robust-mixed-dist 0.1.6__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/PKG-INFO +6 -3
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/README.md +6 -3
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/PKG-INFO +6 -3
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/setup.py +1 -1
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/LICENSE +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist/__init__.py +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist/binary.py +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist/mixed.py +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist/multiclass.py +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist/quantitative.py +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/SOURCES.txt +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/dependency_links.txt +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/requires.txt +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/top_level.txt +0 -0
- {robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: robust-mixed-dist
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: Compute statistical robust distances for mixed data.
|
|
5
5
|
Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
|
|
6
6
|
Author: Fabio Scielzo Ortiz
|
|
@@ -36,8 +36,11 @@ or Manhattan, are unsuitable for mixed-type data, and although Gower distance wa
|
|
|
36
36
|
designed to handle this kind of data, it may lead to suboptimal results in the presence
|
|
37
37
|
of outlying units or underlying correlation structure.
|
|
38
38
|
|
|
39
|
-
In the paper ***
|
|
40
|
-
**robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
|
|
39
|
+
In the paper ***Grané , Aurea; Scielzo-Ortiz, Fabio. “On generalized Gower distance for mixed-type data: extensive simulation study and new software tools”. SORT-Statistics and Operations Research Transactions, pp. 213-44, doi:10.57645/20.8080.02.28.*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
|
|
41
40
|
compute these robust proposals as well as classical ones.
|
|
42
41
|
|
|
43
42
|
The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
|
|
43
|
+
|
|
44
|
+
- **Package documentation** can be found here: https://fabioscielzoortiz.github.io/robust-mixed-dist-docu/intro.html
|
|
45
|
+
|
|
46
|
+
- **Paper link:** https://raco.cat/index.php/SORT/article/view/9900373
|
|
@@ -8,8 +8,11 @@ or Manhattan, are unsuitable for mixed-type data, and although Gower distance wa
|
|
|
8
8
|
designed to handle this kind of data, it may lead to suboptimal results in the presence
|
|
9
9
|
of outlying units or underlying correlation structure.
|
|
10
10
|
|
|
11
|
-
In the paper ***
|
|
12
|
-
**robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
|
|
11
|
+
In the paper ***Grané , Aurea; Scielzo-Ortiz, Fabio. “On generalized Gower distance for mixed-type data: extensive simulation study and new software tools”. SORT-Statistics and Operations Research Transactions, pp. 213-44, doi:10.57645/20.8080.02.28.*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
|
|
13
12
|
compute these robust proposals as well as classical ones.
|
|
14
13
|
|
|
15
|
-
The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
|
|
14
|
+
The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
|
|
15
|
+
|
|
16
|
+
- **Package documentation** can be found here: https://fabioscielzoortiz.github.io/robust-mixed-dist-docu/intro.html
|
|
17
|
+
|
|
18
|
+
- **Paper link:** https://raco.cat/index.php/SORT/article/view/9900373
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: robust-mixed-dist
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: Compute statistical robust distances for mixed data.
|
|
5
5
|
Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
|
|
6
6
|
Author: Fabio Scielzo Ortiz
|
|
@@ -36,8 +36,11 @@ or Manhattan, are unsuitable for mixed-type data, and although Gower distance wa
|
|
|
36
36
|
designed to handle this kind of data, it may lead to suboptimal results in the presence
|
|
37
37
|
of outlying units or underlying correlation structure.
|
|
38
38
|
|
|
39
|
-
In the paper ***
|
|
40
|
-
**robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
|
|
39
|
+
In the paper ***Grané , Aurea; Scielzo-Ortiz, Fabio. “On generalized Gower distance for mixed-type data: extensive simulation study and new software tools”. SORT-Statistics and Operations Research Transactions, pp. 213-44, doi:10.57645/20.8080.02.28.*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
|
|
41
40
|
compute these robust proposals as well as classical ones.
|
|
42
41
|
|
|
43
42
|
The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
|
|
43
|
+
|
|
44
|
+
- **Package documentation** can be found here: https://fabioscielzoortiz.github.io/robust-mixed-dist-docu/intro.html
|
|
45
|
+
|
|
46
|
+
- **Paper link:** https://raco.cat/index.php/SORT/article/view/9900373
|
|
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
|
|
|
5
5
|
|
|
6
6
|
setup(
|
|
7
7
|
name="robust-mixed-dist",
|
|
8
|
-
version="0.1.
|
|
8
|
+
version="0.1.8",
|
|
9
9
|
author="Fabio Scielzo Ortiz",
|
|
10
10
|
author_email="fabio.scielzoortiz@gmail.com",
|
|
11
11
|
description="Compute statistical robust distances for mixed data.",
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
{robust_mixed_dist-0.1.6 → robust_mixed_dist-0.1.8}/robust_mixed_dist.egg-info/top_level.txt
RENAMED
|
File without changes
|
|
File without changes
|