rquote 0.4.6__tar.gz → 0.4.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. {rquote-0.4.6 → rquote-0.4.8}/PKG-INFO +2 -24
  2. {rquote-0.4.6 → rquote-0.4.8}/README.md +1 -23
  3. {rquote-0.4.6 → rquote-0.4.8}/pyproject.toml +1 -1
  4. {rquote-0.4.6 → rquote-0.4.8}/rquote/config.py +2 -0
  5. {rquote-0.4.6 → rquote-0.4.8}/rquote/markets/base.py +101 -40
  6. rquote-0.4.8/rquote/markets/cn_stock.py +317 -0
  7. {rquote-0.4.6 → rquote-0.4.8}/rquote/markets/hk_stock.py +7 -1
  8. {rquote-0.4.6 → rquote-0.4.8}/rquote.egg-info/PKG-INFO +2 -24
  9. rquote-0.4.6/rquote/markets/cn_stock.py +0 -193
  10. {rquote-0.4.6 → rquote-0.4.8}/rquote/__init__.py +0 -0
  11. {rquote-0.4.6 → rquote-0.4.8}/rquote/api/__init__.py +0 -0
  12. {rquote-0.4.6 → rquote-0.4.8}/rquote/api/lists.py +0 -0
  13. {rquote-0.4.6 → rquote-0.4.8}/rquote/api/price.py +0 -0
  14. {rquote-0.4.6 → rquote-0.4.8}/rquote/api/stock_info.py +0 -0
  15. {rquote-0.4.6 → rquote-0.4.8}/rquote/api/tick.py +0 -0
  16. {rquote-0.4.6 → rquote-0.4.8}/rquote/cache/__init__.py +0 -0
  17. {rquote-0.4.6 → rquote-0.4.8}/rquote/cache/base.py +0 -0
  18. {rquote-0.4.6 → rquote-0.4.8}/rquote/cache/memory.py +0 -0
  19. {rquote-0.4.6 → rquote-0.4.8}/rquote/cache/persistent.py +0 -0
  20. {rquote-0.4.6 → rquote-0.4.8}/rquote/data_sources/__init__.py +0 -0
  21. {rquote-0.4.6 → rquote-0.4.8}/rquote/data_sources/base.py +0 -0
  22. {rquote-0.4.6 → rquote-0.4.8}/rquote/data_sources/sina.py +0 -0
  23. {rquote-0.4.6 → rquote-0.4.8}/rquote/data_sources/tencent.py +0 -0
  24. {rquote-0.4.6 → rquote-0.4.8}/rquote/exceptions.py +0 -0
  25. {rquote-0.4.6 → rquote-0.4.8}/rquote/factors/__init__.py +0 -0
  26. {rquote-0.4.6 → rquote-0.4.8}/rquote/factors/technical.py +0 -0
  27. {rquote-0.4.6 → rquote-0.4.8}/rquote/markets/__init__.py +0 -0
  28. {rquote-0.4.6 → rquote-0.4.8}/rquote/markets/factory.py +0 -0
  29. {rquote-0.4.6 → rquote-0.4.8}/rquote/markets/future.py +0 -0
  30. {rquote-0.4.6 → rquote-0.4.8}/rquote/markets/us_stock.py +0 -0
  31. {rquote-0.4.6 → rquote-0.4.8}/rquote/parsers/__init__.py +0 -0
  32. {rquote-0.4.6 → rquote-0.4.8}/rquote/parsers/kline.py +0 -0
  33. {rquote-0.4.6 → rquote-0.4.8}/rquote/plots.py +0 -0
  34. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils/__init__.py +0 -0
  35. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils/date.py +0 -0
  36. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils/helpers.py +0 -0
  37. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils/http.py +0 -0
  38. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils/logging.py +0 -0
  39. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils/web.py +0 -0
  40. {rquote-0.4.6 → rquote-0.4.8}/rquote/utils.py +0 -0
  41. {rquote-0.4.6 → rquote-0.4.8}/rquote.egg-info/SOURCES.txt +0 -0
  42. {rquote-0.4.6 → rquote-0.4.8}/rquote.egg-info/dependency_links.txt +0 -0
  43. {rquote-0.4.6 → rquote-0.4.8}/rquote.egg-info/requires.txt +0 -0
  44. {rquote-0.4.6 → rquote-0.4.8}/rquote.egg-info/top_level.txt +0 -0
  45. {rquote-0.4.6 → rquote-0.4.8}/setup.cfg +0 -0
  46. {rquote-0.4.6 → rquote-0.4.8}/tests/test_api.py +0 -0
  47. {rquote-0.4.6 → rquote-0.4.8}/tests/test_cache.py +0 -0
  48. {rquote-0.4.6 → rquote-0.4.8}/tests/test_config.py +0 -0
  49. {rquote-0.4.6 → rquote-0.4.8}/tests/test_exceptions.py +0 -0
  50. {rquote-0.4.6 → rquote-0.4.8}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rquote
3
- Version: 0.4.6
3
+ Version: 0.4.8
4
4
  Summary: Mostly day quotes of cn/hk/us/fund/future markets, side with quote list fetch
5
5
  Requires-Python: >=3.9.0
6
6
  Description-Content-Type: text/markdown
@@ -18,7 +18,7 @@ Requires-Dist: duckdb>=0.9.0; extra == "persistent"
18
18
 
19
19
  ## 版本信息
20
20
 
21
- 当前版本:**0.4.6**
21
+ 当前版本:**0.4.8**
22
22
 
23
23
  ## 主要特性
24
24
 
@@ -575,30 +575,8 @@ python -m pytest tests/test_api.py
575
575
  4. **网络要求**: 部分功能需要网络连接,请确保网络畅通
576
576
  5. **缓存使用**: 建议使用缓存机制减少网络请求,提升性能
577
577
 
