
+
rss_results = load_rss_results(res_path, absolute_path=True, get_warning=True)
|
|
68
|
+
|
|
69
|
+
for idx, result in enumerate(rss_results):
|
|
70
|
+
if result.get("is_weak_outlier"):
|
|
71
|
+
dest = f"outlier_candidates/POSCAR_{logname}_No{idx + 1}"
|
|
72
|
+
shutil.copy(result["poscar"], dest)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
if __name__ == "__main__":
|
|
76
|
+
run()
|
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
from rsspolymlp.analysis.convex_hull import ConvexHullAnalyzer
|
|
6
|
+
from rsspolymlp.utils.matplot_util.custom_plt import CustomPlt
|
|
7
|
+
from rsspolymlp.utils.matplot_util.make_plot import MakePlot
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def run():
|
|
11
|
+
parser = argparse.ArgumentParser()
|
|
12
|
+
parser.add_argument(
|
|
13
|
+
"--elements",
|
|
14
|
+
nargs=2,
|
|
15
|
+
type=str,
|
|
16
|
+
required=True,
|
|
17
|
+
help="Two chemical elements, e.g., La Bi",
|
|
18
|
+
)
|
|
19
|
+
parser.add_argument(
|
|
20
|
+
"--result_paths",
|
|
21
|
+
nargs="+",
|
|
22
|
+
type=str,
|
|
23
|
+
required=True,
|
|
24
|
+
help="Paths to RSS result log files",
|
|
25
|
+
)
|
|
26
|
+
parser.add_argument(
|
|
27
|
+
"--threshold",
|
|
28
|
+
type=float,
|
|
29
|
+
default=-1,
|
|
30
|
+
help="Threshold for energy above the convex hull in meV/atom "
|
|
31
|
+
"(default: -1 means no threshold applied)",
|
|
32
|
+
)
|
|
33
|
+
args = parser.parse_args()
|
|
34
|
+
|
|
35
|
+
custom_template = CustomPlt(
|
|
36
|
+
label_size=8,
|
|
37
|
+
label_pad=3.0,
|
|
38
|
+
legend_size=7,
|
|
39
|
+
xtick_size=7,
|
|
40
|
+
ytick_size=7,
|
|
41
|
+
xtick_pad=3.0,
|
|
42
|
+
ytick_pad=3.0,
|
|
43
|
+
)
|
|
44
|
+
plt = custom_template.get_custom_plt()
|
|
45
|
+
plotter = MakePlot(
|
|
46
|
+
plt=plt,
|
|
47
|
+
column_size=1,
|
|
48
|
+
height_ratio=0.8,
|
|
49
|
+
)
|
|
50
|
+
plotter.initialize_ax()
|
|
51
|
+
|
|
52
|
+
ch_analyzer = ConvexHullAnalyzer(args.elements, args.result_paths)
|
|
53
|
+
ch_analyzer.run_calc()
|
|
54
|
+
|
|
55
|
+
fe_ch = ch_analyzer.fe_ch
|
|
56
|
+
comp_ch = ch_analyzer.comp_ch
|
|
57
|
+
rss_result_fe = ch_analyzer.rss_result_fe
|
|
58
|
+
|
|
59
|
+
plotter.set_visuality(n_color=4, n_line=4, n_marker=1, color_type="grad")
|
|
60
|
+
plotter.ax_plot(
|
|
61
|
+
comp_ch[:, 1],
|
|
62
|
+
fe_ch,
|
|
63
|
+
plot_type="closed",
|
|
64
|
+
label=None,
|
|
65
|
+
plot_size=0.7,
|
|
66
|
+
line_size=1,
|
|
67
|
+
zorder=2,
|
|
68
|
+
)
|
|
69
|
+
fe_min = np.min(fe_ch)
|
|
70
|
+
|
|
71
|
+
for key, _dict in rss_result_fe.items():
|
|
72
|
+
plotter.set_visuality(n_color=3, n_line=0, n_marker=0, color_type="grad")
|
|
73
|
+
if not args.threshold == -1:
|
|
74
|
+
is_not_near = (
|
|
75
|
+
_dict["fe_above_ch"][~_dict["is_outliers"]] > args.threshold / 1000
|
|
76
|
+
)
|
|
77
|
+
_energies = _dict["formation_e"][~_dict["is_outliers"]][is_not_near]
|
|
78
|
+
_comps = np.full_like(_energies, fill_value=key[1])
|
|
79
|
+
plotter.ax_scatter(
|
|
80
|
+
_comps, _energies, plot_type="open", label=None, plot_size=0.4
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
plotter.set_visuality(n_color=1, n_line=0, n_marker=1)
|
|
84
|
+
_energies = _dict["formation_e"][~_dict["is_outliers"]][~is_not_near]
|
|
85
|
+
_comps = np.full_like(_energies, fill_value=key[1])
|
|
86
|
+
plotter.ax_scatter(
|
|
87
|
+
_comps, _energies, plot_type="open", label=None, plot_size=0.5
|
|
88
|
+
)
|
|
89
|
+
else:
|
|
90
|
+
_energies = _dict["formation_e"][~_dict["is_outliers"]]
|
|
91
|
+
_comps = np.full_like(_energies, fill_value=key[1])
|
|
92
|
+
plotter.ax_scatter(
|
|
93
|
+
_comps, _energies, plot_type="open", label=None, plot_size=0.4
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
plotter.finalize_ax(
|
|
97
|
+
xlabel=rf"$x$ in {args.elements[0]}$_{{1-x}}${args.elements[1]}$_{{x}}$",
|
|
98
|
+
ylabel="Formation energy (eV/atom)",
|
|
99
|
+
x_limits=[0, 1],
|
|
100
|
+
x_grid=[0.2, 0.1],
|
|
101
|
+
y_limits=[fe_min * 1.1, 0],
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
plt.tight_layout()
|
|
105
|
+
plt.savefig(
|
|
106
|
+
f"{args.elements[0]}{args.elements[1]}.png",
|
|
107
|
+
bbox_inches="tight",
|
|
108
|
+
pad_inches=0.01,
|
|
109
|
+
dpi=600,
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
if __name__ == "__main__":
|
|
114
|
+
run()
|