robust-mixed-dist 0.1.3__tar.gz → 0.1.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: robust-mixed-dist
3
- Version: 0.1.3
3
+ Version: 0.1.5
4
4
  Summary: Compute statistical robust distances for mixed data.
5
5
  Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
6
  Author: Fabio Scielzo Ortiz
@@ -37,7 +37,7 @@ designed to handle this kind of data, it may lead to suboptimal results in the p
37
37
  of outlying units or underlying correlation structure.
38
38
 
39
39
  In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
40
- **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
40
+ **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
41
41
  compute these robust proposals as well as classical ones.
42
42
 
43
43
  The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -9,7 +9,7 @@ designed to handle this kind of data, it may lead to suboptimal results in the p
9
9
  of outlying units or underlying correlation structure.
10
10
 
11
11
  In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
12
- **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
12
+ **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
13
13
  compute these robust proposals as well as classical ones.
14
14
 
15
15
  The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: robust-mixed-dist
3
- Version: 0.1.3
3
+ Version: 0.1.5
4
4
  Summary: Compute statistical robust distances for mixed data.
5
5
  Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
6
  Author: Fabio Scielzo Ortiz
@@ -37,7 +37,7 @@ designed to handle this kind of data, it may lead to suboptimal results in the p
37
37
  of outlying units or underlying correlation structure.
38
38
 
39
39
  In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
40
- **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
40
+ **robust related metric scaling**. In addition, the new Python package `robust-mixed-dist` is developed, which enables to
41
41
  compute these robust proposals as well as classical ones.
42
42
 
43
43
  The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
5
5
 
6
6
  setup(
7
7
  name="robust-mixed-dist",
8
- version="0.1.3",
8
+ version="0.1.5",
9
9
  author="Fabio Scielzo Ortiz",
10
10
  author_email="fabio.scielzoortiz@gmail.com",
11
11
  description="Compute statistical robust distances for mixed data.",