578
- ## 更新日志
579
-
580
- ### v0.3.5 (2024)
581
- - 修复Critical Bugs
582
- - 新增配置管理模块
583
- - 新增异常处理体系
584
- - 新增缓存抽象层
585
- - 改进HTTP客户端
586
- - 新增单元测试
587
- - 完善文档
588
-
589
- ### v0.3.4
590
- - 初始版本
591
578
 
592
579
  ## 贡献
593
580
 
594
581
  欢迎提交Issue和Pull Request!
595
582
 
596
- ## 许可证
597
-
598
- Copyright (c) 2021 Roi ZHAO
599
-
600
- ## 相关文档
601
-
602
- - [架构改进建议](ARCHITECTURE_IMPROVEMENTS.md)
603
- - [重构代码示例](REFACTORING_EXAMPLES.md)
604
- - [快速修复清单](QUICK_FIXES.md)
@@ -4,7 +4,7 @@
4
4
 
5
5
  ## 版本信息
6
6
 
7
- 当前版本:**0.4.6**
7
+ 当前版本:**0.4.8**
8
8
 
9
9
  ## 主要特性
10
10
 
@@ -561,30 +561,8 @@ python -m pytest tests/test_api.py
561
561
  4. **网络要求**: 部分功能需要网络连接,请确保网络畅通
562
562
  5. **缓存使用**: 建议使用缓存机制减少网络请求,提升性能
563
563
 
564
- ## 更新日志
565
-
566
- ### v0.3.5 (2024)
567
- - 修复Critical Bugs
568
- - 新增配置管理模块
569
- - 新增异常处理体系
570
- - 新增缓存抽象层
571
- - 改进HTTP客户端
572
- - 新增单元测试
573
- - 完善文档
574
-
575
- ### v0.3.4
576
- - 初始版本
577
564
 
578
565
  ## 贡献
579
566
 
580
567
  欢迎提交Issue和Pull Request!
581
568
 
582
- ## 许可证
583
-
584
- Copyright (c) 2021 Roi ZHAO
585
-
586
- ## 相关文档
587
-
588
- - [架构改进建议](ARCHITECTURE_IMPROVEMENTS.md)
589
- - [重构代码示例](REFACTORING_EXAMPLES.md)
590
- - [快速修复清单](QUICK_FIXES.md)
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "rquote"
7
- version = "0.4.6"
7
+ version = "0.4.8"
8
8
  description = "Mostly day quotes of cn/hk/us/fund/future markets, side with quote list fetch"
9
9
  readme = "README.md"
10
10
  # requires-python = ">=3.6.1" # duckdb requires higher python version
@@ -30,6 +30,8 @@ class Config:
30
30
  return cls(
31
31
  http_timeout=int(os.getenv('RQUOTE_HTTP_TIMEOUT', '10')),
32
32
  http_retry_times=int(os.getenv('RQUOTE_RETRY_TIMES', '3')),
33
+ http_retry_delay=float(os.getenv('RQUOTE_HTTP_RETRY_DELAY', '1.0')),
34
+ http_pool_size=int(os.getenv('RQUOTE_HTTP_POOL_SIZE', '10')),
33
35
  cache_enabled=os.getenv('RQUOTE_CACHE_ENABLED', 'true').lower() == 'true',
34
36
  cache_ttl=int(os.getenv('RQUOTE_CACHE_TTL', '3600')),
35
37
  log_level=os.getenv('RQUOTE_LOG_LEVEL', 'INFO'),
@@ -174,63 +174,124 @@ class Market(ABC):
174
174
 
175
175
  need_extend_forward = False # 需要向前扩展(更新日期)
176
176
  need_extend_backward = False # 需要向后扩展(更早日期)
177
+ need_extend_for_length = False # 需要扩展以满足长度要求(>=60行)
177
178
  extend_sdate = sdate
178
179
  extend_edate = edate
179
180
 
180
- # 检查是否需要向前扩展
181
+ # 逻辑1: 检查是否需要向前扩展(请求的 edate 晚于缓存的最新日期)
181
182
  if request_edate and request_edate > cached_latest:
182
183
  need_extend_forward = True
183
184
  # 从缓存的最新日期+1天开始,扩展到请求的 edate
184
185
  extend_sdate = (cached_latest + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
185
186
  extend_edate = edate
186
187
 
187
- # 检查是否需要向后扩展
188
- if request_sdate and request_sdate < cached_earliest:
188
+ # 逻辑2: 如果从cache取的数据在edate前的长度小于等于60,则进行网络请求取数合并进cache
189
+ elif request_edate:
190
+ # 计算edate之前的数据行数
191
+ data_before_edate = cached_df[cached_df.index <= request_edate]
192
+ if len(data_before_edate) <= 60:
193
+ need_extend_for_length = True
194
+ # 从更早的日期开始获取,确保edate前有足够的数据(>=60行)
195
+ # 往前推约4个月(120天),确保有足够的交易日
196
+ target_sdate = request_edate - pd.Timedelta(days=120)
197
+ extend_sdate = target_sdate.strftime('%Y-%m-%d')
198
+ extend_edate = edate
199
+ logger.info(f"[PRICE EXTEND LENGTH] symbol={symbol}, edate前数据行数={len(data_before_edate)} <= 60, 从更早日期获取, extend_sdate={extend_sdate}")
200
+
201
+ # 逻辑3: 如果cache中有数据,但新的edate小于cache中数据最小值
202
+ elif request_edate and request_edate < cached_earliest:
203
+ need_extend_backward = True
204
+ # 从缓存最早日期开始往前获取,直到覆盖edate且edate前的长度大于60
205
+ # 先尝试从edate往前推足够的天数(约4个月)
206
+ target_sdate = request_edate - pd.Timedelta(days=120)
207
+ extend_sdate = target_sdate.strftime('%Y-%m-%d')
208
+ extend_edate = (cached_earliest - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
209
+ logger.info(f"[PRICE EXTEND EARLY] symbol={symbol}, edate={request_edate} 早于缓存最早日期={cached_earliest}, 从更早日期获取, extend_sdate={extend_sdate}, extend_edate={extend_edate}")
210
+
211
+ # 检查是否需要向后扩展(请求的 sdate 早于缓存的最早日期,且不是情况3)
212
+ if request_sdate and request_sdate < cached_earliest and not need_extend_backward:
189
213
  need_extend_backward = True
190
214
  # 从请求的 sdate 开始,扩展到缓存的最早日期-1天
191
215
  extend_sdate = sdate
192
216
  extend_edate = (cached_earliest - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
193
217
 
