robust-mixed-dist 0.1.3__tar.gz → 0.1.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: robust-mixed-dist
3
- Version: 0.1.3
3
+ Version: 0.1.6
4
4
  Summary: Compute statistical robust distances for mixed data.
5
5
  Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
6
  Author: Fabio Scielzo Ortiz
@@ -26,7 +26,7 @@ Dynamic: requires-dist
26
26
  Dynamic: requires-python
27
27
  Dynamic: summary
28
28
 
29
- # robust_mixed_dist
29
+ # robust-mixed-dist
30
30
 
31
31
  Data scientists address real-world problems using multivariate and heterogeneous
32
32
  datasets, characterized by multiple variables of different natures. Selecting a suitable
@@ -37,7 +37,7 @@ designed to handle this kind of data, it may lead to suboptimal results in the p
37
37
  of outlying units or underlying correlation structure.
38
38
 
39
39
  In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
40
- **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
40
+ **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
41
41
  compute these robust proposals as well as classical ones.
42
42
 
43
43
  The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -1,4 +1,4 @@
1
- # robust_mixed_dist
1
+ # robust-mixed-dist
2
2
 
3
3
  Data scientists address real-world problems using multivariate and heterogeneous
4
4
  datasets, characterized by multiple variables of different natures. Selecting a suitable
@@ -9,7 +9,7 @@ designed to handle this kind of data, it may lead to suboptimal results in the p
9
9
  of outlying units or underlying correlation structure.
10
10
 
11
11
  In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
12
- **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
12
+ **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
13
13
  compute these robust proposals as well as classical ones.
14
14
 
15
15
  The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: robust-mixed-dist
3
- Version: 0.1.3
3
+ Version: 0.1.6
4
4
  Summary: Compute statistical robust distances for mixed data.
5
5
  Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
6
  Author: Fabio Scielzo Ortiz
@@ -26,7 +26,7 @@ Dynamic: requires-dist
26
26
  Dynamic: requires-python
27
27
  Dynamic: summary
28
28
 
29
- # robust_mixed_dist
29
+ # robust-mixed-dist
30
30
 
31
31
  Data scientists address real-world problems using multivariate and heterogeneous
32
32
  datasets, characterized by multiple variables of different natures. Selecting a suitable
@@ -37,7 +37,7 @@ designed to handle this kind of data, it may lead to suboptimal results in the p
37
37
  of outlying units or underlying correlation structure.
38
38
 
39
39
  In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
40
- **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
40
+ **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
41
41
  compute these robust proposals as well as classical ones.
42
42
 
43
43
  The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
5
5
 
6
6
  setup(
7
7
  name="robust-mixed-dist",
8
- version="0.1.3",
8
+ version="0.1.6",
9
9
  author="Fabio Scielzo Ortiz",
10
10
  author_email="fabio.scielzoortiz@gmail.com",
11
11
  description="Compute statistical robust distances for mixed data.",