194
218
  # 如果需要扩展,获取缺失的数据
195
- if need_extend_forward or need_extend_backward:
196
- logger.info(f"[PRICE EXTEND] 需要扩展数据, symbol={symbol}, extend_sdate={extend_sdate}, extend_edate={extend_edate}, need_forward={need_extend_forward}, need_backward={need_extend_backward}")
197
- # 获取扩展的数据
198
- extended_result = fetch_func(symbol, extend_sdate, extend_edate, freq, days, fq)
199
- _, _, extended_df = extended_result
200
- logger.info(f"[PRICE FETCH] 从网络获取扩展数据, 数据行数={len(extended_df)}")
219
+ if need_extend_forward or need_extend_backward or need_extend_for_length:
220
+ logger.info(f"[PRICE EXTEND] 需要扩展数据, symbol={symbol}, extend_sdate={extend_sdate}, extend_edate={extend_edate}, need_forward={need_extend_forward}, need_backward={need_extend_backward}, need_length={need_extend_for_length}")
201
221
 
202
- if not extended_df.empty:
203
- # 确保两个 DataFrame 的索引都是 DatetimeIndex
204
- if not isinstance(cached_df.index, pd.DatetimeIndex):
205
- try:
206
- cached_df.index = pd.to_datetime(cached_df.index)
207
- except (ValueError, TypeError):
208
- pass
209
- if not isinstance(extended_df.index, pd.DatetimeIndex):
210
- try:
211
- extended_df.index = pd.to_datetime(extended_df.index)
212
- except (ValueError, TypeError):
213
- pass
214
-
215
- # 合并数据
216
- merged_df = pd.concat([cached_df, extended_df])
217
- merged_df = merged_df[~merged_df.index.duplicated(keep='last')]
218
- merged_df = merged_df.sort_index()
219
-
220
- # 过滤到请求的日期范围
221
- if request_sdate or request_edate:
222
- if request_sdate and request_edate:
223
- mask = (merged_df.index >= request_sdate) & (merged_df.index <= request_edate)
224
- elif request_sdate:
225
- mask = merged_df.index >= request_sdate
226
- else:
227
- mask = merged_df.index <= request_edate
228
- merged_df = merged_df[mask]
222
+ # 对于逻辑2和逻辑3,可能需要循环获取直到满足条件
223
+ max_iterations = 5 # 最多循环5次,避免无限循环
224
+ iteration = 0
225
+ current_merged_df = cached_df.copy()
226
+
227
+ while iteration < max_iterations:
228
+ iteration += 1
229
+ # 获取扩展的数据
230
+ extended_result = fetch_func(symbol, extend_sdate, extend_edate, freq, days, fq)
231
+ _, _, extended_df = extended_result
232
+ logger.info(f"[PRICE FETCH] 从网络获取扩展数据 (迭代{iteration}), 数据行数={len(extended_df)}")
229
233
 
230
- result = (symbol, name, merged_df)
231
- # 更新缓存(使用原始 key,PersistentCache 会智能合并)
232
- self._put_cache(cache_key, result)
233
- return result
234
+ if not extended_df.empty:
235
+ # 确保两个 DataFrame 的索引都是 DatetimeIndex
236
+ if not isinstance(current_merged_df.index, pd.DatetimeIndex):
237
+ try:
238
+ current_merged_df.index = pd.to_datetime(current_merged_df.index)
239
+ except (ValueError, TypeError):
240
+ pass
241
+ if not isinstance(extended_df.index, pd.DatetimeIndex):
242
+ try:
243
+ extended_df.index = pd.to_datetime(extended_df.index)
244
+ except (ValueError, TypeError):
245
+ pass
246
+
247
+ # 合并数据
248
+ current_merged_df = pd.concat([current_merged_df, extended_df])
249
+ current_merged_df = current_merged_df[~current_merged_df.index.duplicated(keep='last')]
250
+ current_merged_df = current_merged_df.sort_index()
251
+
252
+ # 检查是否满足条件(逻辑2和逻辑3需要检查长度)
253
+ if need_extend_for_length or need_extend_backward:
254
+ if request_edate:
255
+ data_before_edate = current_merged_df[current_merged_df.index <= request_edate]
256
+ if len(data_before_edate) > 60:
257
+ # 满足条件,退出循环
258
+ logger.info(f"[PRICE EXTEND] 已满足长度要求, edate前数据行数={len(data_before_edate)}")
259
+ break
260
+ else:
261
+ # 还需要继续获取更早的数据
262
+ current_earliest = current_merged_df.index.min()
263
+ if current_earliest <= pd.to_datetime(extend_sdate):
264
+ # 已经获取到最早的数据,无法再往前获取
265
+ logger.warning(f"[PRICE EXTEND] 已获取到最早数据,但edate前数据行数={len(data_before_edate)}仍不足60行")
266
+ break
267
+ # 继续往前推
268
+ extend_sdate_dt = pd.to_datetime(extend_sdate) - pd.Timedelta(days=120)
269
+ extend_sdate = extend_sdate_dt.strftime('%Y-%m-%d')
270
+ logger.info(f"[PRICE EXTEND] 继续获取更早数据, 新extend_sdate={extend_sdate}")
271
+ continue
272
+
273
+ # 对于逻辑1(向前扩展),不需要循环,直接退出
274
+ if need_extend_forward and not need_extend_for_length and not need_extend_backward:
275
+ break
276
+ else:
277
+ # 获取失败,退出循环
278
+ logger.warning(f"[PRICE EXTEND] 获取数据为空,退出循环")
279
+ break
280
+
281
+ # 过滤到请求的日期范围
282
+ if request_sdate or request_edate:
283
+ if request_sdate and request_edate:
284
+ mask = (current_merged_df.index >= request_sdate) & (current_merged_df.index <= request_edate)
285
+ elif request_sdate:
286
+ mask = current_merged_df.index >= request_sdate
287
+ else:
288
+ mask = current_merged_df.index <= request_edate
289
+ current_merged_df = current_merged_df[mask]
290
+
291
+ result = (symbol, name, current_merged_df)
292
+ # 更新缓存(使用原始 key,PersistentCache 会智能合并)
293
+ self._put_cache(cache_key, result)
294
+ return result
234
295
 
235
296
  # 不需要扩展,直接返回缓存的数据
236
297
  # 注意:PersistentCache.get() 已经根据请求的日期范围进行了过滤,
@@ -0,0 +1,317 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ A股市场
4
+ """
5
+ import json
6
+ import base64
7
+ import pandas as pd
8
+ from typing import Tuple
9
+ from .base import Market
10
+ from ..parsers import KlineParser
11
+ from ..exceptions import DataSourceError, ParseError
12
+ from ..utils import hget, logger
13
+
14
+
15
+ class CNStockMarket(Market):
16
+ """A股市场"""
17
+
18
+ def normalize_symbol(self, symbol: str) -> str:
19
+ """标准化A股代码"""
20
+ if symbol[0] in ['0', '1', '3', '5', '6']:
21
+ prefix = 'sh' if symbol[0] in ['5', '6'] else 'sz'
22
+ return prefix + symbol
23
+ return symbol
24
+
25
+ def get_price(self, symbol: str, sdate: str = '', edate: str = '',
26
+ freq: str = 'day', days: int = 320, fq: str = 'qfq') -> Tuple[str, str, pd.DataFrame]:
27
+ """获取A股价格数据"""
28
+ symbol = self.normalize_symbol(symbol)
29
+
30
+ # 特殊处理BK(板块)代码(不使用缓存)
31
+ if symbol[:2] == 'BK':
32
+ return self._get_bk_price(symbol)
33
+
34
+ # PT代码也使用基类的缓存逻辑(包含长度检查和扩展逻辑)
35
+ # 使用基类的缓存逻辑,所有市场都会应用这两个逻辑:
36
+ # 1. 如果从cache取的数据在edate前的长度小于等于60,则进行网络请求取数合并进cache
37
+ # 2. 如果cache中有数据,但新的edate小于cache中数据最小值,从更早日期开始取并合并
38
+ return super().get_price(symbol, sdate, edate, freq, days, fq)
39
+
40
+ def _fetch_price_data(self, symbol: str, sdate: str = '', edate: str = '',
41
+ freq: str = 'day', days: int = 320, fq: str = 'qfq') -> Tuple[str, str, pd.DataFrame]:
42
+ """从数据源获取A股价格数据"""
43
+ try:
44
+ raw_data = self.data_source.fetch_kline(
45
+ symbol, freq=freq, sdate=sdate, edate=edate, days=days, fq=fq
46
+ )
47
+
48
+ # 使用解析器解析
49
+ parser = KlineParser()
50
+ name, df = parser.parse_tencent_kline(raw_data, symbol)
51
+
52
+ return (symbol, name, df)
53
+ except (DataSourceError, ParseError) as e:
54
+ logger.warning(f'Failed to fetch {symbol} using new architecture: {e}')
55
+ # 降级到旧方法
56
+ return self._get_price_fallback(symbol, sdate, edate, freq, days, fq)
57
+
58
+ def _get_bk_price(self, symbol: str) -> Tuple[str, str, pd.DataFrame]:
59
+ """获取板块价格(BK开头)"""
60
+ try:
61
+ url = base64.b64decode('aHR0cDovL3B1c2gyaGlzLmVhc3' +
62
+ 'Rtb25leS5jb20vYXBpL3F0L3N0b2NrL2tsaW5lL2dldD9jYj1qUX' +
63
+ 'VlcnkxMTI0MDIyNTY2NDQ1ODczNzY2OTcyXzE2MTc4NjQ1NjgxMz' +
64
+ 'Emc2VjaWQ9OTAu').decode() + symbol + \
65
+ '&fields1=f1%2Cf2%2Cf3%2Cf4%2Cf5' + \
66
+ '&fields2=f51%2Cf52%2Cf53%2Cf54%2Cf55%2Cf56%2Cf57%2Cf58' + \
67
+ '&klt=101&fqt=0&beg=19900101&end=20990101&_=1'
68
+ response = hget(url)
69
+ if not response:
70
+ logger.warning(f'{symbol} hget failed')
71
+ return symbol, 'None', pd.DataFrame([])
72
+
73
+ data = json.loads(response.text.split('jQuery1124022566445873766972_1617864568131(')[1][:-2])
74
+ if not data.get('data'):
75
+ logger.warning(f'{symbol} data empty')
76
+ return symbol, 'None', pd.DataFrame([])
77
+
78
+ name = data['data']['name']
79
+ df = pd.DataFrame([i.split(',') for i in data['data']['klines']],
80
+ columns=['date', 'open', 'close', 'high', 'low', 'vol', 'money', 'p'])
81
+ df = df.set_index(['date'])
82
+ # 转换数值列
83
+ for col in ['open', 'close', 'high', 'low', 'vol', 'money', 'p']:
84
+ df[col] = pd.to_numeric(df[col], errors='coerce')
85
+
86
+ result = (symbol, name, df)
87
+ self._put_cache(symbol, result)
88
+ return result
89
+ except Exception as e:
90
+ logger.warning(f'error fetching {symbol}, err: {e}')
91
+ return symbol, 'None', pd.DataFrame([])
92
+
93
+ def _get_pt_price(self, symbol: str, sdate: str, edate: str,
94
+ freq: str, days: int, fq: str) -> Tuple[str, str, pd.DataFrame]:
95
+ """获取PT代码价格"""
96
+ # 先检查缓存(使用base_key格式,日期通过参数传递)
97
+ base_key = f"{symbol}:{freq}:{fq}"
98
+ cached = self._get_cached(base_key, sdate=sdate, edate=edate)
99
+ cached_df = None
100
+ need_fetch = False # 标记是否需要从网络获取数据
101
+ if cached:
102
+ _, name, cached_df = cached
103
+ # 检查缓存数据是否满足请求的 edate
104
+ if not cached_df.empty and isinstance(cached_df.index, pd.DatetimeIndex):
105
+ cached_earliest = cached_df.index.min()
106
+ cached_latest = cached_df.index.max()
107
+ request_edate = pd.to_datetime(edate) if edate else None
108
+ request_sdate = pd.to_datetime(sdate) if sdate else None
109
+
110
+ # 逻辑1: 如果请求的 edate 晚于缓存的最新日期,需要从网络获取新数据
111
+ if request_edate and request_edate > cached_latest:
112
+ logger.info(f"[PT CACHE INCOMPLETE] symbol={symbol}, 缓存最新日期={cached_latest}, 请求日期={request_edate}, 需要扩展数据")
113
+ need_fetch = True
114
+ # 逻辑2: 如果从cache取的数据在edate前的长度小于等于60,则进行网络请求取数合并进cache
115
+ elif request_edate:
116
+ # 计算edate之前的数据行数
117
+ data_before_edate = cached_df[cached_df.index <= request_edate]
118
+ if len(data_before_edate) <= 60:
119
+ logger.info(f"[PT CACHE INSUFFICIENT] symbol={symbol}, edate前数据行数={len(data_before_edate)} <= 60, 需要获取更多历史数据")
120
+ need_fetch = True
121
+ # 逻辑3: 如果cache中有数据,但新的edate小于cache中数据最小值,需要从更早的日期开始取
122
+ elif request_edate and request_edate < cached_earliest:
123
+ logger.info(f"[PT CACHE EARLY] symbol={symbol}, 请求edate={request_edate} 早于缓存最早日期={cached_earliest}, 需要从更早日期获取")
124
+ need_fetch = True
125
+ else:
126
+ logger.info(f"[PT CACHE HIT] symbol={symbol}, 从缓存返回数据, 日期范围={cached_df.index.min()} 到 {cached_df.index.max()}")
127
+ return cached
128
+ else:
129
+ logger.info(f"[PT CACHE HIT] symbol={symbol}, 从缓存返回数据")
130
+ return cached
131
+
132
+ try:
133
+ # 确定需要获取的日期范围
134
+ extend_sdate = sdate
135
+ extend_edate = edate
136
+ need_multiple_fetch = False # 是否需要多次获取以满足长度要求
137
+
138
+ if cached and cached_df is not None and not cached_df.empty and isinstance(cached_df.index, pd.DatetimeIndex):
139
+ cached_earliest = cached_df.index.min()
140
+ cached_latest = cached_df.index.max()
141
+ request_edate = pd.to_datetime(edate) if edate else None
142
+ request_sdate = pd.to_datetime(sdate) if sdate else None
143
+
144
+ # 情况1: 请求的 edate 晚于缓存的最新日期,从缓存的最新日期+1天开始获取
145
+ if request_edate and request_edate > cached_latest:
146
+ extend_sdate = (cached_latest + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
147
+ logger.info(f"[PT FETCH] 从缓存最新日期后开始获取, extend_sdate={extend_sdate}, edate={edate}")
148
+ # 情况2: edate前的数据长度<=60,需要获取更多历史数据
149
+ elif request_edate:
150
+ data_before_edate = cached_df[cached_df.index <= request_edate]
151
+ if len(data_before_edate) <= 60:
152
+ # 计算需要获取多少天的数据才能达到60+行
153
+ # 假设每个交易日都有数据,需要大约60个交易日(约3个月)
154
+ # 从edate往前推,确保获取足够的数据
155
+ target_sdate = request_edate - pd.Timedelta(days=120) # 往前推约4个月,确保有足够交易日
156
+ extend_sdate = target_sdate.strftime('%Y-%m-%d')
157
+ extend_edate = edate
158
+ logger.info(f"[PT FETCH] edate前数据不足60行,从更早日期获取, extend_sdate={extend_sdate}, extend_edate={extend_edate}")
159
+ need_multiple_fetch = True # 可能需要多次获取
160
+ # 情况3: 请求的edate早于缓存的最早日期,从缓存最早日期开始往前获取
161
+ elif request_edate and request_edate < cached_earliest:
162
+ # 从缓存最早日期开始往前获取,直到覆盖edate且edate前的长度大于60
163
+ # 先尝试从edate往前推足够的天数
164
+ target_sdate = request_edate - pd.Timedelta(days=120) # 往前推约4个月
165
+ extend_sdate = target_sdate.strftime('%Y-%m-%d')
166
+ extend_edate = (cached_earliest - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
167
+ logger.info(f"[PT FETCH] edate早于缓存最早日期,从更早日期获取, extend_sdate={extend_sdate}, extend_edate={extend_edate}")
168
+ need_multiple_fetch = True # 可能需要多次获取
169
+
170
+ url = f'https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get?_var=kline_dayqfq&param={symbol},{freq},{extend_sdate},{extend_edate},{days},{fq}'
171
+ response = hget(url)
172
+ if not response:
173
+ logger.warning(f'{symbol} hget failed')
174
+ # 如果网络请求失败,但有缓存数据,返回缓存数据
175
+ if cached:
176
+ logger.info(f"[PT FALLBACK] 网络请求失败,返回缓存数据")
177
+ return cached
178
+ return symbol, 'None', pd.DataFrame([])
179
+
180
+ response_text = response.text
181
+ json_start = response_text.find('{')
182
+ if json_start == -1:
183
+ logger.warning(f'{symbol} invalid response format')
184
+ # 如果解析失败,但有缓存数据,返回缓存数据
185
+ if cached:
186
+ logger.info(f"[PT FALLBACK] 解析失败,返回缓存数据")
187
+ return cached
188
+ return symbol, 'None', pd.DataFrame([])
189
+
190
+ data = json.loads(response_text[json_start:])
191
+ if data.get('code') != 0:
192
+ logger.warning(f'{symbol} API returned error: {data.get("msg", "Unknown error")}')
193
+ # 如果API返回错误,但有缓存数据,返回缓存数据
194
+ if cached:
195
+ logger.info(f"[PT FALLBACK] API错误,返回缓存数据")
196
+ return cached
197
+ return symbol, 'None', pd.DataFrame([])
198
+
199
+ # 使用解析器
200
+ try:
201
+ parser = KlineParser()
202
+ name, df = parser.parse_tencent_kline(data, symbol)
203
+
204
+ # 如果有缓存数据,合并新旧数据
205
+ if cached and cached_df is not None and not cached_df.empty and isinstance(cached_df.index, pd.DatetimeIndex):
206
+ # 确保两个 DataFrame 的索引都是 DatetimeIndex
207
+ if not isinstance(df.index, pd.DatetimeIndex):
208
+ try:
209
+ df.index = pd.to_datetime(df.index)
210
+ except (ValueError, TypeError):
211
+ pass
212
+
213
+ # 合并数据
214
+ merged_df = pd.concat([cached_df, df])
215
+ merged_df = merged_df[~merged_df.index.duplicated(keep='last')]
216
+ merged_df = merged_df.sort_index()
217
+
218
+ # 过滤到请求的日期范围
219
+ if edate:
220
+ request_edate = pd.to_datetime(edate)
221
+ merged_df = merged_df[merged_df.index <= request_edate]
222
+
223
+ result = (symbol, name, merged_df)
224
+ logger.info(f"[PT MERGE] 合并缓存和新数据, 缓存行数={len(cached_df)}, 新数据行数={len(df)}, 合并后行数={len(merged_df)}")
225
+ else:
226
+ result = (symbol, name, df)
227
+
228
+ self._put_cache(base_key, result)
229
+ return result
230
+ except Exception as e:
231
+ logger.warning(f'Failed to parse {symbol}, using fallback: {e}')
232
+ # 降级处理
233
+ symbol_data = data.get('data', {}).get(symbol, {})
234
+ if not symbol_data:
235
+ return symbol, 'None', pd.DataFrame([])
236
+
237
+ tk = None
238
+ for tkt in ['day', 'qfqday', 'hfqday', 'week', 'qfqweek', 'hfqweek',
239
+ 'month', 'qfqmonth', 'hfqmonth']:
240
+ if tkt in symbol_data:
241
+ tk = tkt
242
+ break
243
+
244
+ if not tk:
245
+ return symbol, 'None', pd.DataFrame([])
246
+
247
+ name = ''
248
+ if 'qt' in symbol_data and symbol in symbol_data['qt']:
249
+ name = symbol_data['qt'][symbol][1] if len(symbol_data['qt'][symbol]) > 1 else ''
250
+
251
+ kline_data = symbol_data[tk]
252
+ df = pd.DataFrame([j[:6] for j in kline_data],
253
+ columns=['date', 'open', 'close', 'high', 'low', 'vol']).set_index('date')
254
+ for col in ['open', 'high', 'low', 'close', 'vol']:
255
+ df[col] = pd.to_numeric(df[col], errors='coerce')
256
+
257
+ # 如果有缓存数据,合并新旧数据
258
+ if cached and cached_df is not None and not cached_df.empty and isinstance(cached_df.index, pd.DatetimeIndex):
259
+ # 确保两个 DataFrame 的索引都是 DatetimeIndex
260
+ if not isinstance(df.index, pd.DatetimeIndex):
261
+ try:
262
+ df.index = pd.to_datetime(df.index)
263
+ except (ValueError, TypeError):
264
+ pass
265
+
266
+ # 合并数据
267
+ merged_df = pd.concat([cached_df, df])
268
+ merged_df = merged_df[~merged_df.index.duplicated(keep='last')]
269
+ merged_df = merged_df.sort_index()
270
+
271
+ # 过滤到请求的日期范围
272
+ if edate:
273
+ request_edate = pd.to_datetime(edate)
274
+ merged_df = merged_df[merged_df.index <= request_edate]
275
+
276
+ result = (symbol, name, merged_df)
277
+ logger.info(f"[PT MERGE FALLBACK] 合并缓存和新数据, 缓存行数={len(cached_df)}, 新数据行数={len(df)}, 合并后行数={len(merged_df)}")
278
+ else:
279
+ result = (symbol, name, df)
280
+
281
+ self._put_cache(base_key, result)
282
+ return result
283
+ except Exception as e:
284
+ logger.warning(f'error fetching {symbol}, err: {e}')
285
+ return symbol, 'None', pd.DataFrame([])
286
+
287
+ def _get_price_fallback(self, symbol: str, sdate: str, edate: str,
288
+ freq: str, days: int, fq: str) -> Tuple[str, str, pd.DataFrame]:
289
+ """降级方法(旧实现)"""
290
+ from ..utils import hget
291
+ import json
292
+
293
+ url = f'https://web.ifzq.gtimg.cn/appstock/app/newfqkline/get?param={symbol},{freq},{sdate},{edate},{days},{fq}'
294
+ response = hget(url)
295
+ if not response:
296
+ raise DataSourceError(f'Failed to fetch data for {symbol}')
297
+
298
+ data = json.loads(response.text)['data'][symbol]
299
+ name = ''
300
+ for tkt in ['day', 'qfqday', 'hfqday', 'week', 'qfqweek', 'hfqweek',
301
+ 'month', 'qfqmonth', 'hfqmonth']:
302
+ if tkt in data:
303
+ tk = tkt
304
+ break
305
+
306
+ df = pd.DataFrame([j[:6] for j in data[tk]],
307
+ columns=['date', 'open', 'close', 'high', 'low', 'vol']).set_index('date')
308
+ for col in ['open', 'high', 'low', 'close', 'vol']:
309
+ df[col] = pd.to_numeric(df[col], errors='coerce')
310
+ if 'qt' in data:
311
+ name = data['qt'][symbol][1]
312
+
313
+ result = (symbol, name, df)
314
+ cache_key = f"{symbol}:{sdate}:{edate}:{freq}:{days}:{fq}"
315
+ self._put_cache(cache_key, result)
316
+ return result
317
+
@@ -16,7 +16,13 @@ class HKStockMarket(Market):
16
16
  def normalize_symbol(self, symbol: str) -> str:
17
17
  """标准化港股代码"""
18
18
  if not symbol.startswith('hk'):
19
- return 'hk' + symbol
19
+ symbol = 'hk' + symbol
20
+
21
+ # 如果hk后面只有4位数字,则添加一个0
22
+ if symbol.startswith('hk') and len(symbol) == 6:
23
+ # hk + 4位数字 = 6位,需要补0变成 hk + 0 + 4位数字
24
+ return 'hk0' + symbol[2:]
25
+
20
26
  return symbol
21
27
 
22
28
  def _fetch_price_data(self, symbol: str, sdate: str = '', edate: str = '',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rquote
3
- Version: 0.4.6
3
+ Version: 0.4.8
4
4
  Summary: Mostly day quotes of cn/hk/us/fund/future markets, side with quote list fetch
5
5
  Requires-Python: >=3.9.0
6
6
  Description-Content-Type: text/markdown
@@ -18,7 +18,7 @@ Requires-Dist: duckdb>=0.9.0; extra == "persistent"
18
18
 
19
19
  ## 版本信息
20
20
 
21
- 当前版本:**0.4.6**
21
+ 当前版本:**0.4.8**
22
22
 
23
23
  ## 主要特性
24
24
 
@@ -575,30 +575,8 @@ python -m pytest tests/test_api.py
575
575
  4. **网络要求**: 部分功能需要网络连接,请确保网络畅通
576
576
  5. **缓存使用**: 建议使用缓存机制减少网络请求,提升性能
577
577
 
578
- ## 更新日志
579
-
580
- ### v0.3.5 (2024)
581
- - 修复Critical Bugs
582
- - 新增配置管理模块
583
- - 新增异常处理体系
584
- - 新增缓存抽象层
585
- - 改进HTTP客户端
586
- - 新增单元测试
587
- - 完善文档
588
-
589
- ### v0.3.4
590
- - 初始版本
591
578
 
592
579
  ## 贡献
593
580
 
594
581
  欢迎提交Issue和Pull Request!
595
582
 
596
- ## 许可证
597
-
598
- Copyright (c) 2021 Roi ZHAO
599
-
600
- ## 相关文档
601
-
602
- - [架构改进建议](ARCHITECTURE_IMPROVEMENTS.md)
603
- - [重构代码示例](REFACTORING_EXAMPLES.md)
604
- - [快速修复清单](QUICK_FIXES.md)
@@ -1,193 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- A股市场
4
- """
5
- import json
6
- import base64
7
- import pandas as pd
8
- from typing import Tuple
9
- from .base import Market
10
- from ..parsers import KlineParser
11
- from ..exceptions import DataSourceError, ParseError
12
- from ..utils import hget, logger
13
-
14
-
15
- class CNStockMarket(Market):
16
- """A股市场"""
17
-
18
- def normalize_symbol(self, symbol: str) -> str:
19
- """标准化A股代码"""
20
- if symbol[0] in ['0', '1', '3', '5', '6']:
21
- prefix = 'sh' if symbol[0] in ['5', '6'] else 'sz'
22
- return prefix + symbol
23
- return symbol
24
-
25
- def get_price(self, symbol: str, sdate: str = '', edate: str = '',
26
- freq: str = 'day', days: int = 320, fq: str = 'qfq') -> Tuple[str, str, pd.DataFrame]:
27
- """获取A股价格数据"""
28
- symbol = self.normalize_symbol(symbol)
29
-
30
- # 特殊处理BK(板块)代码(不使用缓存)
31
- if symbol[:2] == 'BK':
32
- return self._get_bk_price(symbol)
33
-
34
- # 特殊处理PT代码(不使用缓存)
35
- if symbol[:2] == 'pt':
36
- return self._get_pt_price(symbol, sdate, edate, freq, days, fq)
37
-
38
- # 使用基类的缓存逻辑
39
- return super().get_price(symbol, sdate, edate, freq, days, fq)
40
-
41
- def _fetch_price_data(self, symbol: str, sdate: str = '', edate: str = '',
42
- freq: str = 'day', days: int = 320, fq: str = 'qfq') -> Tuple[str, str, pd.DataFrame]:
43
- """从数据源获取A股价格数据"""
44
- try:
45
- raw_data = self.data_source.fetch_kline(
46
- symbol, freq=freq, sdate=sdate, edate=edate, days=days, fq=fq
47
- )
48
-
49
- # 使用解析器解析
50
- parser = KlineParser()
51
- name, df = parser.parse_tencent_kline(raw_data, symbol)
52
-
53
- return (symbol, name, df)
54
- except (DataSourceError, ParseError) as e:
55
- logger.warning(f'Failed to fetch {symbol} using new architecture: {e}')
56
- # 降级到旧方法
57
- return self._get_price_fallback(symbol, sdate, edate, freq, days, fq)
58
-
59
- def _get_bk_price(self, symbol: str) -> Tuple[str, str, pd.DataFrame]:
60
- """获取板块价格(BK开头)"""
61
- try:
62
- url = base64.b64decode('aHR0cDovL3B1c2gyaGlzLmVhc3' +
63
- 'Rtb25leS5jb20vYXBpL3F0L3N0b2NrL2tsaW5lL2dldD9jYj1qUX' +
64
- 'VlcnkxMTI0MDIyNTY2NDQ1ODczNzY2OTcyXzE2MTc4NjQ1NjgxMz' +
65
- 'Emc2VjaWQ9OTAu').decode() + symbol + \
66
- '&fields1=f1%2Cf2%2Cf3%2Cf4%2Cf5' + \
67
- '&fields2=f51%2Cf52%2Cf53%2Cf54%2Cf55%2Cf56%2Cf57%2Cf58' + \
68
- '&klt=101&fqt=0&beg=19900101&end=20990101&_=1'
69
- response = hget(url)
70
- if not response:
71
- logger.warning(f'{symbol} hget failed')
72
- return symbol, 'None', pd.DataFrame([])
73
-
74
- data = json.loads(response.text.split('jQuery1124022566445873766972_1617864568131(')[1][:-2])
75
- if not data.get('data'):
76
- logger.warning(f'{symbol} data empty')
77
- return symbol, 'None', pd.DataFrame([])
78
-
79
- name = data['data']['name']
80
- df = pd.DataFrame([i.split(',') for i in data['data']['klines']],
81
- columns=['date', 'open', 'close', 'high', 'low', 'vol', 'money', 'p'])
82
- df = df.set_index(['date'])
83
- # 转换数值列
84
- for col in ['open', 'close', 'high', 'low', 'vol', 'money', 'p']:
85
- df[col] = pd.to_numeric(df[col], errors='coerce')
86
-
87
- result = (symbol, name, df)
88
- self._put_cache(symbol, result)
89
- return result
90
- except Exception as e:
91
- logger.warning(f'error fetching {symbol}, err: {e}')
92
- return symbol, 'None', pd.DataFrame([])
93
-
94
- def _get_pt_price(self, symbol: str, sdate: str, edate: str,
95
- freq: str, days: int, fq: str) -> Tuple[str, str, pd.DataFrame]:
96
- """获取PT代码价格"""
97
- # 先检查缓存(使用base_key格式,日期通过参数传递)
98
- base_key = f"{symbol}:{freq}:{fq}"
99
- cached = self._get_cached(base_key, sdate=sdate, edate=edate)
100
- if cached:
101
- logger.info(f"[PT CACHE HIT] symbol={symbol}, 从缓存返回数据")
102
- return cached
103
-
104
- try:
105
- url = f'https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get?_var=kline_dayqfq&param={symbol},{freq},{sdate},{edate},{days},{fq}'
106
- response = hget(url)
107
- if not response:
108
- logger.warning(f'{symbol} hget failed')
109
- return symbol, 'None', pd.DataFrame([])
110
-
111
- response_text = response.text
112
- json_start = response_text.find('{')
113
- if json_start == -1:
114
- logger.warning(f'{symbol} invalid response format')
115
- return symbol, 'None', pd.DataFrame([])
116
-
117
- data = json.loads(response_text[json_start:])
118
- if data.get('code') != 0:
119
- logger.warning(f'{symbol} API returned error: {data.get("msg", "Unknown error")}')
120
- return symbol, 'None', pd.DataFrame([])
121
-
122
- # 使用解析器
123
- try:
124
- parser = KlineParser()
125
- name, df = parser.parse_tencent_kline(data, symbol)
126
- result = (symbol, name, df)
127
- self._put_cache(base_key, result)
128
- return result
129
- except Exception as e:
130
- logger.warning(f'Failed to parse {symbol}, using fallback: {e}')
131
- # 降级处理
132
- symbol_data = data.get('data', {}).get(symbol, {})
133
- if not symbol_data:
134
- return symbol, 'None', pd.DataFrame([])
135
-
136
- tk = None
137
- for tkt in ['day', 'qfqday', 'hfqday', 'week', 'qfqweek', 'hfqweek',
138
- 'month', 'qfqmonth', 'hfqmonth']:
139
- if tkt in symbol_data:
140
- tk = tkt
141
- break
142
-
143
- if not tk:
144
- return symbol, 'None', pd.DataFrame([])
145
-
146
- name = ''
147
- if 'qt' in symbol_data and symbol in symbol_data['qt']:
148
- name = symbol_data['qt'][symbol][1] if len(symbol_data['qt'][symbol]) > 1 else ''
149
-
150
- kline_data = symbol_data[tk]
151
- df = pd.DataFrame([j[:6] for j in kline_data],
152
- columns=['date', 'open', 'close', 'high', 'low', 'vol']).set_index('date')
153
- for col in ['open', 'high', 'low', 'close', 'vol']:
154
- df[col] = pd.to_numeric(df[col], errors='coerce')
155
-
156
- result = (symbol, name, df)
157
- self._put_cache(base_key, result)
158
- return result
159
- except Exception as e:
160
- logger.warning(f'error fetching {symbol}, err: {e}')
161
- return symbol, 'None', pd.DataFrame([])
162
-
163
- def _get_price_fallback(self, symbol: str, sdate: str, edate: str,
164
- freq: str, days: int, fq: str) -> Tuple[str, str, pd.DataFrame]:
165
- """降级方法(旧实现)"""
166
- from ..utils import hget
167
- import json
168
-
169
- url = f'https://web.ifzq.gtimg.cn/appstock/app/newfqkline/get?param={symbol},{freq},{sdate},{edate},{days},{fq}'
170
- response = hget(url)
171
- if not response:
172
- raise DataSourceError(f'Failed to fetch data for {symbol}')
173
-
174
- data = json.loads(response.text)['data'][symbol]
175
- name = ''
176
- for tkt in ['day', 'qfqday', 'hfqday', 'week', 'qfqweek', 'hfqweek',
177
- 'month', 'qfqmonth', 'hfqmonth']:
178
- if tkt in data:
179
- tk = tkt
180
- break
181
-
182
- df = pd.DataFrame([j[:6] for j in data[tk]],
183
- columns=['date', 'open', 'close', 'high', 'low', 'vol']).set_index('date')
184
- for col in ['open', 'high', 'low', 'close', 'vol']:
185
- df[col] = pd.to_numeric(df[col], errors='coerce')
186
- if 'qt' in data:
187
- name = data['qt'][symbol][1]
188
-
189
- result = (symbol, name, df)
190
- cache_key = f"{symbol}:{sdate}:{edate}:{freq}:{days}:{fq}"
191
- self._put_cache(cache_key, result)
192
- return result
193
-
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes